1
|
Xu H, Wu L, Xue Y, Yang T, Xiong T, Wang C, He S, Sun H, Cao Z, Liu J, Wang S, Li Z, Naeem A, Yin X, Zhang J. Advances in Structure Pharmaceutics from Discovery to Evaluation and Design. Mol Pharm 2023; 20:4404-4429. [PMID: 37552597 DOI: 10.1021/acs.molpharmaceut.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Drug delivery systems (DDSs) play an important role in delivering active pharmaceutical ingredients (APIs) to targeted sites with a predesigned release pattern. The chemical and biological properties of APIs and excipients have been extensively studied for their contribution to DDS quality and effectiveness; however, the structural characteristics of DDSs have not been adequately explored. Structure pharmaceutics involves the study of the structure of DDSs, especially the three-dimensional (3D) structures, and its interaction with the physiological and pathological structure of organisms, possibly influencing their release kinetics and targeting abilities. A systematic overview of the structures of a variety of dosage forms, such as tablets, granules, pellets, microspheres, powders, and nanoparticles, is presented. Moreover, the influence of structures on the release and targeting capability of DDSs has also been discussed, especially the in vitro and in vivo release correlation and the structure-based organ- and tumor-targeting capabilities of particles with different structures. Additionally, an in-depth discussion is provided regarding the application of structural strategies in the DDSs design and evaluation. Furthermore, some of the most frequently used characterization techniques in structure pharmaceutics are briefly described along with their potential future applications.
Collapse
Affiliation(s)
- Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ting Yang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeying Cao
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siwen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xianzhen Yin
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 201602, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
2
|
Ding XF, Zeinali Danalou S, Zhang L, Zhu N. In situ wet pharmaceutical granulation captured using synchrotron radiation based dynamic micro-CT. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:430-439. [PMID: 36891856 PMCID: PMC10000808 DOI: 10.1107/s1600577523000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Synchrotron radiation based dynamic micro-computed tomography (micro-CT) is a powerful technique available at synchrotron light sources for investigating evolving microstructures. Wet granulation is the most widely used method of producing pharmaceutical granules, precursors to products like capsules and tablets. Granule microstructures are known to influence product performance, so this is an area for potential application of dynamic CT. Here, lactose monohydrate (LMH) was used as a representative powder to demonstrate dynamic CT capabilities. Wet granulation of LMH has been observed to occur on the order of several seconds, which is too fast for lab-based CT scanners to capture the changing internal structures. The superior X-ray photon flux from synchrotron light sources makes sub-second data acquisition possible and well suited for analysis of the wet-granulation process. Moreover, synchrotron radiation based imaging is non-destructive, does not require altering the sample in any way, and can enhance image contrast with phase-retrieval algorithms. Dynamic CT can bring insights to wet granulation, an area of research previously only studied via 2D and/or ex situ techniques. Through efficient data-processing strategies, dynamic CT can provide quantitative analysis of how the internal microstructure of an LMH granule evolves during the earliest moments of wet granulation. Here, the results revealed granule consolidation, the evolving porosity, and the influence of aggregates on granule porosity.
Collapse
Affiliation(s)
- Xiao Fan Ding
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Sima Zeinali Danalou
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Lifeng Zhang
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Ning Zhu
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
- Canadian Light Source Inc., 44 Innovation Blvd, Saskatoon, SK, S7N 2V3, Canada
| |
Collapse
|
3
|
Zhu A, Mao C, Luner PE, Lomeo J, So C, Marchal S, Zhang S. Investigation of Quantitative X-ray Microscopy for Assessment of API and Excipient Microstructure Evolution in Solid Dosage Processing. AAPS PharmSciTech 2022; 23:117. [PMID: 35441297 DOI: 10.1208/s12249-022-02271-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Assessment and understanding of changes in particle size of active pharmaceutical ingredients (API) and excipients as a function of solid dosage form processing is an important but under-investigated area that can impact drug product quality. In this study, X-ray microscopy (XRM) was investigated as a method for determining the in situ particle size distribution of API agglomerates and an excipient at different processing stages in tablet manufacturing. An artificial intelligence (AI)-facilitated XRM image analysis tool was applied for quantitative analysis of thousands of individual particles, both of the API and the major filler component of the formulation, microcrystalline cellulose (MCC). Domain size distributions for API and MCC were generated along with the calculation of the porosity of each respective component. The API domain size distributions correlated with laser diffraction measurements and sieve analysis of the API, formulation blend, and granulation. The XRM analysis demonstrated that attrition of the API agglomerates occurred secondary to the granulation stage. These results were corroborated by particle size distribution and sieve potency data which showed generation of an API fines fraction. Additionally, changes in the XRM-calculated size distribution of MCC particles in subsequent processing steps were rationalized based on the known plastic deformation mechanism of MCC. The XRM data indicated that size distribution of the primary MCC particles, which make up the larger functional MCC agglomerates, is conserved across the stages of processing. The results indicate that XRM can be successfully applied as a direct, non-invasive method to track API and excipient particle properties and microstructure for in-process control samples and in the final solid dosage form. The XRM and AI image analysis methodology provides a data-rich way to interrogate the impact of processing stresses on API and excipients for enhanced process understanding and utilization for Quality by Design (QbD).
