1
|
Costa YM, Herculiani CCF, Soares FFC, Azevedo MDCS, Conti PCR, Dionísio TJ, Oliveira GDM, Faria FACD, Santos CF, Garlet GP, Bonjardim LR. Impact of streptozotocin-induced diabetes on experimental masseter pain in rats. Braz Oral Res 2024; 38:e073. [PMID: 39109769 PMCID: PMC11376623 DOI: 10.1590/1807-3107bor-2024.vol38.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/02/2024] [Indexed: 09/20/2024] Open
Abstract
This study aimed to assess the influence of streptozotocin (STZ)-induced diabetes on the nociceptive behavior evoked by the injection of hypertonic saline (HS) into the masseter muscle of rats. Forty male rats were equally divided into four groups: a) isotonic saline control, which received 0.9% isotonic saline (IS), (Ctrl-IS); b) hypertonic saline control, which received 5% HS (Ctrl-HS); c) STZ-induced diabetic, which received IS, (STZ-IS); d) STZ-induced diabetic, which received HS (STZ-HS). Experimental diabetes was induced by a single intraperitoneal injection of STZ at dose of 60 mg/kg dissolved in 0.1 M citrate buffer, and 100 μL of HS or IS were injected into the left masseter to measure the nociceptive behavior. Later on, muscle RNA was extracted to measure the relative expression of the following cytokines: cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukins (IL)-1β, -2, -6, and -10. One-way analysis of variance (ANOVA) was applied to the data (p < 0.050). We observed a main effect of group on the nociceptive response (ANOVA: F = 11.60, p < 0.001), where the Ctrl-HS group presented the highest response (p < 0.001). However, nociceptive response was similar among the Ctrl-IS, STZ-IS, and STZ-HS group (p > 0.050). In addition, the highest relative gene expression of TNF-α and IL-6 was found in the masseter of control rats following experimental muscle pain (p < 0.050). In conclusion, the loss of somatosensory function can be observed in deep orofacial tissues of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Yuri Martins Costa
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Biosciences, Piracicaba, SP, Brazil
| | | | - Flávia Fonseca Carvalho Soares
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| | | | | | - Thiago José Dionísio
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| | | | | | - Carlos Ferreira Santos
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| | - Leonardo Rigoldi Bonjardim
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Sas D, Gaudel F, Verdier D, Kolta A. Hyperexcitability of muscle spindle afferents in jaw-closing muscles in experimental myalgia: Evidence for large primary afferents involvement in chronic pain. Exp Physiol 2024; 109:100-111. [PMID: 38103003 PMCID: PMC10988680 DOI: 10.1113/ep090769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The goals of this review are to improve understanding of the aetiology of chronic muscle pain and identify new targets for treatments. Muscle pain is usually associated with trigger points in syndromes such as fibromyalgia and myofascial syndrome, and with small spots associated with spontaneous electrical activity that seems to emanate from fibers inside muscle spindles in EMG studies. These observations, added to the reports that large-diameter primary afferents, such as those innervating muscle spindles, become hyperexcitable and develop spontaneous ectopic firing in conditions leading to neuropathic pain, suggest that changes in excitability of these afferents might make an important contribution to the development of pathological pain. Here, we review evidence that the muscle spindle afferents (MSAs) of the jaw-closing muscles become hyperexcitable in a model of chronic orofacial myalgia. In these afferents, as in other large-diameter primary afferents in dorsal root ganglia, firing emerges from fast membrane potential oscillations that are supported by a persistent sodium current (INaP ) mediated by Na+ channels containing the α-subunit NaV 1.6. The current flowing through NaV 1.6 channels increases when the extracellular Ca2+ concentration decreases, and studies have shown that INaP -driven firing is increased by S100β, an astrocytic protein that chelates Ca2+ when released in the extracellular space. We review evidence of how astrocytes, which are known to be activated in pain conditions, might, through their regulation of extracellular Ca2+ , contribute to the generation of ectopic firing in MSAs. To explain how ectopic firing in MSAs might cause pain, we review evidence supporting the hypothesis that cross-talk between proprioceptive and nociceptive pathways might occur in the periphery, within the spindle capsule.
