1
|
Witham M, Hengel S. The role of RAD51 regulators and variants in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome. NAR MOLECULAR MEDICINE 2024; 1:ugae010. [PMID: 39359934 PMCID: PMC11443433 DOI: 10.1093/narmme/ugae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The study of RAD51 regulators in female reproductive diseases has novel biomarker potential and implications for therapeutic advancement. Regulators of RAD51 play important roles in maintaining genome integrity and variations in these genes have been identified in female reproductive diseases including primary ovarian insufficiency (POI), endometriosis, and polycystic ovary syndrome (PCOS). RAD51 modulators change RAD51 activity in homologous recombination, replication stress, and template switching pathways. However, molecular implications of these proteins in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome have been understudied. For each reproductive disease, we provide its definition, current diagnostic and therapeutic treatment strategies, and associated genetic variations. Variants were discovered in RAD51, and regulators including DMC1, RAD51B, SWS1, SPIDR, XRCC2 and BRCA2 linked with POI. Endometriosis is associated with variants in XRCC3, BRCA1 and CSB genes. Variants in BRCA1 were associated with PCOS. Our analysis identified novel biomarkers for POI (DMC1 and RAD51B) and PCOS (BRCA1). Further biochemical and cellular analyses of RAD51 regulator functions in reproductive disorders will advance our understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Maggie Witham
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sarah R Hengel
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Biglari-Zadeh G, Sargazi S, Mohammadi M, Ghasemi M, Majidpour M, Saravani R, Mirinejad S. Relationship Between Genetic Polymorphisms in Cell Cycle Regulatory Gene TP53 and Polycystic Ovarian Syndrome: A Case-Control Study and In Silico Analyses. Biochem Genet 2023; 61:1827-1849. [PMID: 36856940 DOI: 10.1007/s10528-023-10349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine and metabolic condition with several potential causes. Insulin resistance is a hallmark of PCOS that often coexists with hirsutism, hyperandrogenism, being overweight, and hormonal imbalances. The functioning of multiple replication and transcription factors is regulated by tumor suppressor genes (TSGs), which play a crucial role in maintaining genomic integrity and controlling the cell cycle of granulosa cells. In the present study, we examined how three single nucleotide polymorphisms (SNPs) in TP53, a cell cycle regulatory gene, affect the risk of developing PCOS in a sample of an Iranian population. Genomic DNA was extracted from 200 PCOS patients and 200 healthy women to analyze TP53 rs17880604, rs1625895, and rs1042522 SNPs using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our findings revealed that the majority of PCOS cases were overweight [25 < body mass index (BMI) < 30]. A positive association was observed between the TP53 rs1042522 SNP and the risk of PCOS under codominant heterozygous and overdominant genetic patterns (odds ratio > 1). Meanwhile, a negative association was observed between TP53 SNPs (rs1625895, rs17880604) and susceptibility to PCOS under codominant heterozygous and dominant models of inheritance (odds ratio < 1). Moreover, different genotype and haplotype combinations of rs17880604/rs1625895/rs1042522 conferred a decreased risk of PCOS in our population. We found no statistical difference in the frequency of TP53 genotypes between PCOS cases and/or controls in terms of BMI, waist circumference, prolactin level, and markers of lipid and carbohydrate profile (P > 0.05). Molecular dynamic prediction showed that the missense substitution in the 17p13.1 position (rs1042522) could change the properties and secondary structure of the p53 protein. As inherited risk factors, TP53 variations may play a pivotal role in the pathogenesis of PCOS among Iranian women. Replicated population-based studies on other ethnicities are required to find the genetic contribution of variants of TP53, or SNPs located in other TSGs, to the etiology of this endocrine disease.
