1
|
Moye J, Hess S. Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists. J Eukaryot Microbiol 2025; 72:e13065. [PMID: 39489698 PMCID: PMC11822879 DOI: 10.1111/jeu.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Protists show diverse lifestyles and fulfill important ecological roles as primary producers, predators, symbionts, and parasites. The degradation of dead microbial biomass, instead, is mainly attributed to bacteria and fungi, while necrophagy by protists remains poorly recognized. Here, we assessed the food range specificity and feeding behavior of the algivorous flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) with a large-scale feeding experiment. We demonstrate that this species is a broad-range necrophage, which feeds on a variety of eukaryotic and prokaryotic algae, but fails to grow on the tested fungi. Furthermore, our microscopic observations reveal an unexpected flexibility of O. agilis in handling food items of different structures and biochemistry, demonstrating that sophisticated feeding strategies in protists do not necessarily indicate narrow food ranges.
Collapse
Affiliation(s)
- Jannika Moye
- Division for Biology of Algae and Protozoa, Department of BiologyTechnical University of DarmstadtDarmstadtGermany
| | - Sebastian Hess
- Division for Biology of Algae and Protozoa, Department of BiologyTechnical University of DarmstadtDarmstadtGermany
| |
Collapse
|
2
|
Ismail N, Seguin P, Pricam L, Janssen EML, Kohn T, Ibelings BW, Carratalà A. Seasonality of cyanobacteria and eukaryotes in Lake Geneva and the impacts of cyanotoxins on growth of the model ciliate Tetrahymena pyriformis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107262. [PMID: 39893999 DOI: 10.1016/j.aquatox.2025.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Toxic cyanobacteria are likely to be favored by global warming and other human impacts, posing significant threats to aquatic ecosystems. While cyanobacterial blooms in eutrophic lakes are widely investigated, the dynamics of cyanobacteria and the effects of their toxins and bioactive metabolites on the plankton communities in mesotrophic and oligotrophic lakes are less well understood. Here we investigated seasonal dynamics of cyanobacteria, eukaryotic algae and cyanotoxins in oligo-mesotrophic Lake Geneva-the largest and deepest lake in western Europe. High-throughput sequencing of the 16S rRNA genes in 143 samples along a water column revealed that Lake Geneva hosts diverse, co-dominant cyanobacterial genera, including Planktothrix, Cyanobium, Pseudanabaena, and Aphanizomenon. The abundance of the mcyA gene marker for microcystin production was highly correlated with total cyanobacteria abundance, obtained from qPCR of the 16S rRNA genes. Targeted LC-HRMS/MS analysis demonstrated peak concentrations of cyanotoxins in September and December 2021 at the deep chlorophyll-a maximum layer, reaching up to 1474 ng/l for anabaenopeptins and 144 ng/l for microcystins. The toxin peaks did not correlate with the abundance or variations in the cyanobacteria or eukaryote community, but they were correlated in time with seasonal lows in the abundances of ciliates (18S rRNA analysis). Laboratory exposure tests demonstrated that growth of the model ciliate Tetrahymena pyriformis was inhibited by Microcystin-RR and Anabaenopeptin A at environmentally relevant concentrations in the ng/l-range, in natural lake water, synthetic freshwater, and growth media spiked with the cyanotoxins. Our findings suggest that even low concentrations (in the ng/l-range) of microcystins and anabaenopeptins, reduce growth of ciliates such as T. pyriformis and can be expected to have wider impacts on the eukaryote communities.
