1
|
Daneshi M, Borowicz PP, Entzie YL, Syring JG, King LE, Safain KS, Anas M, Reynolds LP, Ward AK, Dahlen CR, Crouse MS, Caton JS. Influence of Maternal Nutrition and One-Carbon Metabolites Supplementation during Early Pregnancy on Bovine Fetal Small Intestine Vascularity and Cell Proliferation. Vet Sci 2024; 11:146. [PMID: 38668414 PMCID: PMC11054626 DOI: 10.3390/vetsci11040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
To investigate the effects of nutrient restriction and one-carbon metabolite (OCM) supplementation (folate, vitamin B12, methionine, and choline) on fetal small intestine weight, vascularity, and cell proliferation, 29 (n = 7 ± 1 per treatment) crossbred Angus beef heifers (436 ± 42 kg) were estrous synchronized and conceived by artificial insemination with female sexed semen from a single sire. Then, they were allotted randomly to one of four treatments in a 2 × 2 factorial arrangement with the main factors of nutritional plane [control (CON) vs. restricted feed intake (RES)] and OCM supplementation [without OCM (-OCM) or with OCM (+OCM)]. Heifers receiving the CON level of intake were fed to target an average daily gain of 0.45 kg/day, which would allow them to reach 80% of mature BW by calving. Heifers receiving the RES level of intake were fed to lose 0.23 kg/heifer daily, which mimics observed production responses in heifers that experience a diet and environment change during early gestation. Targeted heifer gain and OCM treatments were administered from d 0 to 63 of gestation, and then all heifers were fed a common diet targeting 0.45 kg/d gain until d 161 of gestation, when heifers were slaughtered, and fetal jejunum was collected. Gain had no effect (p = 0.17) on the fetal small intestinal weight. However, OCM treatments (p = 0.02) displayed less weight compared to the -OCM groups. Capillary area density was increased in fetal jejunal villi of RES - OCM (p = 0.02). Vascular endothelial growth factor receptor 2 (VEGFR2) positivity ratio tended to be greater (p = 0.08) in villi and was less in the crypts (p = 0.02) of the RES + OCM group. Cell proliferation decreased (p = 0.02) in villi and crypts of fetal jejunal tissue from heifers fed the RES + OCM treatment compared with all groups and CON - OCM, respectively. Spatial cell density increased in RES - OCM compared with CON + OCM (p = 0.05). Combined, these data show OCM supplementation can increase expression of VEGFR2 in jejunal villi, which will promote maintenance of the microvascular beds, while at the same time decreasing small intestine weight and crypt cell proliferation.
Collapse
Affiliation(s)
- Mojtaba Daneshi
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Pawel P. Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Yssi L. Entzie
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Jessica G. Syring
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Layla E. King
- Department of Agriculture and Natural Resources, University of Minnesota Crookston, Crookston, MN 56716, USA;
| | - Kazi Sarjana Safain
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Lawrence P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Alison K. Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Matthew S. Crouse
- United States Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| |
Collapse
|
2
|
Hunter R, Baird B, Garcia M, Begay J, Goitom S, Lucas S, Herbert G, Scieszka D, Padilla J, Brayer K, Ottens AK, Suter MA, Barrozo ER, Hines C, Bleske B, Campen MJ. Gestational ozone inhalation elicits maternal cardiac dysfunction and transcriptional changes to placental pericytes and endothelial cells. Toxicol Sci 2023; 196:238-249. [PMID: 37695302 PMCID: PMC10682975 DOI: 10.1093/toxsci/kfad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Ozone (O3) is a criteria air pollutant with the most frequent incidence of exceeding air quality standards. Inhalation of O3 is known to cause lung inflammation and consequent systemic health effects, including endothelial dysfunction. Epidemiologic data have shown that gestational exposure to air pollutants correlates with complications of pregnancy, including low birth weight, intrauterine growth deficiency, preeclampsia, and premature birth. Mechanisms underlying how air pollution may facilitate or exacerbate gestational complications remain poorly defined. The current study sought to uncover how gestational O3 exposure impacted maternal cardiovascular function, as well as the development of the placenta. Pregnant mice were exposed to 1PPM O3 or a sham filtered air (FA) exposure for 4 h on gestational day (GD) 10.5, and evaluated for cardiac function via echocardiography on GD18.5. Echocardiography revealed a significant reduction in maternal stroke volume and ejection fraction in maternally exposed dams. To examine the impact of maternal O3 exposure on the maternal-fetal interface, placentae were analyzed by single-cell RNA sequencing analysis. Mid-gestational O3 exposure led to significant differential expression of 4021 transcripts compared with controls, and pericytes displayed the greatest transcriptional modulation. Pathway analysis identified extracellular matrix organization to be significantly altered after the exposure, with the greatest modifications in trophoblasts, pericytes, and endothelial cells. This study provides insights into potential molecular processes during pregnancy that may be altered due to the inhalation of environmental toxicants.