Collapse
Affiliation(s)
- Ghazaleh Biglari-Zadeh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.
| | - Malihe Mohammadi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Marzieh Ghasemi
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Moloud Infertility Center, Ali Ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| |
Collapse
|
3
|
Shi N, Zhou Y, Ma H. A network pharmacology study of mechanism and efficacy of Jiawei Huanglian-Wendan decoction in polycystic ovary syndrome with insulin resistance. Medicine (Baltimore) 2022; 101:e32057. [PMID: 36482532 PMCID: PMC9726404 DOI: 10.1097/md.0000000000032057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive metabolic disorder, normally accompanied by insulin resistance (IR). The specific pathogenesis of this disease remains unclear. To identify the underlying pathogenesis of PCOS with IR and explore the potential efficacy and mechanism of Jiawei Huanglian-Wendan decoction (JHWD) by a network pharmacology approach. The effective components and the potential drug and disease-related targets are retrieved. Drug-disease overlapped targets are being obtained by Venny analysis. The construction of protein-protein interaction network relied on Search Tool for the Retrieval of Interacting Genes/Proteins database (STRING), after uploading drug-disease overlapped targets. The drug-component-target-disease interaction network map was displayed , after importing their data into Cytoscape 3.7.2 software. Bioinformatics analyses are being performed by Metascape and Kyoto Encyclopedia of Genes and Genomes databases, respectively. Further, molecular docking analysis was carried out using AutoDock software. Finally, the influence of JHWD is verified by means of traditional Chinese medicine syndrome score, the rate of resumption of normal menstrual cycles and regular ovulation, the blood lipid levels, the blood glucose and insulin levels, and the inflammatory cytokines in PCOS with IR patients. Four primary interaction networks of JHWD are constructed. The enrichment analysis of PCOS-IR-related targets demonstrated that the top enriched pathways in the development of PCOS with IR are pathways in cancer, metabolic, phosphoinositide-3-kinase-protein kinase B signaling, lipid and atherosclerosis, and mitogen-activated protein kinase signaling pathways. Molecular docking analysis revealed strong binding interactions of the key targets with the active components. Further confirmations showed that the active components of JHWD exhibited significant clinical efficacy in improving the clinical syndromes, menstrual cyclicity and ovulatory function, and significantly reducing the blood lipid levels, blood glucose and insulin levels, and inflammatory cytokines in PCOS with IR patients. The combination of the network pharmacological analysis and clinical validation stated that the active compounds in JHWD could regulate glycolipid metabolism, reduce IR, and exert anti-inflammatory effects in the treatment of PCOS with IR, promoting Chinese classical formulations.
Collapse
Affiliation(s)
- Na Shi
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhe Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongbo Ma
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Li Y, Xiang Y, Song Y, Zhang D, Tan L. MALAT1 downregulation is associated with polycystic ovary syndrome via binding with MDM2 and repressing P53 degradation. Mol Cell Endocrinol 2022; 543:111528. [PMID: 34883204 DOI: 10.1016/j.mce.2021.111528] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic disorder of the reproductive system that affects 6-20% women of reproductive age. Multiple coding and non-coding genes were found to be affected in patients with PCOS, including MALAT1, an 8.7 kb long non-coding RNA. MALAT1 has been found to interact with miRNAs in granulosa cells (GCs); however, its binding proteins in GCs are still unknown. In this study, MALAT1 binding proteins in primary GCs were recruited by RNA antisense purification (RAP) assay and identified by mass spectrometry. The interaction between MALAT1 and proteins was examined by the PAR-CLIP assay and immunofluorescence. Functional studies were performed using the human granulosa-like tumor cell line (KGN) and primary granulosa cells. We identified that MALAT1 interacted with MDM2 and PARP1 in the cell nucleus. MDM2 binds to the 3' segment of MALAT1, containing the ENE domain through the ring finger domain. Knockdown of MALAT1 in GCs increased p53 protein levels by repressing p53 ubiquitination and degradation. MALAT1 promoted the binding between P53 and MDM2, which further boosted P53 proteasome dependent degradation. Knockdown of MALAT1 in KGN cells and primary GCs increased apoptosis and reduced proliferation.