Collapse
Affiliation(s)
- Niveen Ismail
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Picker Engineering Program, Smith College, Northampton, MA, USA
| | - Paul Seguin
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lola Pricam
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Elisabeth M L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Bas W Ibelings
- Department FA Forel for Environmental and Aquatic Sciences / Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Anna Carratalà
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
3
|
Furgason CC, Smirnova AV, Dacks JB, Dunfield PF. Phytoplankton ecology in the early years of a boreal oil sands end pit lake. ENVIRONMENTAL MICROBIOME 2024; 19:3. [PMID: 38217061 PMCID: PMC10787447 DOI: 10.1186/s40793-023-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Base Mine Lake (BML) is the first full-scale end pit lake for the oil sands mining industry in Canada. BML sequesters oil sands tailings under a freshwater cap and is intended to develop into a functional ecosystem that can be integrated into the local watershed. The first stage of successful reclamation requires the development of a phytoplankton community supporting a typical boreal lake food web. To assess the diversity and dynamics of the phytoplankton community in BML at this reclamation stage and to set a baseline for future monitoring, we examined the phytoplankton community in BML from 2016 through 2021 using molecular methods (targeting the 23S, 18S, and 16S rRNA genes) and microscopic methods. Nearby water bodies were used as controls for a freshwater environment and an active tailings pond. RESULTS The phytoplankton community was made up of diverse bacteria and eukaryotes typical of a boreal lake. Microscopy and molecular data both identified a phytoplankton community comparable at the phylum level to that of natural boreal lakes, dominated by Chlorophyta, Cryptophyta, and Cyanophyta, with some Bacillariophyta, Ochrophyta, and Euglenophyta. Although many of the same genera were prominent in both BML and the control freshwater reservoir, there were differences at the species or ASV level. Total diversity in BML was also consistently lower than the control freshwater site, but consistently higher than the control tailings pond. The phytoplankton community composition in BML changed over the 5-year study period. Some taxa present in 2016-2019 (e.g., Choricystis) were no longer detected in 2021, while some dinophytes and haptophytes became detectable in small quantities starting in 2019-2021. Different quantification methods (qPCR analysis of 23S rRNA genes, and microscopic estimates of populations and total biomass) did not show a consistent directional trend in total phytoplankton over the 5-year study, nor was there any consistent increase in phytoplankton species diversity. The 5-year period was likely an insufficient time frame for detecting community trends, as phytoplankton communities are highly variable at the genus and species level. CONCLUSIONS BML supports a phytoplankton community composition somewhat unique from control sites (active tailings and freshwater lake) and is still changing over time. However, the most abundant genera are typical of natural boreal lakes and have the potential to support a complex aquatic food web, with many of its identified major phytoplankton constituents known to be primary producers in boreal lake environments.
Collapse
Affiliation(s)
- Chantel C Furgason
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada
| | - Angela V Smirnova
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences, University of Alberta, 116 St. and 85 Ave., Edmonton, AB, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada.
| |
Collapse
|
4
|
Galindo LJ, Torruella G, López-García P, Ciobanu M, Gutiérrez-Preciado A, Karpov SA, Moreira D. Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies. Syst Biol 2022:6651083. [PMID: 35900180 DOI: 10.1093/sysbio/syac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The supergroup Holomycota, composed of Fungi and several related lineages of unicellular organisms (Nucleariida, Rozellida, Microsporidia, and Aphelida), represents one of the major branches in the phylogeny of eukaryotes. Nevertheless, except for the well-established position of Nucleariida as the first holomycotan branch to diverge, the relationships among the other lineages have so far remained unresolved largely owing to the lack of molecular data for some groups. This was notably the case aphelids, a poorly known group of endobiotic phagotrophic protists that feed on algae with cellulose walls. The first molecular phylogenies including aphelids supported their sister relationship with Rozellida and Microsporidia which, collectively, formed a new group called Opisthosporidia (the 'Opisthosporidia hypothesis'). However, recent phylogenomic analyses including massive sequence data from two aphelid genera, Paraphelidium and Amoeboaphelidium, suggested that the aphelids are sister to fungi (the 'Aphelida+Fungi hypothesis'). Should this position be confirmed, aphelids would be key to understanding the early evolution of Holomycota and the origin of Fungi. Here, we carry out phylogenomic analyses with an expanded taxonomic sampling for aphelids after sequencing the transcriptomes of two species of the genus Aphelidium (A. insulamus and A. tribonematis) in order to test these competing hypotheses. Our new phylogenomic analyses including species from the three known aphelid genera strongly rejected the Opisthosporidia hypothesis. Furthermore, comparative genomic analyses further supported the Aphelida+Fungi hypothesis via the identification of 19 orthologous genes exclusively shared by these two lineages. Seven of them originated from ancient horizontal gene transfer events predating the aphelid-fungal split and the remaining 12 likely evolved de novo, constituting additional molecular synapomorphies for this clade. Ancestral trait reconstruction based on our well-resolved phylogeny of Holomycota suggests that the progenitor of both fungi and rozellids, was aphelid-like, having an amoeboflagellate state and likely preying endobiotically on cellulose-containing, cell-walled organisms. Two lineages, which we propose to call Phytophagea and Opisthophagea, evolved from this ancestor. Phytophagea, grouping aphelids and classical fungi, mainly specialized in endobiotic predation of algal cells. Fungi emerged from this lineage after losing phagotrophy in favour of osmotrophy. Opisthophagea, grouping rozellids and Microsporidia, became parasites, mostly of chitin-containing hosts. This lineage entered a progressive reductive process that resulted in a unique lifestyle, especially in the highly derived Microsporidia.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guifré Torruella