Collapse
Affiliation(s)
- Russell Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brenna Baird
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Siem Goitom
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jamie Padilla
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kathryn Brayer
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Melissa A Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Enrico R Barrozo
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Curt Hines
- Department of Biochemistry & Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Naidoo N, Abel T, Moodley J, Naicker T. Immunoexpression of neuropilin-1 in the chorionic villi of HIV-infected preeclamptic South African women of African ancestry. Histochem Cell Biol 2023; 160:307-319. [PMID: 37302087 PMCID: PMC10257896 DOI: 10.1007/s00418-023-02213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/13/2023]
Abstract
Neuropilin-1 (NRP-1) is an essential regulator of maternal immune tolerance, placentation, and angiogenesis. Its dysregulation in preeclampsia (PE) and human immunodeficiency virus (HIV) infection implicates NRP-1 in disease susceptibility and progression. Therefore, this study investigates placental NRP-1 immunoexpression in HIV-complicated preeclamptic pregnancies in South African women of African ancestry receiving antiretroviral therapy. Immunohistochemistry of recombinant anti-neuropilin-1 antibody was performed on placental tissue from 30 normotensive and 60 early onset (EOPE) and late-onset (LOPE) preeclamptic women stratified by HIV status. Qualitative analysis of NRP-1 immunostaining within the chorionic villi revealed a predominant localization in trophoblasts and syncytial knots as well as endothelial, fibroblast-like, and Hofbauer cells. Following morphometric evaluation, we report that PE and HIV infection and/or antiretroviral usage independently downregulate placental NRP-1 immunoexpression; however, as a comorbidity, this decline is further augmented within the conducting and exchange villi. Furthermore, reduced immunoexpression of NRP-1 in EOPE compared with LOPE villi may be due to maternal-fetal maladaptation. It is plausible that the decreased NRP-1 immunoexpression in PE placentae facilitates syncytiotrophoblast apoptosis and subsequent deportation of NRP-1 into the maternal circulation, contributing to the anti-angiogenic milieu of PE. We hypothesize that the intense NRP-1 immunoreactivity observed in Hofbauer cells at the maternal-fetal interface may contribute to the natural prevention mechanism of HIV vertical transmission.
Collapse
Affiliation(s)
- Nitalia Naidoo
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Women's Health and HIV Research Group, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Tashlen Abel
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Women's Health and HIV Research Group, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Jagidesa Moodley
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Women's Health and HIV Research Group, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Thajasvarie Naicker
- Optics & Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Chen J, Li Y, Xu L, Sang Y, Li D, Du M. Paradoxical expression of NRP1 in decidual stromal and immune cells reveals a novel inflammation balancing mechanism during early pregnancy. Inflamm Res 2023:10.1007/s00011-023-01734-y. [PMID: 37328599 DOI: 10.1007/s00011-023-01734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVE AND DESIGN To investigate the balancing mechanisms between decidualization-associated inflammation and pregnancy-related immunotolerance. MATERIAL OR SUBJECTS Decidual samples from women with normal pregnancy (n = 58) or unexplained spontaneous miscarriage (n = 13), peripheral blood from normal pregnancy and endometria from non-pregnancy (n = 10) were collected. Primary endometrial stromal cells (ESCs), decidual stromal cells (DSCs), decidual immune cells (DICs) and peripheral blood mononuclear cells (PBMCs) were isolated. TREATMENT The plasmid carrying neuropilin-1 (NRP1) gene was transfected into ESC for overexpression. To induce decidualization in vitro, ESCs were treated with a combination of 10 nM estradiol, 100 nM progesterone and 0.5 mM cAMP. Anti-Sema3a and anti-NRP1 neutralizing antibodies were applied to block the ligand-receptor interactions. METHODS RNA-seq analysis was performed to identify differentially expressed genes in DSCs and DICs, and NRP1 expression was verified by Western blotting and flow cytometry. The secretion of inflammatory mediators was measured using a multifactor cytometric bead array. The effects of Sema3a-NRP1 pathway on DICs were determined by flow cytometry. Statistical differences between groups were compared using the T test and one way or two-way ANOVA. RESULTS Combined with five RNA-seq datasets, NRP1 was the only immune checkpoint changing oppositely between DSCs and DICs. The decreased expression of NRP1 in DSCs allowed intrinsic inflammatory responses required for decidualization, while its increased expression in DICs enhanced tolerant phenotypes beneficial to pregnancy maintenance. DSC-secreted Sema3a promoted immunosuppression in DICs via NRP1 binding. In women with miscarriage, NRP1 was abnormally elevated in DSCs but diminished in decidual macrophages and NK cells. CONCLUSION NRP1 is a multifunctional controller that balances the inflammatory states of DSCs and DICs in gravid uterus. Abnormal expression of NRP1 is implicated in miscarriage.