Collapse
Affiliation(s)
- Yan Li
- Reproductive Center, The Second Affiliated Hospital of Zhengzhou University, 450014, No. 2 Jingba Road, Zhengzhou, Henan, China
| | - Yungai Xiang
- Reproductive Center, The Second Affiliated Hospital of Zhengzhou University, 450014, No. 2 Jingba Road, Zhengzhou, Henan, China
| | - Yuxia Song
- Reproductive Center, The Second Affiliated Hospital of Zhengzhou University, 450014, No. 2 Jingba Road, Zhengzhou, Henan, China
| | - Dan Zhang
- Reproductive Center, The Second Affiliated Hospital of Zhengzhou University, 450014, No. 2 Jingba Road, Zhengzhou, Henan, China
| | - Li Tan
- Reproductive Center, The Second Affiliated Hospital of Zhengzhou University, 450014, No. 2 Jingba Road, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Huang J, Huang B, Kong Y, Yang Y, Tian C, Chen L, Liao Y, Ma L. Polycystic ovary syndrome: Identification of novel and hub biomarkers in the autophagy-associated mRNA-miRNA-lncRNA network. Front Endocrinol (Lausanne) 2022; 13:1032064. [PMID: 36523600 PMCID: PMC9745174 DOI: 10.3389/fendo.2022.1032064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disorder prevalent among women of reproductive age. Recent studies show that autophagy participated in the pathogenesis of PCOS, including anovulation, hyperandrogenism, and metabolic disturbances. This study was designed to screen autophagy-related genes (ATGs) that may play a pivotal role in PCOS, providing potential biomarkers and identifying new molecular subgroups for therapeutic intervention. METHODS Gene expression profiles of the PCOS and control samples were obtained from the publicly available Gene Expression Omnibus database. The gene lists of ATGs from databases were integrated. Then, the weighted gene co-expression network analysis was conducted to obtain functional modules and construct a multifactorial co-expression network. Gene Ontology and KEGG pathway enrichment analyses were performed for further exploration of ATG's function in the key modules. Differentially expressed ATGs were identified and validated in external datasets with the Limma R package. To provide guidance on PCOS phenotyping, the dysfunction module consists of a co-expression network mapped to PCOS patients. A PCOS-Autophagy-related co-expression network was established using Cytoscape, followed by identifying molecular subgroups using the Limma R package. ps. RNA-sequencing analysis was used to confirm the differential expression of hub ATGs, and the diagnostic value of hub ATGs was assessed by receiver operating characteristic curve analysis. RESULTS Three modules (Brown, Turquoise, and Green) in GSE8157, three modules (Blue, Red, and Green) in GSE43264, and four modules (Blue, Green, Black, and Yellow) in GSE106724 were identified to be PCOS-related by WGCNA analysis. 29 ATGs were found to be the hub genes that strongly correlated with PCOS. These hub ATGs were mainly enriched in autophagy-related functions and pathways such as autophagy, endocytosis, apoptosis, and mTOR signaling pathways. The mRNA-miRNA-lncRNA multifactorial network was successfully constructed. And three new molecular subgroups were identified via the K-means algorithm. DISCUSSION We provide a novel insight into the mechanisms behind autophagy in PCOS. BRCA1, LDLR, MAP1B, hsa-miR-92b-3p, hsa-miR-20b-5p, and NEAT1 might play a considerably important role in PCOS dysfunction. As a result, new potential biomarkers can be evaluated for use in PCOS diagnosis and treatment in the future.