Collapse
Affiliation(s)
- Dar'ya Sas
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Fanny Gaudel
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Dorly Verdier
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Arlette Kolta
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
- Faculté de Médecine DentaireUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
3
|
Chung MK, Ro JY. Peripheral glutamate receptor and transient receptor potential channel mechanisms of craniofacial muscle pain. Mol Pain 2021; 16:1744806920914204. [PMID: 32189565 PMCID: PMC7153498 DOI: 10.1177/1744806920914204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temporomandibular joint disorder is a common chronic craniofacial pain condition,
often involving persistent, widespread craniofacial muscle pain. Although the
etiology of chronic muscle pain is not well known, sufficient clinical and
preclinical information supports a contribution of trigeminal nociceptors to
craniofacial muscle pain processing under various experimental and pathological
conditions. Here, we review cellular and molecular mechanisms underlying
sensitization of muscle nociceptive afferents. In particular, we summarize
findings on pronociceptive roles of peripheral glutamate in humans, and we
discuss mechanistic contributions of glutamate receptors, including
N-methyl-D-aspartate receptors and metabotropic glutamate receptors, which have
considerably increased our understanding of peripheral mechanisms of
craniofacial muscle pain. Several members of the transient receptor potential
(TRP) family, such as transient receptor potential vanilloid 1 (TRPV1) and
transient receptor potential ankyrin 1, also play essential roles in the
development of spontaneous pain and mechanical hypersensitivity in craniofacial
muscles. Furthermore, glutamate receptors and TRP channels functionally and
bi-directionally interact to modulate trigeminal nociceptors. Activation of
glutamate receptors invokes protein kinase C, which leads to the phosphorylation
of TRPV1. Sensitization of TRPV1 by inflammatory mediators and glutamate
receptors in combination with endogenous ligands contributes to masseter
hyperalgesia. The distinct intracellular signaling pathways through which both
receptor systems engage and specific molecular regions of TRPV1 are offered as
novel targets for the development of mechanism-based treatment strategies for
myogenous craniofacial pain conditions.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - Jin Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| |
Collapse
|
4
|
Bagüés A, Martín‐Fontelles MI, Esteban‐Hernández J, Sánchez‐Robles EM. Characterization of the nociceptive effect of carrageenan: Masseter versus gastrocnemius. Muscle Nerve 2017; 56:804-813. [DOI: 10.1002/mus.25538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Ana Bagüés
- Área de Farmacología y Nutrición, Unidad asociada I+D+i al Instituto de Química Médica, Grupo de excelencia investigadora URJC–Banco de Santander–Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón Madrid Spain
| | - M. Isabel Martín‐Fontelles
- Área de Farmacología y Nutrición, Unidad asociada I+D+i al Instituto de Química Médica, Grupo de excelencia investigadora URJC–Banco de Santander–Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón Madrid Spain
| | - Jesús Esteban‐Hernández
- Área de Medicina Preventiva y Salud Pública, Facultad de Ciencias de la Salud. Universidad Rey Juan CarlosAlcorcón Madrid Spain
| | - Eva M. Sánchez‐Robles
- Área de Farmacología y Nutrición, Unidad asociada I+D+i al Instituto de Química Médica, Grupo de excelencia investigadora URJC–Banco de Santander–Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón Madrid Spain
| |
Collapse
|
5
|
Sarmento-Neto JF, do Nascimento LG, Felipe CFB, de Sousa DP. Analgesic Potential of Essential Oils. Molecules 2015; 21:E20. [PMID: 26703556 PMCID: PMC6273222 DOI: 10.3390/molecules21010020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
Pain is an unpleasant sensation associated with a wide range of injuries and diseases, and affects approximately 20% of adults in the world. The discovery of new and more effective drugs that can relieve pain is an important research goal in both the pharmaceutical industry and academia. This review describes studies involving antinociceptive activity of essential oils from 31 plant species. Botanical aspects of aromatic plants, mechanisms of action in pain models and chemical composition profiles of the essential oils are discussed. The data obtained in these studies demonstrate the analgesic potential of this group of natural products for therapeutic purposes.
Collapse
Affiliation(s)
- José Ferreira Sarmento-Neto
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, CEP 58.051-900 João Pessoa-PB, Brazil.
| | - Lázaro Gomes do Nascimento
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, CEP 58.051-900 João Pessoa-PB, Brazil.
| | | | - Damião Pergentino de Sousa
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, CEP 58.051-900 João Pessoa-PB, Brazil.
