1
|
Koltsova AS, Pendina AA, Malysheva OV, Trusova ED, Staroverov DA, Yarmolinskaya MI, Polenov NI, Glotov AS, Kogan IY, Efimova OA. In Vitro Effect of Estrogen and Progesterone on Cytogenetic Profile of Uterine Leiomyomas. Int J Mol Sci 2024; 26:96. [PMID: 39795954 PMCID: PMC11720186 DOI: 10.3390/ijms26010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
In the present study, we aimed to investigate intratumoral karyotype diversity as well as the estrogen/progesterone effect on the cytogenetic profile of uterine leiomyomas (ULs). A total of 15 UL samples obtained from 15 patients were cultured in the media supplemented with estrogen and/or progesterone and without adding hormones. Conventional cytogenetic analysis of culture samples revealed clonal chromosomal abnormalities in 11 out of 15 ULs. Cytogenetic findings were presented by simple and complex chromosomal rearrangements (64% and 36% of cases, respectively) verified through FISH and aCGH. In most ULs with complex chromosomal rearrangements, the breakpoints did not feature clusterization on a single chromosome but were evenly distributed across rearranged chromosomes. The number of breakpoints showed a strong positive correlation with the number of rearranged chromosomes. Moreover, both abovementioned parameters were in a linear dependency from the number of karyotypically different clones per UL. This suggests that complex chromosomal rearrangements in ULs predominantly originate through sequential events rather than one hit. The results of UL cytogenetic analysis depended on the presence of estrogen and/or progesterone in the culture medium. The greatest variety of cytogenetically different cell clones was detected in the samples cultured without hormone supplementation. Their counterparts cultured with progesterone supplementation showed a sharp decrease in clone number, whereas such a decrease induced by estrogen or estrogen-progesterone supplementation was insignificant. These findings suggest that estrogen-progesterone balance is crucial for forming a UL cytogenetic profile, which, in turn, may underlie the unique response of the every karyotypically abnormal UL to medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Olga A. Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (A.S.K.)
| |
Collapse
|
2
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Buyukcelebi K, Chen X, Abdula F, Elkafas H, Duval AJ, Ozturk H, Seker-Polat F, Jin Q, Yin P, Feng Y, Bulun SE, Wei JJ, Yue F, Adli M. Engineered MED12 mutations drive leiomyoma-like transcriptional and metabolic programs by altering the 3D genome compartmentalization. Nat Commun 2023; 14:4057. [PMID: 37429859 DOI: 10.1038/s41467-023-39684-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Nearly 70% of Uterine fibroid (UF) tumors are driven by recurrent MED12 hotspot mutations. Unfortunately, no cellular models could be generated because the mutant cells have lower fitness in 2D culture conditions. To address this, we employ CRISPR to precisely engineer MED12 Gly44 mutations in UF-relevant myometrial smooth muscle cells. The engineered mutant cells recapitulate several UF-like cellular, transcriptional, and metabolic alterations, including altered Tryptophan/kynurenine metabolism. The aberrant gene expression program in the mutant cells is, in part, driven by a substantial 3D genome compartmentalization switch. At the cellular level, the mutant cells gain enhanced proliferation rates in 3D spheres and form larger lesions in vivo with elevated production of collagen and extracellular matrix deposition. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a platform for the broader scientific community to characterize genomics of recurrent MED12 mutations.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Xintong Chen
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander James Duval
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Harun Ozturk
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Yue Feng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Serdar E Bulun
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Jian Jun Wei
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
A View on Uterine Leiomyoma Genesis through the Prism of Genetic, Epigenetic and Cellular Heterogeneity. Int J Mol Sci 2023; 24:ijms24065752. [PMID: 36982825 PMCID: PMC10056617 DOI: 10.3390/ijms24065752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Uterine leiomyomas (ULs), frequent benign tumours of the female reproductive tract, are associated with a range of symptoms and significant morbidity. Despite extensive research, there is no consensus on essential points of UL initiation and development. The main reason for this is a pronounced inter- and intratumoral heterogeneity resulting from diverse and complicated mechanisms underlying UL pathobiology. In this review, we comprehensively analyse risk and protective factors for UL development, UL cellular composition, hormonal and paracrine signalling, epigenetic regulation and genetic abnormalities. We conclude the need to carefully update the concept of UL genesis in light of the current data. Staying within the framework of the existing hypotheses, we introduce a possible timeline for UL development and the associated key events—from potential prerequisites to the beginning of UL formation and the onset of driver and passenger changes.