Collapse
|
6
|
Bai L, Wang W, Xiang Y, Wang S, Wan S, Zhu Y. Aberrant elevation of GDF8 impairs granulosa cell glucose metabolism via upregulating SERPINE1 expression in patients with PCOS. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:294-309. [PMID: 33425488 PMCID: PMC7779537 DOI: 10.1016/j.omtn.2020.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Clinical investigations have demonstrated that polycystic ovary syndrome (PCOS) is often accompanied by insulin resistance (IR) in more than 70% of women with PCOS. However, the etiology of PCOS with IR remains to be characterized. Growth differentiation factor 8 (GDF8) is an intraovarian factor that plays a vital role in the regulation of follicle development and ovulation. Previous studies have reported that GDF8 is a pathogenic factor in glucose metabolism disorder in IR patients. To date, the role of GDF8 on glucose metabolism of granulosa cell in PCOS patients remains to be determined. In the current study, we demonstrated that the expression and accumulation of GDF8 in human granulosa-lutein (hGL) cells and follicular fluid from PCOS patients were higher compared with those of non-PCOS women. GDF8 treatment caused glucose metabolism defects in hGL cells. Transcriptome sequencing results showed that SERPINE1 mediated GDF8-induced impairment of hGL glucose metabolism defects. Using pharmacological and small interfering RNA (siRNA)-mediated knockdown approaches, we demonstrated that GDF8 upregulated the expression of SERPINE1 via the ALK5-mediated SMAD2/3-SMAD4 signaling pathway. Interestingly, the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway was also activated with GDF8 treatment but did not participate in the effect of GDF8 on SERPINE1 expression. Our results also showed that TP53 was required for the GDF8-stimulated increase in SERPINE1 expression. Importantly, our study demonstrated that SB-431542 treatment significantly improved DHEA-induced PCOS-like ovaries. These findings support a potential role for GDF8 in metabolic disorders in PCOS.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Wei Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Yu Xiang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Shuyi Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Shan Wan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
7
|
Mishra RK, Ahmad A, Vyawahare A, Kumar A, Khan R. Understanding the Monoclonal Antibody Involvement in Targeting the Activation of Tumor Suppressor Genes. Curr Top Med Chem 2020; 20:1810-1823. [DOI: 10.2174/1568026620666200616133814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Monoclonal antibodies (mAbs) have always provided outstanding therapeutic arsenal in the
treatment of cancer, be it hematological malignancies or solid tumors. Monoclonal antibodies mediated
targeting of cancer genes in general and tumor-suppressor genes, in particular, have appreciably allowed
the possibilities of trafficking these antibodies to specific tumor mechanisms and aim for the pin-point
maneuvered tumor treatment strategies. The conventional cancer treatment options are associated with
enormous limitations like drug resistance, acute and pan-toxic side effects and collateral damage to other
unrelated cells and organs. Therefore, monoclonal antibody-mediated treatments have some special advantages
of specific targeting of cancer-related genes and minimizing the off-target side effects. A large
number of monoclonal antibody-mediated treatment regimen viz. use of immunoconjugates, clinically
targeting TGFβ with pan-TGFβ monoclonal antibodies, p53 by its monoclonal antibodies and EGFRtargeted
monoclonal antibodies, etc. have been observed in the recent past. In this review, the authors
have discussed some of the significant advances in the context of targeting tumor suppressor genes with
monoclonal antibodies. Approximately 250 articles were scanned from research databases like PubMed
central, Europe PubMed Central and google scholar up to the date of inception, and relevant reports on
monoclonal antibody-mediated targeting of cancer genes were selected. mAb mediated targeting of tumor
suppressor genes is a recent grey paradigm, which has not been explored up to its maximum potential.