| |
Collapse
|
6
|
Duez L, Qerama E, Jensen TS, Fuglsang-Frederiksen A. Modulation of the muscle and nerve compound muscle action potential by evoked pain. Scand J Pain 2015; 6:55-60. [PMID: 29911580 DOI: 10.1016/j.sjpain.2014.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
Background and aims To our knowledge there are no studies that have examined the effects of the experimental pain on muscle fibre excitability as measured by the amplitudes of the potentials evoked by direct muscle stimulation (DMS) in a muscle at rest. We hypothesized that evoked pain can modulate the muscle compound action potential (CMAP) obtained by DMS possibly due to changes in muscle fibre excitability. Methods Pain was evoked by intramuscular infusion of hypertonic saline in 50 men. Ten control subjects were infused with isotonic saline. The infusions were given distal to the motor end plate region of the dominant brachial biceps muscle (BBM) in a double-blind manner. The nerve CMAP was obtained by stimulating the musculocutaneous nerve and recording from the BBM using surface-electrodes. Muscle CMAPs were obtained by direct muscle stimulation with subdermal electrodes placed subcutaneously in the distal third of the muscle. A stimuli-response curve of the amplitudes from muscle CMAP was obtained by stimulating from 10 to 90 mA. Results There was a decrease of the nerve CMAP amplitudes after infusion of isotonic saline (from 13.78mV to 12.16 mV), p-value 0.0007 and of hypertonic saline (from 13.35 mV to 10.85 mV), p-value 0.0000. The percent decrease from before to after infusion was larger in the hypertonic saline group (19.37%) compared to the isotonic saline group (12.18%), p-value 0.025. There was a decrease of the amplitudes of the muscle CMAP after infusion of both isotonic (at 90 mA from 13.84mV to 10.32 mV, p value 0.001) and of hypertonic saline (at 90 mA from 14.01 mV to 8.19 mV, p value 0.000). The percent decrease was larger in the hypertonic saline group compared to the isotonic saline group for all the stimulations intensities. At 90 mA we saw a 42% decrease in the hypertonic saline group and 24.5% in the isotonic saline group, p value 0.005. There were no changes in conduction velocity. Conclusion We found a larger amplitude decrease of the muscle and nerve potentials following hypertonic saline infusion compared with that of isotonic saline. We suggest that this deferential outcome of hypertonic saline on muscle CMAP may be linked to the nociceptive effect on muscle fibre membrane excitability. Implications The study supplies with some evidence of the peripheral effect of muscle pain. However, further trials with other nociceptive substances such as capsaicin should be performed.
Collapse
Affiliation(s)
- L Duez
- Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark.,Department of Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - E Qerama
- Department of Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - T S Jensen
- Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
7
|
Roles of the periaqueductal gray in descending facilitatory and inhibitory controls of intramuscular hypertonic saline induced muscle nociception. Exp Neurol 2014; 257:88-94. [DOI: 10.1016/j.expneurol.2014.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 12/31/2022]
|
8
|
Gregory NS, Sluka KA. Anatomical and physiological factors contributing to chronic muscle pain. Curr Top Behav Neurosci 2014; 20:327-48. [PMID: 24633937 PMCID: PMC4294469 DOI: 10.1007/7854_2014_294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic muscle pain remains a significant source of suffering and disability despite the adoption of pharmacologic and physical therapies. Muscle pain is mediated by free nerve endings distributed through the muscle along arteries. These nerves project to the superficial dorsal horn and are transmitted primarily through the spinothalamic tract to several cortical and subcortical structures, some of which are more active during the processing of muscle pain than other painful conditions. Mechanical forces, ischemia, and inflammation are the primary stimuli for muscle pain, which is reflected in the array of peripheral receptors contributing to muscle pain-ASIC, P2X, and TRP channels. Sensitization of peripheral receptors and of central pain processing structures are both critical for the development and maintenance of chronic muscle pain. Further, variations in peripheral receptors and central structures contribute to the significantly greater prevalence of chronic muscle pain in females.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Neuroscience Graduate Program, University of Iowa, 3144 Med Labs, Iowa City, IA, 52246, USA,
| | | |
Collapse
|
9
|
Topical Antinociceptive Effect of Vanillosmopsis arborea Baker on Acute Corneal Pain in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:708636. [PMID: 24660017 PMCID: PMC3934451 DOI: 10.1155/2014/708636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/07/2013] [Accepted: 12/19/2013] [Indexed: 11/17/2022]
Abstract
This study aimed to assess the possible topical antinociceptive activity of Vanillosmopsis arborea Baker essential oil (EOVA) and to clarify the underlying mechanism, using the acute model of chemical (eye wiping) nociception in mice. EOVA (25 to 200 mg/kg; p.o. and topical) evidenced significant antinociception against chemogenic pain in the test model of formalin-induced neuroinflammatory pain. Local application of 5 M NaCl solution on the corneal surface of the eye produced a significant nociceptive behavior, characterized by eye wiping. The number of eye wipes was counted during the first 30 s. EOVA (25, 50, 100, and 200 mg/kg; p.o. and topical) significantly decreased the number of eye wipes. Naloxone, yohimbine, L-NAME, theophylline, glibenclamide, and ruthenium red had no effect on the antinociceptive effect of EOVA. However, ondansetron, p-chlorophenylalanine methyl ester (PCPA), capsazepine, prazosin, and atropine prevented the antinociception induced by EOVA. These results indicate the topical antinociceptive effect of EOVA and showed that 5-HT, α1, TRPV1, and central muscarinic receptors might be involved in the antinociceptive effect of EOVA in the acute corneal model of pain in mice.