Collapse
Affiliation(s)
- Jiajia Chen
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Yifei Sang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China.
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China.
- Department of Obstetrics and Gynecology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, 519020, China.
| |
Collapse
|
5
|
Arutjunyan AV, Kerkeshko GO, Milyutina YP, Shcherbitskaia AD, Zalozniaia IV, Mikhel AV, Inozemtseva DB, Vasilev DS, Kovalenko AA, Kogan IY. Imbalance of Angiogenic and Growth Factors in Placenta in Maternal Hyperhomocysteinemia. BIOCHEMISTRY (MOSCOW) 2023; 88:262-279. [PMID: 37072327 DOI: 10.1134/s0006297923020098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
| | - Gleb O Kerkeshko
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Yulia P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, Russian Ministry of Health, St. Petersburg, 194100, Russia
| | - Anastasiia D Shcherbitskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Irina V Zalozniaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Anastasiia V Mikhel
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Daria B Inozemtseva
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Dmitrii S Vasilev
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anna A Kovalenko
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Igor Yu Kogan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
6
|
Ulinastatin ameliorates preeclampsia induced by N(gamma)-nitro-l-arginine methyl ester in a rat model via inhibition of the systemic and placental inflammatory response. J Hypertens 2023; 41:150-158. [PMID: 36453658 DOI: 10.1097/hjh.0000000000003316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND The pathogenesis of preeclampsia (PE) is associated with inflammation and endothelial damage. Ulinastatin (UTI) mainly inhibits proteolytic activity and significantly reduces the release of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) from macrophages. It also ameliorates vascular endothelial damage in pathological conditions. Hence, we investigated the effects of UTI in a rat model of PE induced using N(gamma)-nitro-l-arginine methyl ester (L-NAME). METHODS Although inducing PE in a rat model, 5000 U/kg of UTI were injected daily. Systolic blood pressure (SBP) and protein levels in the urine were measured. Renal function, and serum concentrations of TNF-α, IL-6, placental growth factor (PLGF), and von Willebrand factor (vWF) were evaluated. The number and weight of live fetuses as well as the weight of placentas were measured. Placentas were collected for western blot and pathological analysis. RESULTS UTI slightly ameliorated proteinuria and the increases in SBP, blood urea nitrogen (BUN), and serum creatinine. Furthermore, UTI improved serum and placental protein expression levels of TNF-α, IL-6, vWF, and PLGF. Pathological analysis revealed that vascular density and blood flow perfusion was enhanced, vessel wall thickening and neutrophil infiltration were diminished, and the weight and number of live fetuses as well as the weight of the placentas were improved with UTI. CONCLUSION Preventive use of UTI in the PE rat model induced by L-NAME partially alleviated hypertension, proteinuria, and impaired renal function; improved fetal growth restriction; diminished vascular endothelial injury; and ameliorated placental vasculogenesis abnormality and malperfusion by inhibiting the systemic and placental inflammatory response, suggesting that UTI is a potential drug for PE prevention or treatment.
Collapse
|
7
|
Naidoo N, Moodley J, Khaliq OP, Naicker T. Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review. Virus Res 2022; 319:198880. [PMID: 35905790 PMCID: PMC9316720 DOI: 10.1016/j.virusres.2022.198880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
Abstract
This review explores the role of transmembrane neuropilin-1 (NRP-1) in pregnancy, preeclampsia (PE), human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Since these conditions are assessed independently, this review attempts to predict their comorbid clinical manifestations. Dysregulation of NRP-1 contributes to the pathogenesis of PE by (a) impairing vascular endothelial growth factor (VEGF) signaling for adequate spiral artery remodeling and placentation, (b) inducing syncytiotrophoblast (ST) cell apoptosis and increasing ST-derived microparticle circulation and (c) by decreasing regulatory T cell activity predisposing maternal immune intolerance. Although NRP-1 is upregulated in SARS-CoV-2 placentae, its exploitation for SARS-CoV-2 internalization and increased infectivity may alter angiogenesis through the competitive inhibition of VEGF. The anti-inflammatory nature of NRP-1 may aid its upregulation in HIV-1 infection; however, the HIV-accessory protein, tat, reduces NRP-1 expression. Upregulated NRP-1 in macrophages and dendritic cells also demonstrated HIV-1 resistance/reduced infectivity. Notably, HIV-1-infected pregnant women receiving antiretroviral therapy (ART) to prevent vertical transmission may experience immune reconstitution, impaired decidualization, and elevated markers of endothelial injury. Since endothelial dysfunction and altered immune responses are central to PE, HIV-1 infection, ART usage and SARS-CoV-2 infection, it is plausible that an exacerbation of both features may prevail in the synergy of these events. Additionally, this review identifies microRNAs (miRNAs) mediating NRP-1 expression. MiR-320 and miR-141 are overexpressed in PE, while miR-206 and miR-124-3p showed increased expression in PE and HIV-1 infection. Additionally, miR-214 is overexpressed in PE, HIV-1 and SARS-CoV-2 infection, implicating treatment strategies to reduce these miRNAs to upregulate and normalize NRP-1 expression. However, inconsistencies in the data of the role and regulation of miRNAs in PE, HIV-1 and SARS-CoV-2 infections require clarification. This review provides a platform for early diagnosis and potential therapeutic intervention of PE, HIV-1, and SARS-CoV-2 infections independently and as comorbidities.