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Maria Ciobanu
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Ana Gutiérrez-Preciado
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Sergey A Karpov
- Zoological Institute RAS, Universitetskaya emb. 1, and St Petersburg State University, Universitetskaya emb. 7/9, St Petersburg 199034, Russia
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
5
|
Gabaldón T, Völcker E, Torruella G. On the Biology, Diversity and Evolution of Nucleariid Amoebae (Amorphea, Obazoa, Opisthokonta. Protist 2022; 173:125895. [DOI: 10.1016/j.protis.2022.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
|
6
|
Toret C, Picco A, Boiero-Sanders M, Michelot A, Kaksonen M. The cellular slime mold Fonticula alba forms a dynamic, multicellular collective while feeding on bacteria. Curr Biol 2022; 32:1961-1973.e4. [PMID: 35349792 PMCID: PMC9097593 DOI: 10.1016/j.cub.2022.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
Multicellularity evolved in fungi and animals, or the opisthokonts, from their common amoeboflagellate ancestor but resulted in strikingly distinct cellular organizations. The origins of this multicellularity divergence are not known. The stark mechanistic differences that underlie the two groups and the lack of information about ancestral cellular organizations limits progress in this field. We discovered a new type of invasive multicellular behavior in Fonticula alba, a unique species in the opisthokont tree, which has a simple, bacteria-feeding sorocarpic amoeba lifestyle. This invasive multicellularity follows germination dependent on the bacterial culture state, after which amoebae coalesce to form dynamic collectives that invade virgin bacterial resources. This bacteria-dependent social behavior emerges from amoeba density and allows for rapid and directed invasion. The motile collectives have animal-like properties but also hyphal-like search and invasive behavior. These surprising findings enrich the diverse multicellularities present within the opisthokont lineage and offer a new perspective on fungal origins. Unexpected bacterial-state-dependent culture conditions for Fonticula alba A multicellular invasion of bacterial food resources that is distinct from fruiting A leader-led invasive collectivity that is an emergent property Insights into the origins of invasive hyphal and fruiting multicellularity in dikarya
Collapse
Affiliation(s)
- Christopher Toret
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Andrea Picco
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Micaela Boiero-Sanders
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alphee Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Marko Kaksonen
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Deng Y, Debognies A, Zhang Q, Zhang Z, Zhou Z, Zhang J, Sun L, Lu T, Qian H. Effects of ofloxacin on the structure and function of freshwater microbial communities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106084. [PMID: 35078055 DOI: 10.1016/j.aquatox.2022.106084] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Ofloxacin (OFL) is a broad-spectrum fluoroquinolone antibiotic frequently used in clinic for treating bacterial infections. The discharged OFL would inevitably enter into aquatic ecosystems, affecting the growth of non-target microorganisms, which may result in micro-ecosystem imbalance. To the best of our knowledge, researches in this area are rather sparse. The present study evaluated the response of photosynthetic microorganisms (cyanobacteria, eukaryotic algae) and aquatic microbial community to OFL in a microcosm. Results showed that ofloxacin presented an inhibitory effect on the growth Microcystis aeruginosa. Although 0.1 mg/L OFL has no significant impact on alpha diversity of the microbial communities, it obviously altered the structure and decreased the species interaction of prokaryotic community by reducing the capacities of nitrogen fixation, photosynthetic and metabolic capacity of the microbial community. This study pointed out that the residual OFL in water would disturb the balance of the aquatic micro-ecology, suggesting that more attentions should be given to the negative effects of antibiotics and other bioactive pollutants on aquatic environments.
Collapse
Affiliation(s)
- Yu Deng
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Andries Debognies
- Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Qi Zhang
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Liwei Sun
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Tao Lu
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| |
Collapse
|
8
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
9
|
Pajdak-Stós A, Fiałkowski W, Fiałkowska E. Rotifers weaken the efficiency of the cyanobacterium defence against ciliate grazers. FEMS Microbiol Ecol 2020; 96:5908377. [PMID: 32945836 PMCID: PMC7840114 DOI: 10.1093/femsec/fiaa189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/17/2020] [Indexed: 11/14/2022] Open
Abstract
Cyanobacteria can protect themselves through limited dispersion and by increasing the compactness of the mucilage-covered cyanobacterial mat as well as by producing sheaths covering their trichomes. These features have been used in research to measure their degree of inducible defence. The influence of the presence of the rotifers Lecane inermis on the effectiveness of Phormidium sp. (Ph2) cyanobacterium defence was investigated. Experiments were conducted on the ciliates Pseudomicrothorax dubius and Furgasonia blochmanni, specialised in the ingestion of filamentous cyanobacteria. The most compact were cyanobacterial mats that were subjected exclusively to ciliates and the most dispersed were mats in the presence of rotifers alone. The presence of rotifers feeding on cyanobacterial mucilage led to the decreased effectiveness of the defence in two ways, by increasing the dispersion of cyanobacterial trichomes, thus loosening the cyanobacterial mat, and through the ingestion of the exopolysaccharide material covering the trichomes. As a result, in the presence of rotifers and the high density of ciliates, almost all the trichomes were removed. Moreover, in comparison with other treatments, a higher number of ciliates and rotifers remained active until the end of the experiments. This is the first report to show how rotifers can weaken the defence of cyanobacteria.