Collapse
|
10
|
Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. THE JOURNAL OF PAIN 2013; 14:1255-69. [PMID: 24035349 PMCID: PMC3818391 DOI: 10.1016/j.jpain.2013.06.008] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience, including reflexive hyperalgesia measures, sensory and affective dimensions of pain, and impact of pain on function and quality of life. In this review, we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes as well as the main behavioral tests for assessing pain in each model. PERSPECTIVE Understanding animal models and outcome measures in animals will assist in translating data from basic science to the clinic.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Department of Physical Therapy and Rehabilitation Science, College of Medicine, University of Iowa, Iowa City, Iowa; Neuroscience Graduate Program, College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | |
Collapse
|
11
|
Slater H, Graven-Nielsen T, Wright A, Schug SA. Low-Dose Sublingual Ketamine Does Not Modulate Experimentally Induced Mechanical Hyperalgesia in Healthy Subjects. PAIN MEDICINE 2012; 13:1235-46. [DOI: 10.1111/j.1526-4637.2012.01444.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Chen YK, Lei J, Jin L, Tan YX, You HJ. Dynamic variations of c-Fos expression in the spinal cord exposed to intramuscular hypertonic saline-induced muscle nociception. Eur J Pain 2012; 17:336-46. [DOI: 10.1002/j.1532-2149.2012.00207.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Y.-K. Chen
- Center for Biomedical Research on Pain (CBRP); College of Medicine; Xi'an Jiaotong University; China
| | - J. Lei
- Center for Biomedical Research on Pain (CBRP); College of Medicine; Xi'an Jiaotong University; China
| | - L. Jin
- Department of Neurosurgery; The First Hospital affiliated to Xi'an Medical College; China
| | - Y.-X. Tan
- Center for Biomedical Research on Pain (CBRP); College of Medicine; Xi'an Jiaotong University; China
| | - H.-J. You
- Center for Biomedical Research on Pain (CBRP); College of Medicine; Xi'an Jiaotong University; China
| |
Collapse
|
13
|
Variation of pain and vasomotor responses evoked by intramuscular infusion of hypertonic saline in human subjects: Influence of gender and its potential neural mechanisms. Brain Res Bull 2012; 87:564-70. [DOI: 10.1016/j.brainresbull.2011.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/27/2011] [Accepted: 11/03/2011] [Indexed: 11/20/2022]
|
14
|
Tamaddonfard E, Hamzeh-Gooshchi N. Effects of subcutaneous and intracerebroventricular injection of physostigmine on the acute corneal nociception in rats. Pharmacol Rep 2011; 62:858-63. [PMID: 21098868 DOI: 10.1016/s1734-1140(10)70345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/13/2010] [Indexed: 10/25/2022]
Abstract
The present study investigated the effects of subcutaneous (sc) and intracerebroventricular (icv) injections of physostigmine (a cholinesterase inhibitor), atropine (an antagonist of muscarinic cholinergic receptors) and hexamethonium (an antagonist of nicotinic cholinergic receptors) on the acute corneal nociception in rats. Local application of 5 M NaCl solution on the corneal surface of the eye produced a significant nociceptive behavior, characterized by eye wiping. The number of eye wipes was counted during the first 30 s. The sc (0.25, 0.5 and 1 mg/kg) and icv (1.25, 2.5, 5 and 10 μg) injections of physostigmine significantly (p < 0.05) decreased the number of eye wipes. Atropine and hexamethonium at (2 mg/kg, sc and 20 μg, icv) had no effects when used alone, however, atropine, but not hexamethonium prevented the antinociception induced by physostigmine (sc and icv). The results of this study indicate that the central muscarinic, but not nicotinic receptors might be involved in the antinociceptive effect of physostigmine in the acute corneal model of pain in rats.