Collapse
Affiliation(s)
- Nitalia Naidoo
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Olive Pearl Khaliq
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Awoyemi T, Iaccarino DA, Motta-Mejia C, Raiss S, Kandzija N, Zhang W, Vatish M. Neuropilin-1 is uniquely expressed on small syncytiotrophoblast extracellular vesicles but not on medium/large vesicles from preeclampsia and normal placentae. Biochem Biophys Res Commun 2022; 619:151-158. [PMID: 35760012 DOI: 10.1016/j.bbrc.2022.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE) is a multisystem progressive hypertensive disorder unique to human pregnancy. The placenta is fundamental to its pathogenesis and releases placental factors as well as extracellular vesicles (small and medium/large syncytiotrophoblast extracellular vesicles (STB-EVs)) as a response to syncytiotrophoblast stress such as tissue factor and plasminogen activator inhibitors 1. Neuropilin 1 (NRP-1) is an anti-angiogenic factor involved in development, angiogenesis, arteriogenesis, and vascular permeability. NRP-1 acts as a co-receptor for growth factors such as vascular endothelial growth factor (VEGF), placenta growth factor (PLGF), and epidermal growth factor (EGF). Given the documented pro and anti-angiogenic roles of STB-EVs, we hypothesized that 1) STB-EVs might express NRP-1; and 2) the expression of NRP-1 might differ between normal and preeclampsia STB-EVs. METHODS We isolated STB-EVs (both small and medium/large) from PE and NP placentae using the physiologic ex vivo dual lobe perfusion model. The enriched STB-EVs were characterized by Western blot, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA) according to the international society of extracellular vesicles (ISEV) guidelines. We assessed for NRP-1 expression with Western blot (placenta and STB-EVs) and immunohistochemistry (placenta). We performed co-expression analysis for placenta alkaline phosphatase (PLAP - a known STB-EV marker) and NRP-1 with immunoprecipitation followed by Western blot. RESULTS We confirmed NRP-1 expression in NP and PE placenta. We showed that NRP-1 Expression was limited to small syncytiotrophoblast membrane extracellular vesicles (S STB-EVs) but not medium/large STB-EVs and that NRP-1 is co-expressed with PLAP. CONCLUSION Neuropilin-1 is uniquely expressed on small syncytiotrophoblast extracellular vesicles but not on medium/large vesicles from preeclampsia and normal placentae.