Collapse
|
4
|
Abdullahi H, Neoptolemou P, Burcham CL, Vetter T. Single droplets to particles - size, shape, shell thickness and porosity analyses using X-ray computed tomography. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. MATERIALS 2021; 14:ma14226763. [PMID: 34832165 PMCID: PMC8619049 DOI: 10.3390/ma14226763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics, especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, nondestructive, high-performance machine, enabling visualization and structure analysis at submicronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features and reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g., shape, porosity, wall thickness) and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assessing the scaffolds’ features and monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.
Collapse
|
6
|
The use of X-ray microtomography to investigate the microstructure of pharmaceutical tablets: Potentials and comparison to common physical methods. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100090. [PMID: 34377974 PMCID: PMC8327351 DOI: 10.1016/j.ijpx.2021.100090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Within this study, tablets microstructure was investigated by X-ray microtomgraphy. The aim was to gain information about their microstructure, and thus, derive deeper interpretation of tablet properties (mechanical strength, component distribution) and qualified property functions. Challenges in image processing are discussed for the correct identification of solids and voids. Furthermore, XMT measurements are critically compared with complementary physical methods for characterizing active pharmaceutical ingredient (API) content and porosity and its distribution (mercury porosimetry, calculated tablet porosity, Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM)). The derived porosity by XMT is generally lower than the calculated porosity based on geometrical data due to the resolution of the XMT in relation to the pore sizes in tablets. With rising compactions stress and API concentration, deviations between the actual and the calculated API decrease. XMT showed that API clusters are present for all tablets containing >1 wt% of ibuprofen. The 3D orientation of the components is assessable by deriving cord lengths along all dimensions of the tablets. An increasing compaction stress leads to rising cord lengths, showing higher connectivity of the respective material. Its lesser extent in the z-direction illustrates the anisotropy of the compaction process. Additionally, cracks in the fabric are identified in tablets without visible macroscopic damage. Finally, the application of XMT provides valuable structural insights if its limitations are taken into account and its strengths are fostered by advanced pre- and post-processing.
Collapse
|
7
|
Experimental investigation of wet pharmaceutical granulation using in-situ synchrotron X-ray imaging. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Zhang L, Shakya S, Wu L, Wang J, Jin G, Sun H, Yin X, Sun L, Zhang J. Multi-dimensional visualization for the morphology of lubricant stearic acid particles and their distribution in tablets. Asian J Pharm Sci 2020; 15:60-68. [PMID: 32175018 PMCID: PMC7066036 DOI: 10.1016/j.ajps.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/18/2018] [Accepted: 01/10/2019] [Indexed: 11/20/2022] Open
Abstract
The shapes of particles and their distribution in tablets, controlled by pretreatment and tableting process, determine the pharmaceutical performance of excipient like lubricant. This study aims to provide deeper insights to the relationship of the morphology and spatial distribution of stearic acid (SA) with the lubrication efficiency, as well as the resulting tablet property. Unmodified SA particles as flat sheet-like particles were firstly reprocessed by emulsification in hot water to obtain the reprocessed SA particles with spherical morphology. The three-dimensional (3D) information of SA particles in tablets was detected by a quantitative and non-invasive 3D structure elucidation technique, namely, synchrotron radiation X-ray micro-computed tomography (SR-µCT). SA particles in glipizide tablets prepared by using unmodified SA (GUT), reprocessed SA (GRT), as well as reference listed drug (RLD) of glipizide tablets were analyzed by SR-µCT. The results showed that the reprocessed SA with better flowability contributed to similarity of breaking forces between that of GRT and RLD. SA particles in GRT were very similar to those in RLD with uniform morphology and particle size, while SA particles in GUT were not evenly distributed. These findings not only demonstrated the feasibility of SR-µCT as a new method in revealing the morphology and spatial distribution of excipient in drug delivery system, but also deepened insights of solid dosage form design into a new scale by powder engineering.