Collapse
Affiliation(s)
- Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran.
| | | |
Collapse
|
15
|
Miller KE, Hoffman EM, Sutharshan M, Schechter R. Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms. Pharmacol Ther 2011; 130:283-309. [PMID: 21276816 DOI: 10.1016/j.pharmthera.2011.01.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 11/25/2022]
Abstract
In addition to using glutamate as a neurotransmitter at central synapses, many primary sensory neurons release glutamate from peripheral terminals. Primary sensory neurons with cell bodies in dorsal root or trigeminal ganglia produce glutaminase, the synthetic enzyme for glutamate, and transport the enzyme in mitochondria to peripheral terminals. Vesicular glutamate transporters fill neurotransmitter vesicles with glutamate and they are shipped to peripheral terminals. Intense noxious stimuli or tissue damage causes glutamate to be released from peripheral afferent nerve terminals and augmented release occurs during acute and chronic inflammation. The site of action for glutamate can be at the autologous or nearby nerve terminals. Peripheral nerve terminals contain both ionotropic and metabotropic excitatory amino acid receptors (EAARs) and activation of these receptors can lower the activation threshold and increase the excitability of primary afferents. Antagonism of EAARs can reduce excitability of activated afferents and produce antinociception in many animal models of acute and chronic pain. Glutamate injected into human skin and muscle causes acute pain. Trauma in humans, such as arthritis, myalgia, and tendonitis, elevates glutamate levels in affected tissues. There is evidence that EAAR antagonism at peripheral sites can provide relief in some chronic pain sufferers.
Collapse
Affiliation(s)
- Kenneth E Miller
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, United States.
| | | | | | | |
Collapse
|
16
|
Allen CE, Worsley MA, King AE, Boissonade FM. Fos expression induced by activation of NMDA and neurokinin-1 receptors in the trigeminal subnucleus caudalis in vitro: role of protein kinases. Brain Res 2010; 1368:19-27. [PMID: 20977893 DOI: 10.1016/j.brainres.2010.10.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/17/2010] [Accepted: 10/19/2010] [Indexed: 11/16/2022]
Abstract
Activity-induced neuronal plasticity is partly facilitated by the expression of the immediate-early gene c-fos and the resulting transcription factor Fos. Expression of Fos is associated with nociceptive afferent activation, but a detailed stimulation-transcription pathway for Fos expression has not yet been determined in the trigeminal system. This study utilized a novel in vitro model to determine whether Fos expression can be induced in trigeminal subnucleus caudalis by NMDA or neurokinin-1 receptor activation, and whether inhibition of intracellular kinases has any effect on Fos expression induced by activation of these receptors. Brainstems of male Wistar rats were excised and maintained in artificial cerebrospinal fluid at 37°C. NMDA or the specific neurokinin-1 receptor agonist [Sar(9),Met(O(2))(11)]-SP was applied. These agonists were subsequently tested in the presence of the protein kinase A inhibitor Rp-cAMP or protein kinase C inhibitor chelerythrine chloride. In all experiments the sodium channel blocker tetrodotoxin was used to prevent indirect neuronal activation. Brainstems were processed immunocytochemically for Fos expression, and positive cells were counted in the trigeminal subnucleus caudalis. NMDA and [Sar(9),Met(O(2))(11)]-SP significantly increased Fos expression, but these increases could be prevented by chelerythrine chloride. Rp-cAMP had no effect on Fos induced by NMDA but caused a significant reduction in Fos induced by [Sar(9),Met(O(2))(11)]-SP. These data demonstrate that in trigeminal subnucleus caudalis activation of either NK1 or NMDA receptors alone induces Fos expression; protein kinases A and C are involved in NK1R-induced Fos while protein kinase A is not required for NMDA receptor-induced Fos.