Collapse
|
5
|
Cytogenomic Profile of Uterine Leiomyoma: In Vivo vs. In Vitro Comparison. Biomedicines 2021; 9:biomedicines9121777. [PMID: 34944592 PMCID: PMC8698342 DOI: 10.3390/biomedicines9121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body.
Collapse
|
6
|
Molecular and Cellular Insights into the Development of Uterine Fibroids. Int J Mol Sci 2021; 22:ijms22168483. [PMID: 34445194 PMCID: PMC8395213 DOI: 10.3390/ijms22168483] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Uterine leiomyomas represent the most common benign gynecologic tumor. These hormone-dependent smooth-muscle formations occur with an estimated prevalence of ~70% among women of reproductive age and cause symptoms including pain, abnormal uterine bleeding, infertility, and recurrent abortion. Despite the prevalence and public health impact of uterine leiomyomas, available treatments remain limited. Among the potential causes of leiomyomas, early hormonal exposure during periods of development may result in developmental reprogramming via epigenetic changes that persist in adulthood, leading to disease onset or progression. Recent developments in unbiased high-throughput sequencing technology enable powerful approaches to detect driver mutations, yielding new insights into the genomic instability of leiomyomas. Current data also suggest that each leiomyoma originates from the clonal expansion of a single transformed somatic stem cell of the myometrium. In this review, we propose an integrated cellular and molecular view of the origins of leiomyomas, as well as paradigm-shifting studies that will lead to better understanding and the future development of non-surgical treatments for these highly frequent tumors.
Collapse
|
7
|
Panagopoulos I, Gorunova L, Andersen K, Lobmaier I, Heim S. Several Fusion Genes Identified in a Spermatic Cord Leiomyoma With Rearrangements of Chromosome Arms 3p and 21q. Cancer Genomics Proteomics 2021; 18:531-542. [PMID: 34183386 DOI: 10.21873/cgp.20278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Benign smooth-muscle tumors, leiomyomas, occur in nearly every organ but are most common in the uterus. Whereas much is known about the genetics of uterine leiomyomas, little genetic information exists about leiomyomas of other organs. Here, we report and discuss the genetic findings in a para-testicular leiomyoma. MATERIALS AND METHODS Cytogenetic, array comparative genomic hybridization (aCGH) RNA sequencing, reverse-transcription polymerase chain reaction (RT- PCR), and Sanger sequencing analyses were performed on a leiomyoma of the spermatic cord removed from a 61-year-old man. RESULTS The karyotype was 48~50,XY,add(3) (p21),+4,+7,+8,+9,add(21)(q22)[cp9]/46,XY[2]. aCGH confirmed the trisomies and also detected multiple gains and losses from 3p and 21q. RNA sequencing detected the chimeras ARHGEF3-CACNA2D2, TRAK1-TIMP4, ITPR1- DT-NR2C2, CLASP2-IL17RD, ZNF621-LARS2, CNTN4- RHOA, and NR2C2-CFAP410. All chimeras were confirmed by RT-PCR and Sanger sequencing. CONCLUSION Our data, together with those previously published, indicate that a group of leiomyomas may be cytogenetically characterized by aberrations of 3p and the formation of fusion genes.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Koltsova AS, Efimova OA, Pendina AA, Chiryaeva OG, Osinovskaya NS, Shved NY, Yarmolinskaya MI, Polenov NI, Kunitsa VV, Sagurova YM, Tral TG, Tolibova GK, Baranov VS. Uterine Leiomyomas with an Apparently Normal Karyotype Comprise Minor Heteroploid Subpopulations Differently Represented in vivo and in vitro. Cytogenet Genome Res 2021; 161:43-51. [PMID: 33550288 DOI: 10.1159/000513173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 11/19/2022] Open
Abstract
In the present study, we aimed to check whether uterine leiomyomas (ULs) with an apparently normal karyotype in vitro comprise "hidden" cell subpopulations with numerical chromosome abnormalities (heteroploid cells). A total of 32 ULs obtained from 32 patients were analyzed in the study. Each UL was sampled for in vivo and in vitro cytogenetic studies. Karyotyping was performed on metaphase preparations from the cultured UL samples. A normal karyotype was revealed in 20 out of the 32 ULs, of which 9 were selected for further study based on the good quality of the interphase preparations. Then, using interphase FISH with centromeric DNA probes, we analyzed the copy number of chromosomes 7 and 16 in 1,000 uncultured and 1,000 cultured cells of each selected UL. All of the ULs included both disomic cells representing a predominant subpopulation and heteroploid cells reaching a maximum frequency of 21.6% (mean 9.8%) in vivo and 11.5% (mean 6.1%) in vitro. The spectrum of heteroploid cells was similar in vivo and in vitro and mostly consisted of monosomic and tetrasomic cells. However, their frequencies in the cultured samples differed from those in the uncultured ones: while the monosomic cells decreased in number, the tetrasomic cells became more numerous. The frequency of either monosomic or tetrasomic cells both in vivo and in vitro was not associated with the presence of MED12 exon 2 mutations in the tumors. Our results suggest that ULs with an apparently normal karyotype consist of both karyotypically normal and heteroploid cells, implying that the occurrence of minor cell subpopulations with numerical chromosome abnormalities may be considered a characteristic of UL tumorigenesis. Different frequencies of heteroploid cells in vivo and in vitro suggest their dependence on microenvironmental conditions, thus providing a pathway for regulation of their propagation, which may be important for the UL pathogenesis.