Collapse
Affiliation(s)
- Toluwalase Awoyemi
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Daniela A Iaccarino
- Vita-Salute San Raffaele University, Obstetrics and Gynecology Department, Genomic Unit for the Diagnosis of Human Pathologies, Italy
| | - Carolina Motta-Mejia
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Sina Raiss
- S Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Neva Kandzija
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Wei Zhang
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Cheng JC, Fang L, Li Y, Thakur A, Hoodless PA, Guo Y, Wang Z, Wu Z, Yan Y, Jia Q, Gao Y, Han X, Yu Y, Sun YP. G protein-coupled estrogen receptor stimulates human trophoblast cell invasion via YAP-mediated ANGPTL4 expression. Commun Biol 2021; 4:1285. [PMID: 34773076 PMCID: PMC8589964 DOI: 10.1038/s42003-021-02816-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Insufficient invasion of trophoblast cells into the uterine decidua is associated with preeclampsia (PE). G protein-coupled estrogen receptor (GPER) is a membrane estrogen receptor involved in non-genomic estrogen signaling. GPER is expressed in human trophoblast cells and downregulated GPER levels are noted in PE. However, to date, the role of GPER in trophoblast cells remains largely unknown. Here, we applied RNA sequencing (RNA-seq) to HTR-8/SVneo human trophoblast cells in response to G1, an agonist of GPER, and identified angiopoietin-like 4 (ANGPTL4) as a target gene of GPER. Treatment of trophoblast cells with G1 or 17β-estradiol (E2) activated Yes-associated protein (YAP), the major downstream effector of the Hippo pathway, via GPER but in a mammalian STE20-like protein kinase 1 (MST1)-independent manner. Using pharmacological inhibitors as well as loss- and gain-of-function approaches, our results revealed that YAP activation was required for GPER-stimulated ANGPTL4 expression. Transwell invasion assays demonstrated that activation of GPER-induced ANGPTL4 promoted cell invasion. In addition, the expression levels of GPER, YAP, and ANGPTL4 were downregulated in the placenta of patients with PE. Our findings reveal a mechanism by which GPER exerts its stimulatory effect on human trophoblast cell invasion by upregulating YAP-mediated ANGPTL4 expression. Cheng, Fan, Li et al. identified ANGPTL4 as a G1-induced target gene of GPER/YAP in HRT8 cells using RNA-seq and highlighted its importance in regulating trophoblast cell invasion. The authors also reported GPER downregulation in the placenta and lower estradiol levels in patients who developed preeclampsia.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhen Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yibo Gao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
10
|
HIV Associated Preeclampsia: A Multifactorial Appraisal. Int J Mol Sci 2021; 22:ijms22179157. [PMID: 34502066 PMCID: PMC8431090 DOI: 10.3390/ijms22179157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: This review explores angiogenesis, vascular dysfunction, the complement system, RAAS, apoptosis and NETosis as potential pathways that are dysregulated during preeclampsia, HIV infection and ART usage. Results: HIV-1 accessory and matrix proteins are protagonists for the elevation of oxidative stress, apoptosis, angiogenesis, and elevation of adhesion markers. Despite the immunodeficiency during HIV-1 infection, HIV-1 exploits our cellular defence arsenal by escaping cell-mediated lysis, yet HIV-1 infectivity is enhanced via C5a release of TNF-α and IL-6. This review demonstrates that PE is an oxidatively stressed microenvironment associated with increased apoptosis and NETosis, but with a decline in angiogenesis. Immune reconstitution in the duality of HIV-1 and PE by protease inhibitors, HAART and nucleoside reverse transcriptase, affect similar cellular pathways that eventuate in loss of endothelial cell integrity and, hence, its dysfunction. Conclusions: HIV-1 infection, preeclampsia and ARTs differentially affect endothelial cell function. In the synergy of both conditions, endothelial dysfunction predominates. This knowledge will help us to understand the effect of HIV infection and ART on immune reconstitution in preeclampsia.
Collapse
|
11
|
Yang X, Chen D, He B, Cheng W. NRP1 and MMP9 are dual targets of RNA-binding protein QKI5 to alter VEGF-R/ NRP1 signalling in trophoblasts in preeclampsia. J Cell Mol Med 2021; 25:5655-5670. [PMID: 33942999 PMCID: PMC8184681 DOI: 10.1111/jcmm.16580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia (PE) is characterized by placental ischemia and hypoxia, resulting in abnormal casting of the uterine spiral artery, which is mainly caused by insufficient trophoblastic cell infiltration. A reduction in levels of growth factor-based signalling via Neuropilin-1 (NRP1) has been shown to contribute to dysfunctional trophoblast development. In this study, we showed that the RNA-binding protein, QKI5, regulated NRP1 expression and significantly improved trophoblast proliferation in vitro and in vivo. QKI5 and NRP1 expressions were significantly reduced in human PE placentas and in trophoblasts during hypoxia. Overexpression of these factors significantly improved cell proliferation and migration in vitro, in contrast to a decrease upon siRNA knockdown of QKI5 and NRP1 in HTR-8/SVneo cells. Using RIP and RNA pull-down assays, we further showed that QKI5 directly interacted with the 3'-UTR region of NRP1, to mediate cell proliferation and migration via matrix metalloprotease-9. Further, similar to NRP1, QKI5 also targets matrix metalloproteinase 9 (MMP9) involved in secretion of growth factors and its effects can be counteracted by NRP1 overexpression. In vivo studies using a PE mouse model revealed that QKI5 overexpression alleviated PE-related symptoms such as elevated blood pressure and proteinuria. Taken together, we found that QKI5 was a novel regulator, of VEGF-R/NRP1 signalling pathway functioning in trophoblast proliferation and migration, resulting in major contributors to the pathogenesis of PE. While careful evaluation of the broad implications of QKI5 expression is still necessary, this study identified QKI5 as a promising target for treatment strategies in acute PE patients.