Collapse
Affiliation(s)
- Ceri E Allen
- Department of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
17
|
Lund JP, Sadeghi S, Athanassiadis T, Caram Salas N, Auclair F, Thivierge B, Arsenault I, Rompré P, Westberg KG, Kolta A. Assessment of the potential role of muscle spindle mechanoreceptor afferents in chronic muscle pain in the rat masseter muscle. PLoS One 2010; 5:e11131. [PMID: 20559566 PMCID: PMC2886111 DOI: 10.1371/journal.pone.0011131] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 05/11/2010] [Indexed: 12/02/2022] Open
Abstract
Background The phenotype of large diameter sensory afferent neurons changes in several models of neuropathic pain. We asked if similar changes also occur in “functional” pain syndromes. Methodology/Principal Findings Acidic saline (AS, pH 4.0) injections into the masseter muscle were used to induce persistent myalgia. Controls received saline at pH 7.2. Nocifensive responses of Experimental rats to applications of Von Frey Filaments to the masseters were above control levels 1–38 days post-injection. This effect was bilateral. Expression of c-Fos in the Trigeminal Mesencephalic Nucleus (NVmes), which contains the somata of masseter muscle spindle afferents (MSA), was above baseline levels 1 and 4 days after AS. The resting membrane potentials of neurons exposed to AS (n = 167) were hyperpolarized when compared to their control counterparts (n = 141), as were their thresholds for firing, high frequency membrane oscillations (HFMO), bursting, inward and outward rectification. The amplitude of HFMO was increased and spontaneous ectopic firing occurred in 10% of acid-exposed neurons, but never in Controls. These changes appeared within the same time frame as the observed nocifensive behaviour. Ectopic action potentials can travel centrally, but also antidromically to the peripheral terminals of MSA where they could cause neurotransmitter release and activation of adjacent fibre terminals. Using immunohistochemistry, we confirmed that annulospiral endings of masseter MSA express the glutamate vesicular transporter VGLUT1, indicating that they can release glutamate. Many capsules also contained fine fibers that were labelled by markers associated with nociceptors (calcitonin gene-related peptide, Substance P, P2X3 receptors and TRPV1 receptors) and that expressed the metabotropic glutamate receptor, mGluR5. Antagonists of glutamatergic receptors given together with the 2nd injection of AS prevented the hypersensitivity observed bilaterally but were ineffective if given contralaterally. Conclusions/Significance Low pH leads to changes in several electrical properties of MSA, including initiation of ectopic action potentials which could propagate centrally but could also invade the peripheral endings causing glutamate release and activation of nearby nociceptors within the spindle capsule. This peripheral drive could contribute both to the transition to, and maintenance of, persistent muscle pain as seen in some “functional” pain syndromes.
Collapse
Affiliation(s)
- James P Lund
- Groupe de Recherche sur le Système Nerveux Central du Fonds de Recherche en Santé du Québec, Department of Physiology, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat. THE JOURNAL OF PAIN 2009; 11:369-77. [PMID: 19962353 DOI: 10.1016/j.jpain.2009.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/20/2009] [Accepted: 08/15/2009] [Indexed: 11/20/2022]
Abstract
UNLABELLED While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. PERSPECTIVE These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome.
Collapse
|
19
|
Cao Y, Xie QF, Li K, Light AR, Fu KY. Experimental occlusal interference induces long-term masticatory muscle hyperalgesia in rats. Pain 2009; 144:287-293. [PMID: 19473767 DOI: 10.1016/j.pain.2009.04.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 01/28/2023]
Abstract
Temporomandibular joint or related masticatory muscle pain represents the most common chronic orofacial pain condition. Patients frequently report this kind of pain after dental alterations in occlusion. However, lack of understanding of the mechanisms of occlusion-related temporomandibular joint and muscle pain prevents treating this problem successfully. To explore the relationship between improper occlusion (occlusal interference) and masticatory muscle pain, we created an occlusal interference animal model by directly bonding a crown to a maxillary molar to raise the masticating surface of the tooth in rats. We raised the occlusal surface to three different heights (0.2, 0.4, and 0.6mm), and for one month we quantitatively measured mechanical nociceptive thresholds of the temporal and masseter muscles on both sides. Results showed a stimulus-response relationship between the height of occlusal interference and muscle hyperalgesia. Removal of the crown 6 days after occlusal interference showed that the removal at this time could not terminate the 1 month duration of mechanical hyperalgesia in the masticatory muscles. Lastly, we systemically administered NMDA antagonist MK801 (0.2, 0.1, and 0.05 mg/kg) to the treated rats and found that MK801 dose dependently attenuated the occlusal interference-induced hyperalgesia. These findings suggest that occlusal interference is directly related to masticatory muscle pain, and that central sensitization mechanisms are involved in the maintenance of the occlusal interference-induced mechanical hyperalgesia.