Therefore, this review will be of appreciable significance that it will boost further in-depth understanding
of various aspects of mAb arbitrated cancer targeting and will warrant and promote further rigorous
research initiatives in this regard. The authors expect that this review will acquaint the readers
with the current status regarding the recent progress in the domain of mAbs and their employability and
targetability towards tumor suppressor genes in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
8
|
Association of genetic variations in phosphatase and tensin homolog (PTEN) gene with polycystic ovary syndrome in South Indian women: a case control study. Arch Gynecol Obstet 2020; 302:1033-1040. [PMID: 32583210 DOI: 10.1007/s00404-020-05658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of the study was to investigate the association between gene phosphate and tensin homolog (PTEN) single nucleotide polymorphisms (SNPs) and risk of developing polycystic ovary syndrome (PCOS) in South Indian women. PTEN is one of the most important tumor suppressor genes that regulate cell proliferation, migration, and death. It is also involved in the maintenance of genome stability. PCOS is one of the most common endocrine disorders among women of reproductive age. It is a heterogeneous syndrome characterized by abnormal reproductive cycles, irregular ovulation, hormonal imbalance, hyperandrogenism, acne and hirsutism. RESEARCH QUESTION What is the association status of PTEN SNPs with PCOS? METHODS A total of 240 subjects were recruited in this case-control study comprising 110 patients with PCOS and 130 individuals without PCOS. All the subjects were of South Indian origin. The genotyping of PTEN SNPs (rs1903858 A/G, rs185262832G/A and rs10490920T/C) was carried out on DNA from subjects by polymerase chain reaction (PCR) and sequencing analysis. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D') for pairwise linkage disequilibrium (LD) were surveyed by Haploview Software. RESULTS Our results showed significant increase in the frequencies of rs1903858 A/G (P = 0.0016), rs185262832 G/A (P = 0.0122) and rs10490920 T/C (P = 0.0234) genotypes and alleles in cases compared to controls. CONCLUSION The PTEN (rs1903858A/G, rs185262832G/A and rs10490920T/C) gene polymorphisms may constitute an inheritable risk factor for PCOS in South Indian women.
Collapse
|
9
|
Cui L, Cheng Z, Liu Y, Dai Y, Pang Y, Jiao Y, Ke X, Cui W, Zhang Q, Shi J, Fu L. Overexpression of PDK2 and PDK3 reflects poor prognosis in acute myeloid leukemia. Cancer Gene Ther 2020; 27:15-21. [PMID: 30578412 DOI: 10.1038/s41417-018-0071-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 02/05/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the proliferation of immature myeloid cells, with impaired differentiation and maturation. Pyruvate dehydrogenase kinase (PDK) is a pyruvate dehydrogenase complex (PDC) phosphatase inhibitor that enhances cell glycolysis and facilitates tumor cell proliferation. Inhibition of its activity can induce apoptosis of tumor cells. Currently, little is known about the role of PDKs in AML. Therefore, we screened The Cancer Genome Atlas (TCGA) database for de novo AML patients with complete clinical information and PDK family expression data, and 84 patients were included for the study. These patients did not undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Univariate analysis showed that high expression of PDK2 was associated with shorter EFS (P = 0.047), and high expression of PDK3 was associated with shorter OS (P = 0.026). In multivariate analysis, high expression of PDK3 was an independent risk factor for EFS and OS (P < 0.05). In another TCGA cohort of AML patients who underwent allo-HSCT (n = 71), PDK expression was not associated with OS (all P > 0.05). Our results indicated that high expressions of PDK2 and PDK3, especially the latter, were poor prognostic factors of AML, and the effect could be overcome by allo-HSCT.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Bone Marrow/pathology
- Datasets as Topic
- Disease-Free Survival
- Female
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cell Transplantation
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Prognosis
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/analysis
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Transplantation, Homologous
- Young Adult
Collapse
Affiliation(s)
- Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| | - Zhiheng Cheng
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| | - Wei Cui
- Department of Clinical Laboratory, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, 100080, China
| | - Qingyi Zhang
- Department of Hematology of Air Force PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lin Fu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.