Collapse
Affiliation(s)
- Liu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.,Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shailendra Shakya
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiangtao Wang
- Weihai Disu Pharmaceutical Manufacturer, Weihai 264200, China
| | - Guanghui Jin
- Weihai Disu Pharmaceutical Manufacturer, Weihai 264200, China
| | - Huimin Sun
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xianzhen Yin
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.,Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
9
|
Izutsu KI, Abe Y, Yomota C, Yoshida H. Morphological Analysis of Spherical Adsorptive Carbon Granules Using Three-Dimensional X-Ray Micro-computed Tomography. Chem Pharm Bull (Tokyo) 2020; 68:179-180. [PMID: 32009086 DOI: 10.1248/cpb.c19-00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to clarify applicability of three-dimensional X-ray micro-computed tomography (3D X-ray micro-CT) to elucidate interior morphology of spherical adsorptive carbon fine granules. Scanning of small single spherical granule hold on the rotating sample stage provided the structural information without particular preparation (e.g., slicing) that can affect the definite morphology. The three model formulations with similar appearance showed different internal structure in the 3D images, including large hollow in one of them. Other formulations showed some small empty or higher density area in the filled granules, suggesting uneven distribution of carbon. The results indicated relevance of the X-ray micro-CT analysis on the physical characterization of the spherical adsorptive carbon granule formulations.
Collapse
Affiliation(s)
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences
| | | | | |
Collapse
|
10
|
Li C, Zhu N, Emady HN, Zhang L. Synchrotron-based X-ray in-situ imaging techniques for advancing the understanding of pharmaceutical granulation. Int J Pharm 2019; 572:118797. [PMID: 31678383 DOI: 10.1016/j.ijpharm.2019.118797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Wet granulation of powders is a key unit operation in the pharmaceutical industry. Due to the complexity of the granulation process taking place in a short time, observing and measuring the granulation process is challenging with conventional experimental methods. In this study, synchrotron-based X-ray imaging techniques were, for the first time, employed to capture the dynamic granulation process with a single drop impacting method in pharmaceutical powder beds. Five common pharmaceutical excipients, two active pharmaceutical ingredients (APIs) and their mixtures were used as the powder beds. The dynamic interaction between the liquid binder and solid powders were observed from high resolution X-ray images captured. Results show that pharmaceutical powder properties, including particle size, hydrophilicity, and morphology, have significant influence on the dynamic granulation process and the final granular product.
Collapse
Affiliation(s)
- Chen Li
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Canada; Canadian Light Source Inc., Saskatoon, Canada
| | - Heather N Emady
- School for Engineering of Matter, Transport and Energy, Arizona State University, AZ, USA
| | - Lifeng Zhang
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
11
|
Continuous high-shear granulation: Mechanistic understanding of the influence of process parameters on critical quality attributes via elucidating the internal physical and chemical microstructure. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Matsui Y, Ando Y, Yamamoto K, Watano S. Analysis of Microstructure of Granules Prepared by Continuous Twin Screw Granulator Using X-Ray Micro-computed Tomography. Chem Pharm Bull (Tokyo) 2019; 67:801-809. [DOI: 10.1248/cpb.c19-00076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuhiro Matsui
- Formulation Research & Development Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Yuta Ando
- Formulation Research & Development Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Koji Yamamoto
- Analytical Research & Development Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Satoru Watano
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University
| |
Collapse
|
13
|
Vasvári G, Kalmár J, Veres P, Vecsernyés M, Bácskay I, Fehér P, Ujhelyi Z, Haimhoffer Á, Rusznyák Á, Fenyvesi F, Váradi J. Matrix systems for oral drug delivery: Formulations and drug release. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:71-80. [PMID: 30103866 DOI: 10.1016/j.ddtec.2018.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
In this current article matrix formulations for oral drug delivery are reviewed. Conventional dosage forms and novel applications such as 3D printed matrices and aerogel matrices are discussed. Beside characterization, excipients and matrix forming agents are also enlisted and classified. The incorporated drug could exist in crystalline or in amorphous forms, which makes drug dissolution easily tunable. Main drug release mechanisms are detailed and reviewed to support rational design in pharmaceutical technology and manufacturing considering the fact that R&D members of the industry are forced to obtain knowledge about excipients and methods pros and cons. As innovative and promising research fields of drug delivery, 3D printed products and highly porous, low density aerogels with high specific surface area are spreading, currently limitlessly. These compositions can also be considered as matrix formulations.