Collapse
Affiliation(s)
- Ye Cao
- Department of Prosthodontics, Peking University School & Hospital of Stomatology, 22 Zhong Guan Cun South Avenue, Beijing 100081, PR China Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, 22 Zhong Guan Cun South Avenue, Beijing 100081, PR China Department of Anesthesiology, University of Utah, Salt Lake City, UT 84132-2304, USA
| | | | | | | | | |
Collapse
|
20
|
Mense S. Algesic agents exciting muscle nociceptors. Exp Brain Res 2009; 196:89-100. [PMID: 19139871 DOI: 10.1007/s00221-008-1674-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/27/2008] [Indexed: 12/14/2022]
Abstract
Morphologically, muscle nociceptors are free nerve endings connected to the CNS by thin myelinated (group III) or unmyelinated (group IV) afferent fibers. Not all of these endings are nociceptive; approximately 40% have a low mechanical threshold and likely fulfill non-nociceptive functions. Two chemical stimuli are particularly relevant as causes of muscle pain. The first is a drop in tissue pH, i.e. an increase in proton (H+) concentration. A large number of painful patho(physio)logical alterations of muscle tissue are associated with an acidic interstitial pH (e.g. tonic contractions, spasm, inflammation). The second important cause of muscle pain is a release of adenosine triphosphate (ATP). ATP is present in all body cells, but in muscle its concentration is particularly high. Any damage of muscle cells (trauma, necrotic myositis) is accompanied by a release of ATP from the cells. Therefore, ATP is considered a general pain stimulus by some. ATP and protons are relatively specific stimuli for muscle pain; in cutaneous pain they play a less important role. The numerous agents that are released in pathologically altered muscle include substances that desensitize mechanosensitive group IV receptors. Capsaicin has a long-lasting desensitizing action, brain-derived neurotrophic factor, and tumor necrosis factor-alpha, a short-lasting one. Most of the agents exciting group IV units (e.g. low pH, ATP, capsaicin) activate not only nociceptive endings but also non-nociceptive ones. The only substance encountered that excites exclusively nociceptive group IV receptors is nerve growth factor (NGF). In rat muscle chronically inflamed with complete Freund's adjuvant, most group IV endings are sensitized to mechanical (and to some) chemical stimuli. However, stimulants such as ATP, NGF, and solutions of low pH were found to be less effective in inflamed muscle. A possible explanation for this surprising finding is that in inflamed muscle the concentrations of ATP and NGF and H+ are increased. Therefore, experimental administration of these agents is a less effective stimulus.
Collapse
Affiliation(s)
- S Mense
- Department of Anatomy and Cell Biology III, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Chun YH, Frank D, Lee JS, Zhang Y, Auh QS, Ro JY. Peripheral AMPA receptors contribute to muscle nociception and c-fos activation. Neurosci Res 2008; 62:97-104. [PMID: 18655811 DOI: 10.1016/j.neures.2008.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/04/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
In this study, involvement of peripheral AMPA receptors in mediating craniofacial muscle pain was investigated. AMPA receptor subunits, GluR1 and GluR2, were predominantly expressed in small to medium size neurons but more GluR2 positive labeling were encountered in trigeminal ganglia (TG) of male Sprague Dawley rats. A greater prevalence of GluR2 is reflected by the significantly higher percentage of GluR2 than GluR1 positive masseter afferents. Nocifensive behavior and c-fos immunoreactivity were assessed from the same animals that received intramuscular mustard oil (MO) with or without NBQX, a potent AMPA/KA receptor antagonist. Masseteric MO produced nocifensive hindpaw shaking responses that peaked in the first 30s and gradually diminished over a few minutes. There was a significant difference in both peak and overall MO-induced nocifensive responses between NBQX and vehicle pre-treated rats. Subsequent Fos studies also showed that peripheral NBQX pre-treatment effectively reduced the MO-induced neuronal activation in the subnucleus caudalis of the trigeminal nerve (Vc). These combined results provide compelling evidence that acute muscle nociception is mediated, in part, by peripherally located AMPA/KA receptors, and that blockade of multiple peripheral glutamate receptor subtypes may provide a more effective means of reducing muscular pain and central neuronal activation.
Collapse
Affiliation(s)
- Yang-Hyun Chun
- Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Dina OA, Levine JD, Green PG. Muscle inflammation induces a protein kinase Cepsilon-dependent chronic-latent muscle pain. THE JOURNAL OF PAIN 2008; 9:457-62. [PMID: 18342576 DOI: 10.1016/j.jpain.2008.01.328] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/04/2008] [Accepted: 01/13/2008] [Indexed: 10/22/2022]
Abstract
UNLABELLED Skeletal muscle injuries can induce chronic pain, but the underlying mechanism is unknown. One possible cause has been suggested to be an increased sensitivity to inflammatory mediators. We demonstrate that self-limited inflammatory hyperalgesia induced by intramuscular carrageenan (lasting approximately 5 days) results in a state of chronic-latent hyperalgesia, revealed by injection of prostaglandin E(2) (PGE(2)) 10 days after carrageenan at the same site. In carrageenan-pretreated muscle, PGE(2) produced hyperalgesia that was unattenuated even 14 days after injection, markedly longer than the 4-hour hyperalgesia induced by PGE(2) in naive rats. This chronic-latent hyperalgesia was reversed as well as prevented by spinal intrathecal injection of oligodeoxynucleotide antisense to protein kinase Cepsilon, a second messenger implicated in long-lasting plasticity in cutaneous nociceptors. PERSPECTIVE We describe a novel experimental model for chronic muscle pain, produced by mild acute muscle inflammation, that has clinical significance since it has the potential to reveal cellular processes by which acute inflammation or muscle trauma underlies chronic muscle pain.