Collapse
Affiliation(s)
- Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Wojciech Fiałkowski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
10
|
Galindo LJ, Torruella G, Moreira D, Eglit Y, Simpson AGB, Völcker E, Clauß S, López-García P. Combined cultivation and single-cell approaches to the phylogenomics of nucleariid amoebae, close relatives of fungi. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190094. [PMID: 31587649 DOI: 10.1098/rstb.2019.0094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nucleariid amoebae (Opisthokonta) have been known since the nineteenth century but their diversity and evolutionary history remain poorly understood. To overcome this limitation, we have obtained genomic and transcriptomic data from three Nuclearia, two Pompholyxophrys and one Lithocolla species using traditional culturing and single-cell genome (SCG) and single-cell transcriptome amplification methods. The phylogeny of the complete 18S rRNA sequences of Pompholyxophrys and Lithocolla confirmed their suggested evolutionary relatedness to nucleariid amoebae, although with moderate support for internal splits. SCG amplification techniques also led to the identification of probable bacterial endosymbionts belonging to Chlamydiales and Rickettsiales in Pompholyxophrys. To improve the phylogenetic framework of nucleariids, we carried out phylogenomic analyses based on two datasets of, respectively, 264 conserved proteins and 74 single-copy protein domains. We obtained full support for the monophyly of the nucleariid amoebae, which comprise two major clades: (i) Parvularia-Fonticula and (ii) Nuclearia with the scaled genera Pompholyxophrys and Lithocolla. Based on these findings, the evolution of some traits of the earliest-diverging lineage of Holomycota can be inferred. Our results suggest that the last common ancestor of nucleariids was a freshwater, bacterivorous, non-flagellated filose and mucilaginous amoeba. From the ancestor, two groups evolved to reach smaller (Parvularia-Fonticula) and larger (Nuclearia and related scaled genera) cell sizes, leading to different ecological specialization. The Lithocolla + Pompholyxophrys clade developed exogenous or endogenous cell coverings from a Nuclearia-like ancestor. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Guifré Torruella
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Yana Eglit
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alastair G B Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
11
|
Lu T, Zhu Y, Ke M, Peijnenburg WJGM, Zhang M, Wang T, Chen J, Qian H. Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin. ENVIRONMENT INTERNATIONAL 2019; 126:268-278. [PMID: 30825745 DOI: 10.1016/j.envint.2019.02.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Ciprofloxacin (CIP), one of the most frequently detected antibiotics in water systems, has become an aquatic contaminant because of improper disposal and excretion by humans and animals. It is still unknown how trace amounts of CIP affect the aquatic microbial community diversity and function. We therefore investigated the effects of CIP on the structure and function of freshwater microbial communities via 16S/18S rRNA gene sequencing and metatranscriptomic analyses. CIP treatment (7 μg/L) did not significantly alter the physical and chemical condition of the water body as well as the composition of the main species in the community, but slightly increased the relative abundance of cyanobacteria and decreased the relative abundance of eukaryotes. Metatranscriptomic results showed that bacteria enhanced their phosphorus transport and photosynthesis after CIP exposure. The replication, transcription, translation and cell proliferation were all suppressed in eukaryotes, while the bacteria were not affected in any of these aspects. This interesting phenomenon was the exact opposite to both the antibacterial property of CIP and its safety for eukaryotes. We hypothesize that reciprocal and antagonistic interactions in the microcosm both contribute to this result: cyanobacteria may enhance their tolerance to CIP through benefiting from cross-feeding and some secreted substances that withstand bacterial CIP stress would also affect eukaryotic growth. The present study thus indicates that a detailed assessment of the aquatic ecotoxicity of CIP is essential, as the effects of CIP are much more complicated in microbial communities than in monocultures. CIP will continue to be an environmental contaminant due to its wide usage and production and more attention should be given to the negative effects of antibiotics as well as other bioactive pollutants on aquatic environments.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Youchao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA, Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tingzhang Wang
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|