Collapse
Affiliation(s)
- Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - József Kalmár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary; MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Péter Veres
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Ágnes Rusznyák
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary.
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| |
Collapse
|
14
|
Shi GH, Dong X, Lytle M, Kemp CAJ, Behme RJ, Hinds J, Xiao Z. Two Contrasting Failure Modes of Enteric Coated Beads. AAPS PharmSciTech 2018; 19:1827-1836. [PMID: 29633154 DOI: 10.1208/s12249-018-1000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 11/30/2022] Open
Abstract
This study aimed to elucidate the mechanisms and kinetics of coating failure for enteric coated beads exposed to high-humidity conditions at different storage temperatures. Enteric coated beads were placed on high-humidity conditions (75 to 98% relative humidity (RH)) in the temperature range of 5 to 40°C. These stability samples of beads were tested for acid dissolution and water activity and also analyzed with SEM, X-ray CT, and DMA. Exposure of enteric coated beads to high humidity led to increased gastric release of drug which eventually failed the dissolution specification. SEM showed visible cracks on the surface of beads exposed to 5°C/high humidity and fusion of enteric beads into agglomerates at 40°C/high humidity. In a non-destructive time elapse study, X-ray CT demonstrated swelling of microcrystalline cellulose cores, crack initiation, and propagation through the API layer within days under 5°C/98% RH storage conditions and ultimately fracture through the enteric coating. DMA data showed a marked reduction in Tg of the enteric coating materials after exposure to humidity. At 5°C/high humidity, the hygroscopic microcrystalline cellulose core absorbed moisture leading to core swelling and consequent fracture through the brittle API and enteric layers. At 40°C (high humidity) which is above the Tg of the enteric polymer, enteric coated beads coalesced into agglomerates due to melt flow of the enteric coating. We believe it is the first report on two distinct failure models of enteric coated dosage forms.
Collapse
|
15
|
Zhang L, Wu L, Wang C, Zhang G, Yu L, Li H, Maharjan A, Tang Y, He D, York P, Sun H, Yin X, Zhang J, Sun L. Synchrotron Radiation Microcomputed Tomography Guided Chromatographic Analysis for Displaying the Material Distribution in Tablets. Anal Chem 2018; 90:3238-3244. [DOI: 10.1021/acs.analchem.7b04726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liu Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Wu
- Key Laboratory
of Molecular Pharmacology and Drug Evaluation, School of Pharmacy,
Ministry of Education, Yantai University, Yantai 264005, China
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guoqing Zhang
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiyan Li
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Abi Maharjan
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Tang
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dunwei He
- Shandong Hi-Qual Pharmatech Company, Limited, Zibo 255035, China
| | - Peter York
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute
of Pharmaceutical
Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Huimin Sun
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xianzhen Yin
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiwen Zhang
- Key Laboratory
of Molecular Pharmacology and Drug Evaluation, School of Pharmacy,
Ministry of Education, Yantai University, Yantai 264005, China
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lixin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
16
|
Markl D, Strobel A, Schlossnikl R, Bøtker J, Bawuah P, Ridgway C, Rantanen J, Rades T, Gane P, Peiponen KE, Zeitler JA. Characterisation of pore structures of pharmaceutical tablets: A review. Int J Pharm 2018; 538:188-214. [PMID: 29341913 DOI: 10.1016/j.ijpharm.2018.01.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Traditionally, the development of a new solid dosage form is formulation-driven and less focus is put on the design of a specific microstructure for the drug delivery system. However, the compaction process particularly impacts the microstructure, or more precisely, the pore architecture in a pharmaceutical tablet. Besides the formulation, the pore structure is a major contributor to the overall performance of oral solid dosage forms as it directly affects the liquid uptake rate, which is the very first step of the dissolution process. In future, additive manufacturing is a potential game changer to design the inner structures and realise a tailor-made pore structure. In pharmaceutical development the pore structure is most commonly only described by the total porosity of the tablet matrix. Yet it is of great importance to consider other parameters to fully resolve the interplay between microstructure and dosage form performance. Specifically, tortuosity, connectivity, as well as pore shape, size and orientation all impact the flow paths and play an important role in describing the fluid flow in a pharmaceutical tablet. This review presents the key properties of the pore structures in solid dosage forms and it discusses how to measure these properties. In particular, the principles, advantages and limitations of helium pycnometry, mercury porosimetry, terahertz time-domain spectroscopy, nuclear magnetic resonance and X-ray computed microtomography are discussed.