Collapse
Affiliation(s)
- Xingyu Yang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Dan Chen
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Municipal Key Clinical SpecialtyShanghaiChina
| | - Biwei He
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weiwei Cheng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
12
|
Bhattacharjee J, Mohammad S, Goudreau AD, Adamo KB. Physical activity differentially regulates VEGF, PlGF, and their receptors in the human placenta. Physiol Rep 2021; 9:e14710. [PMID: 33463910 PMCID: PMC7814495 DOI: 10.14814/phy2.14710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Physical activity (PA) has beneficial effects on the function of many organs by modulating their vascular development. Regular PA during pregnancy is associated with favorable short‐ and long‐term outcomes for both mother and fetus. During pregnancy, appropriate vascularization of the placenta is crucial for adequate maternal–fetal nutrient and gas exchange. How PA modulates angiogenic factors, VEGF, and its receptors in the human placenta, is as of yet, unknown. We objectively measured the PA of women at 24–28 and 34–38 weeks of gestation. Participants were considered “active” if they had met or exceeded 150 min of moderate‐intensity PA per week during their 2nd trimester. Term placenta tissues were collected from active (n = 23) or inactive (n = 22) women immediately after delivery. We examined the expression of the angiogenic factors VEGF, PlGF, VEGFR‐1, and VEGFR‐2 in the placenta. Western blot analysis showed VEGF and its receptor, VEGFR‐1 was significantly (p < 0.05) higher both at the protein and mRNA levels in placenta from physically active compared to inactive women. No difference in VEGFR‐2 was observed. Furthermore, immunohistochemistry showed differential staining patterns of VEGF and its receptors in placental endothelial, stromal, and trophoblast cells and in the syncytial brush border. In comparison, PlGF expression did not differ either at the protein or mRNA level in the placenta from physically active or inactive women. The expression and localization pattern of VEGF and its receptors suggest that PA during pregnancy may support a pro‐angiogenic milieu to the placental vascular network.
Collapse
Affiliation(s)
- Jayonta Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Shuhiba Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Alexandra D Goudreau
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Elevated MicroRNA 183 Impairs Trophoblast Migration and Invasiveness by Downregulating FOXP1 Expression and Elevating GNG7 Expression during Preeclampsia. Mol Cell Biol 2020; 41:MCB.00236-20. [PMID: 33139493 DOI: 10.1128/mcb.00236-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of uncertain etiology that is the leading cause of maternal and fetal morbidity or mortality. The dysregulation of microRNAs (miRNAs) has been highlighted as a potential factor involved in the development of PE. Therefore, our study investigated a novel miRNA, miRNA 183 (miR-183), and its underlying association with PE. Expression of miR-183, forkhead box P1 (FOXP1), and G protein subunit gamma 7 (GNG7) in placental tissues of patients with PE was determined. Gain- and loss-of-function experiments were conducted to explore modulatory effects of miR-183, FOXP1, and GNG7 on the viability, invasion, and angiogenesis of trophoblast cells in PE. Finally, we undertook in vivo studies to explore effects of FOXP1 in the PE model. The results revealed suppressed expression of FOXP1 and significant elevations in miR-183 and GNG7 expression in placental tissues of PE patients. FOXP1 was observed to promote proliferation, invasion, and angiogenesis in human chorionic trophoblastic cells. miR-183 resulted in depletion of FOXP1 expression, while FOXP1 was capable of restraining GNG7 expression and promoting the mTOR pathway. The findings confirmed the effects of FOXP1 on PE. In conclusion, miR-183 exhibits an inhibitory role in PE through suppression of FOXP1 and upregulation of GNG7.
Collapse
|
14
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
15
|
Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, Kerkeshko GO, Zalozniaia IV, Mikhel AV. Neurotrophins of the Fetal Brain and Placenta in Prenatal Hyperhomocysteinemia. BIOCHEMISTRY (MOSCOW) 2020; 85:213-223. [PMID: 32093597 DOI: 10.1134/s000629792002008x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prenatal hyperhomocysteinemia (PHHC) in pregnant rats was induced by chronic L-methionine loading, resulting in a significant increase in the L-homocysteine content both in the mothers' blood and blood and brain of fetuses. Significant decrease in the weight of the placenta, fetus, and fetal brain was detected by the morphometric studies on day 20 of pregnancy. PHHC also activated maternal immune system due to the increase in the content of proinflammatory interleukin-1β in the rat blood and fetal part of the placenta. PHHC elevated the levels of the brain-derived neurotrophic factor (BDNF, 29 kDa) and nerve growth factor (NGF, 31 kDa) precursors in the placenta and the content of the BDNF isoform (29 kDa) in the fetal brain. The content of neuregulin 1 (NRG1) decreased in the placenta and increased in the fetal brain on day 20 of embryonic development. An increase in the caspase-3 activity was detected in the brains of fetuses subjected to PHHC. It was suggested that changes in the processing of neurotrophins induced by PPHC, oxidative stress, and inflammatory processes initiated by it, as well as apoptosis, play an important role in the development of brain disorders in the offspring.