Collapse
Affiliation(s)
- Olayinka A Dina
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
23
|
Cairns BE, Mann MK, Mok E, Dong XD, Svensson P. Diclofenac exerts local anesthetic-like actions on rat masseter muscle afferent fibers. Brain Res 2008; 1194:56-64. [DOI: 10.1016/j.brainres.2007.11.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
24
|
Dina OA, Green PG, Levine JD. Role of interleukin-6 in chronic muscle hyperalgesic priming. Neuroscience 2008; 152:521-5. [PMID: 18280048 DOI: 10.1016/j.neuroscience.2008.01.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/12/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
After recovery from acute muscle pain even minor subsequent muscle use can initiate recurrence of the same mechanical hyperalgesia months or years after the initial injury. We have recently developed a model of this chronic latent hyperalgesia in the rat. In this study, we have examined the possibility that interleukin-6 (IL-6), an inflammatory mediator produced during acute muscle inflammation, can mediate the production of this chronic latent hyperalgesic state in which subsequent exposure to inflammatory mediators produces a markedly prolonged mechanical hyperalgesia. We now report that i.m. injection of IL-6 produced mechanical hyperalgesia, lasting several hours, that was prevented by intrathecal injection of antisense to glycoprotein 130 (gp130), an IL-6 receptor subunit. Furthermore, following complete recovery from i.m. IL-6-induced hyperalgesia, i.m. prostaglandin E(2) produced a mechanical hyperalgesia that was remarkably prolonged compared with naïve controls, indicating the presence of chronic latent hyperalgesia. This ability of IL-6 to produce chronic latent hyperalgesia was prevented by intrathecal administration of antisense for gp130. Furthermore, gp130 antisense also prevented chronic latent hyperalgesia produced by i.m. injection of the inflammogen, carrageenan. These results identify a role for IL-6 in acute inflammatory muscle pain and as a potential target against which therapies might be directed to treat chronic muscle pain.
Collapse
Affiliation(s)
- O A Dina
- Department Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
25
|
Nũnéz S, Lee JS, Zhang Y, Bai G, Ro JY. Role of peripheral mu-opioid receptors in inflammatory orofacial muscle pain. Neuroscience 2007; 146:1346-54. [PMID: 17379421 DOI: 10.1016/j.neuroscience.2007.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
The aims of this project were to investigate whether inflammation in the orofacial muscle alters mu opioid receptor (MOR) mRNA and protein expressions in trigeminal ganglia (TG), and to assess the contribution of peripheral MORs under acute and inflammatory muscle pain conditions. mRNA and protein levels for MOR were quantified by reverse-transcription-polymerase chain reaction (RT-PCR) and Western blot, respectively, from the TG of naïve rats, and compared with those from the rats treated with complete Freund's adjuvant (CFA) in the masseter. TG was found to express mRNA and protein for MOR, and CFA significantly up-regulated both MOR mRNA and protein by 3 days following the inflammation. The MOR protein up-regulation persisted to day 7 and returned to the baseline level by day 14. We then investigated whether peripheral application of a MOR agonist, D-Ala2, N-Me-Phe4, Gly5-ol-enkephalin acetate salt (DAMGO), attenuates masseter nociception induced by masseteric infusion of hypertonic saline (HS) in lightly anesthetized rats. DAMGO (1, 5, 10 microg) or vehicle was administered directly into the masseter 5-10 min prior to the HS infusion. The DAMGO effects were assessed on mean peak counts (MPC) and overall magnitude as calculated by the area under the curve (AUC) of the HS-evoked behavioral responses. Under this condition, only the highest dose of DAMGO (10 microg) significantly reduced MPC, which was prevented when H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), a selective MOR antagonist, was co-administered. DAMGO pre-treatment in the contralateral masseter did not attenuate MPC. The same doses of DAMGO administered into CFA-inflamed rats, however, produced a greater attenuation of both MPC and AUC of HS-evoked nocifensive responses. These results demonstrated that activation of peripheral MOR provides greater anti-nociception in inflamed muscle, and that the enhanced MOR effect can be partly explained by significant up-regulation of MOR expression in TG.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/physiology
- Blotting, Western
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Facial Pain/physiopathology
- Facial Pain/psychology
- Freund's Adjuvant
- Functional Laterality/physiology
- Inflammation/chemically induced
- Inflammation/physiopathology
- Inflammation/psychology
- Male
- Masseter Muscle/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Trigeminal Ganglion/metabolism
Collapse
Affiliation(s)
- S Nũnéz
- Department of Biomedical Sciences, Program in Neuroscience, University of Maryland Baltimore School of Dentistry, 650 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|