| |
Collapse
|
10
|
Miao M, Peng M, Zhu Z, Yan X, Wei Z, Li M. Effects of dodder total flavone on polycystic ovary syndrome rat models induced by DHEA combined HCG. Saudi J Biol Sci 2019; 26:821-827. [PMID: 31049009 PMCID: PMC6486516 DOI: 10.1016/j.sjbs.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS Explore the effects of dodder total flavone on polycystic ovary syndrome (PCOS) rat models induced by dehydroepiandrosterone (DHEA) combined human chorionic gonadotropin (HCG). METHODS Except the blank group, the rest of the rats were injected with DHEA 6 mg/100 g on the back of the neck and 1.5 IU HCG each day, for 21 consecutive days. On the 16th day of modeling, vaginal smear was performed to select the model rats, which were randomly divided into model group, dacin-35 group, large, middle and small dose dodder total flavonoids groups, and given the medicine for three weeks. At the end of the last administration, take samples, so as to calculate the ovaries and uterus indexes, measure serum LH/FSH ratio, P, PRL and INS levels, fixed the uterus and pancreas in 10% formalin solution and stained with HE to observe the morphological changes of the organs. And measure the expression of TNF-α and IGF-l proteins in ovaries by immunohistochemistry. RESULTS Compared with the blank group, ovarian and uterine indexes, serum LH/FSH ratio, serum PRL and INS levels, ovary TNF-α and IGF-l protein expression were significantly increased, and significant pathological changes were observed in the uterine and pancreatic tissues in model group (P < 0.01). While the serum P level decreased significantly (P < 0.01), Compared with the model group, the ovarian and uterine indexes, serum LH/FSH ratio, serum P, PRL and INS levels, ovary TNF-α protein expression were significantly decreased in large, middle and small dose dodder total flavonoids groups (P < 0.01); The expression of IGF-1 protein was decreased and uterus pathological changes were improved in different extents (P < 0.01 or P < 0.05), pancreas pathological changes were improved significantly (P < 0.01). CONCLUSION PCOS rat models was successfully replicated. Dodder total flavone can protect PCOS rats induced by DHEA combined HCG by different action pathways.
Collapse
Affiliation(s)
- Mingsan Miao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | | | | | | | | | | |
Collapse
|
11
|
Jiao J, Sagnelli M, Shi B, Fang Y, Shen Z, Tang T, Dong B, Li D, Wang X. Genetic and epigenetic characteristics in ovarian tissues from polycystic ovary syndrome patients with irregular menstruation resemble those of ovarian cancer. BMC Endocr Disord 2019; 19:30. [PMID: 30866919 PMCID: PMC6416936 DOI: 10.1186/s12902-019-0356-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/03/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Irregular menstruation is clinically associated with an increased risk for ovarian cancer and disease-related mortality. This relationship remains poorly understood, and a mechanism explaining it has yet to be described. METHODS Ovarian tissues from women with polycystic ovary syndrome (PCOS) and regular menstruation (n = 10) or irregular menstruation (n = 10) were subjected to DNA methylation sequencing, real-time PCR array, whole-exome sequencing, and bioinformatics analysis. RESULTS We demonstrated that ovarian tissue from PCOS patients with irregular menstruation displayed global DNA hypomethylation, as well as hypomethylation at several functionally and oncologically significant regions. Furthermore, we showed that several cancer-related genes were aberrantly expressed in ovarian tissue from patients with irregular menstruation, and that their mRNA and microRNA profiles shared appreciable levels of coincidence with those from ovarian cancer tissue. We identified multiple point mutations in both the BRCA1 and MLH1 genes in patients with irregular menstruation, and predicted the potential pathogenicity of these mutations using bioinformatics analyses. CONCLUSIONS Due to the nature of ovarian cancer, it is important to broaden our understanding of the pathogenesis and risk factors of the disease. Herein, we provide the first description of a genetic and epigenetic basis for the clinical relationship between irregular menstruation and an increased risk for ovarian cancer.
Collapse
Affiliation(s)
- Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Matthew Sagnelli
- University of Connecticut School of Medicine, Farmington, CT 06030 USA
| | - Bei Shi
- Department of Physiology, College of Life Science, China Medical University, Shenyang, 110122 China
- Functional Laboratory Center, College of Basic Medical Science, China Medical University, Shenyang, 110122 China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Ziqi Shen
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Tianyu Tang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Bingying Dong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| |
Collapse
|