Collapse
Affiliation(s)
- A V Arutjunyan
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia.
| | - Yu P Milyutina
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - A D Shcherbitskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - G O Kerkeshko
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - I V Zalozniaia
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - A V Mikhel
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| |
Collapse
|
16
|
Niktalab R, Piravar Z, Behzadi R. Different Polymorphisms of Vascular Endothelial Growth Factor Gene in Patients with Pre-Eclampsia among The Iranian Women Population. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:41-45. [PMID: 32112634 PMCID: PMC7139223 DOI: 10.22074/ijfs.2020.5787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
Background Pre-eclampsia (PE) is a pregnancy complication and one of the leading causes of maternal and neonatal
morbidity and mortality in the world. PE is characterized by high blood pressure and signs of damage to the other
organs, most often the liver and kidneys. Given the importance of mutation in the vascular endothelial growth factor
(VEGF) gene and its correlation with the incidence of PE, the relationship of VEGF encoding gene polymorphisms
rs922583280, rs3025040 and rs10434 with the incidence of PE in the population of Iranian women was studied, in
this research. Materials and Methods In this case-control study, 100 pregnant women with PE diagnosis and 50 healthy
pregnant women were evaluated using Sanger sequencing method to determine genotypes rs922583280, rs3025040 and
rs10434. Results There was no significant difference in the allele frequency of rs922583280 and rs3025040 polymorphisms
between case and control groups (P>0.05), while frequency of the recessive allele (G) for rs10434 polymorphism was
significantly higher in the case group compared to the control group (P=0.014, case=24%, control=12%). Frequency
of the allele A in the control group was higher than the patient group (case=76%, control=88%). Frequency of AG
genotype in the patient group was also higher than the control group. In addition, frequency of AA genotype in the
control group was higher than the patient group (case=57%, control=78). Conclusion The results of this study demonstrated a significant difference between patient and control groups for the
VEGF coding gene polymorphism rs10434 and it can affect the incidence of PE among Iranian women.
Collapse
Affiliation(s)
- Rana Niktalab
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Piravar
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran. Electronic Address:
| | - Roudabeh Behzadi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Kojovic D, V Workewych N, Piquette-Miller M. Role of Elevated SFLT-1 on the Regulation of Placental Transporters in Women With Pre-Eclampsia. Clin Transl Sci 2020; 13:580-588. [PMID: 31917511 PMCID: PMC7214658 DOI: 10.1111/cts.12742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/02/2019] [Indexed: 01/03/2023] Open
Abstract
Pre-eclampsia (PE) is an obstetric complication associated with elevated levels of fms-like tyrosine kinase 1 (sFlt-1) and dysregulated trophoblast differentiation. However, limited information exists on the expression and regulation of placental drug transporters in PE. Transporter mRNA and protein expression were analyzed in human placentas diagnosed with PE (n = 34) and gestational age-matched controls (n = 24), whereas placental BeWo cells were treated with angiogenic factors in vitro. Significant downregulation of breast cancer resistance protein (BCRP) and several other transporters were seen in placentas complicated by PE compared with controls, whereas mRNA levels of sFlt-1 were induced by 2.5-fold in PE placentas (P < 0.01). Treatment of BeWo cells with sFlt-1 resulted in an 85-90% downregulation of BCRP, which was attenuated by vascular endothelial growth factor. Our findings suggest that placental function is compromised during PE due to altered expression of clinically important transporters. Furthermore, our in vitro results show that sFlt-1 is involved in the regulation of BCRP.