Collapse
Affiliation(s)
- Alla S Koltsova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation, .,Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russian Federation,
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Olga G Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Natalia S Osinovskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Natalia Y Shved
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Maria I Yarmolinskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Nikolai I Polenov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Vladislava V Kunitsa
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Yanina M Sagurova
- Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russian Federation
| | - Tatyana G Tral
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Gulrukhsor K Tolibova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
9
|
Baranov VS, Osinovskaya NS, Yarmolinskaya MI. Pathogenomics of Uterine Fibroids Development. Int J Mol Sci 2019; 20:E6151. [PMID: 31817606 PMCID: PMC6940759 DOI: 10.3390/ijms20246151] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
We review recent studies dealing with the molecular genetics and basic results of omics analysis of uterine leiomyoma (LM)-a common benign muscle tumor of the uterus. Whole genome studies of LM resulted in the discovery of many new gene nets and biological pathways, including its origin, transcriptomic, and epigenetic profiles, as well as the impact of the inter-cell matrix in LM growth and involvement of microRNA in its regulation. New data on somatic cell mutations ultimately involved in the origin, distribution and growth of LM are reviewed. Putative identification of LM progenitor SC (stem cells) giving rise to maternal fibroid nodes and junctional zones provide a new clue for hypotheses on the pathogenomics of LM. The reviewed data are consistent with at least two different but probably intimately interacted molecular mechanisms of LM. One of them (the genetic hypothesis) is focused primarily on the MED12 gene mutations and suggests its onset in the side population of embryonic myoblasts of the female reproductive system, which later gave rise to multiple small and medium fibroids. The single and usually large-size fibroids are induced by predominantly epigenetic disorders in LM SC, provoked by enhanced expression of the HMGA2 gene caused by its hypomethylation and epigenetic deregulation enhanced by hypoxia, muscle tension, or chromosome instability/aberrations. The pathogenomics of both genetic and epigenetic programs of LM with many peculiarities at the beginning later became rather similar and partly overlapped due to the proximity of their gene nets and epigenetic landscape. Pathogenomic studies of LM open ways for elaboration of novel strategies of prevention and treatment of this common disease.
Collapse
Affiliation(s)
- Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (N.S.O.); (M.I.Y.)
| | | | | |
Collapse
|
10
|
Koltsova AS, Pendina AA, Efimova OA, Chiryaeva OG, Kuznetzova TV, Baranov VS. On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update. Front Genet 2019; 10:393. [PMID: 31114609 PMCID: PMC6503150 DOI: 10.3389/fgene.2019.00393] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
In the present review, we focus on the phenomenon of chromothripsis, a new type of complex chromosomal rearrangements. We discuss the challenges of chromothripsis detection and its distinction from other chromoanagenesis events. Along with already known causes and mechanisms, we introduce aberrant epigenetic regulation as a possible pathway to chromothripsis. We address the issue of chromothripsis characteristics in cancers and benign tumours, as well as chromothripsis inheritance in cases of its occurrence in germ cells, zygotes and early embryos. Summarising the presented data on different phenotypic effect of chromothripsis, we assume that its consequences are most likely determined not by the chromosome shattering and reassembly themselves, but by the genome regions involved in the rearrangement.
Collapse
Affiliation(s)
- Alla S Koltsova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga G Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Tatyana V Kuznetzova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|