Collapse
Affiliation(s)
- Dea Kojovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Natalie V Workewych
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Li Q, Zhang J, Su DM, Guan LN, Mu WH, Yu M, Ma X, Yang RJ. lncRNA TUG1 modulates proliferation, apoptosis, invasion, and angiogenesis via targeting miR-29b in trophoblast cells. Hum Genomics 2019; 13:50. [PMID: 31519209 PMCID: PMC6743181 DOI: 10.1186/s40246-019-0237-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/30/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pre-eclampsia (PE) is regarded as the leading cause of maternal and neonatal morbidity and mortality. Nevertheless, the potential mechanism for the regulation of trophoblast behaviors and the pathogenesis of PE remain largely elusive. Recently, accumulating evidence emphasized that aberrant expression of long non-coding RNAs (lncRNAs) functions as imperative regulators in human diseases, including PE. Thus, identifying PE-related specific lncRNAs to uncover the underlying molecular mechanism is of much significance. However, the functional roles and underlying mechanisms of lncRNAs in PE progression remain unclear. METHOD Placenta tissues obtained from patients with PE and healthy pregnant women were performed to measure TUG1 expression by qRT-PCR analysis. Transient transfections were conducted to alter TUG1 expression. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were carried out to assess cell proliferation and apoptosis, respectively. Transwell and tube formation assays were performed to measure the capacity of cell invasion and angiogenesis. Moreover, the luciferase reporter assay was subjected to verify the binding relationship between TUG1 and miR-29b. Western blot analysis was performed to detect the expression of key proteins in the PI3K/AKT and ERK pathway. RESULTS Here, we identified a lncRNA, TUG1, which was notably decreased in placental samples of PE patients. Functional experiments of loss- or gain-of-function assays also verified that ectopic expression of TUG1 promoted cell proliferation, invasion, and angiogenesis, but negatively regulated cell apoptosis, whereas TUG1 inhibition presented the opposite effects. Furthermore, mechanistic researches revealed that TUG1 could act as a molecular sponge for miR-29b, thus regulating MCL1, VEGFA, and MMP2 to modulate PE development. CONCLUSIONS Taken together, our findings demonstrated that TUG1 exerts as a critical role in PE progression, which might furnish a novel therapeutic marker for PE treatment.
Collapse
Affiliation(s)
- Qian Li
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, 100081 People’s Republic of China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, 050011 Hebei Province People’s Republic of China
| | - Dong-Mei Su
- Genetic Center, National Research Institute for Family Planning, Beijing, 100081 People’s Republic of China
| | - Li-Na Guan
- Genetic Center, National Research Institute for Family Planning, Beijing, 100081 People’s Republic of China
| | - Wei-Hong Mu
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, 050011 Hebei Province People’s Republic of China
| | - Mei Yu
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, 050011 Hebei Province People’s Republic of China
| | - Xu Ma
- Genetic Center, National Research Institute for Family Planning, Beijing, 100081 People’s Republic of China
| | - Rong-Juan Yang
- Department of Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, No. 206, East Zhongshan Road, Shijiazhuang, 050011 Hebei Province People’s Republic of China
| |
Collapse
|
19
|
3'-UTR Polymorphisms in the Vascular Endothelial Growth Factor Gene (VEGF) Contribute to Susceptibility to Recurrent Pregnancy Loss (RPL). Int J Mol Sci 2019; 20:ijms20133319. [PMID: 31284523 PMCID: PMC6651559 DOI: 10.3390/ijms20133319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have examined the genetic association of vascular endothelial growth factor (VEGF) single nucleotide polymorphisms (SNPs) with recurrent pregnancy loss (RPL). However, of the four known SNPs in the 3′-untranslated region (3′-UTR) of VEGF, three SNPs—namely rs3025040 (1451C>T), rs10434 (1612G>A), and rs3025053 (1725G>A)—remain poorly characterized with regard to RPL. Herein, we evaluated the association between these three SNPs in the VEGF 3′-UTR and RPL susceptibility. We analyzed VEGF 3′-UTR gene variants in with and without RPL using TaqMan allelic discrimination. There were significant differences in the genotype frequencies of 1612G>A (GA: adjusted odds ratio (AOR), 0.652; 95% confidence interval (CI), 0.447–0.951; p = 0.026) and 1725G>A (GA: AOR, 0.503; 95% CI, 0.229–0.848; p = 0.010) in RPL patients vs. controls. Our results indicate that the 1612G>A and 1725G>A polymorphisms in the 3′-UTR of VEGF are associated with RPL susceptibility in Korean women. These data suggest that VEGF 3′-UTR polymorphisms may be utilized as biomarkers for the detection of RPL risk and prevention.
Collapse
|
20
|
Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/acb-2018-0029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
The morphological and biochemical modification of oviductal epithelial cells (OECs) belongs to the group of compound processes responsible for proper oocyte transport and successful fertilization. The cellular interactions between cumulus-oocyte complexes (COCs) and oviductal epithelial cells (OECs) are crucial for this unique mechanism. In the present study we have analyzed angiogenesis and blood vessel development processes at transcript levels. By employing microarrays, four ontological groups associated with these mechanisms have been described. Differentially expressed genes belonging to the “angiogenesis”, “blood circulation”, “blood vessel development” and “blood vessel morphogenesis” GO BP terms were investigated as a potential markers for the creation of new blood vessels in cells under in vitro primary culture conditions.
Collapse
|