Collapse
Affiliation(s)
- Daniel Markl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK.
| | - Alexa Strobel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - Rüdiger Schlossnikl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - Johan Bøtker
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Prince Bawuah
- School of Pharmacy, Promis Centre, University of Eastern Finland, P.O. Box 1617, FI-70211 Kuopio, Finland
| | - Cathy Ridgway
- Omya International AG, CH-4665 Oftringen, Switzerland
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Patrick Gane
- Omya International AG, CH-4665 Oftringen, Switzerland; School of Chemical Technology, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Helsinki, Finland
| | - Kai-Erik Peiponen
- Institute of Photonics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| |
Collapse
|
17
|
|
18
|
Smrčka D, Dohnal J, Štěpánek F. Dissolution and disintegration kinetics of high-active pharmaceutical granules produced at laboratory and manufacturing scale. Eur J Pharm Biopharm 2016; 106:107-16. [DOI: 10.1016/j.ejpb.2016.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
|
19
|
Monteyne T, Heeze L, Oldörp K, Vervaet C, Remon JP, De Beer T. Vibrational spectroscopy to support the link between rheology and continuous twin-screw melt granulation on molecular level: A case study. Eur J Pharm Biopharm 2016; 103:127-135. [PMID: 27040975 DOI: 10.1016/j.ejpb.2016.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 11/27/2022]
Abstract
Twin screw hot melt granulation (TSHMG) is an innovative and continuous drug formulation process allowing granulation of moisture sensitive drugs. However, due to the lack of experience and in-depth process understanding, this technique is not yet widely used. During the TSHMG process, the microstructure of the granules is generated and modified and strongly depends on the flow behavior of the material. Hence, rheology might be a suitable tool to simulate and examine this process. However, chemical interactions of the material are influencing the physical properties leading to the microstructure. In this research project it is spectroscopically investigated whether the heat applied in a rheometer induces the same molecular effects as these occurring during TSHMG of the model formulation caffeine anhydrous/Soluplus®. Hence, it is evaluated whether rheology can be used as a simulation tool to improve the understanding of the material behavior at molecular level during continuous melt granulation. Therefore, in-line Raman spectroscopy is executed during TSHMG and in situ Fourier Transform Infra-red (FTIR) during oscillatory rheological experiments. The results from the in-line Raman monitoring revealed polymorph transition of caffeine anhydrous during twin screw melt granulation with Soluplus® which is stimulated depending on the binder concentration and/or granulation temperature. A correlation was seen between the FTIR spectra obtained during the rheological temperature ramp and the in-line collected Raman spectra during the melt granulation runs. The polymorphic conversion of caffeine anhydrous could be detected in the same temperature range with both techniques, proving the comparability of plate-plate rheometry and hot melt granulation (HMG) for this case with the used parameter settings. Process simulation using rheology combined with in situ FTIR seems a promising approach to increase process understanding and to facilitate binder and parameter selection for TSHMG.
Collapse
Affiliation(s)
- Tinne Monteyne
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Liza Heeze
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Klaus Oldörp
- Center for Material Characterization of Products, Thermo Fisher, Dieselstrasse 4, 76227 Karlsruhe, Germany.
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jean-Paul Remon
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
Martinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm 2016; 499:175-185. [PMID: 26768722 DOI: 10.1016/j.ijpharm.2016.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/28/2022]
Abstract
The main aim of the research focused on the production of hot-melt extrusion (HME) formulations with increased dissolution properties of albendazole (ABZ). Therefore, HME was applied as a continuous manufacturing technique to produce amorphous solid dispersions of the poorly water soluble drug ABZ combined with the polymer matrix polyvinylpyrrolidone PVP K12. HME formulations of ABZ-PVP K12 comprised a drug content of 1%, 5% and 10% w/w. The main analytical characterisation techniques used were scanning electron microscopy (SEM), micro-computed tomography (μ-CT), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and dissolution profile studies. The application of SEM, XRPD and DSC evidenced drug physical transformation from crystalline to amorphous state and therefore, the achievement of an amorphous solid dispersion. The introduction of a novel technique, μ-CT, to characterise the internal structure of these materials revealed key information regarding materials distribution and void content. Dissolution profile studies evidenced a high increase in drug release profile compared to pure ABZ. These promising results can lead to a great enhancement of the oral bioavailability of ABZ dosage forms. Therefore, HME is a potential continuous manufacturing technique to overcome ABZ poor solubility properties and lead to a significant increase in the therapeutic effect.
Collapse
Affiliation(s)
- Laura Martinez-Marcos
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Cathedral Street, G4 0RE Glasgow, United Kingdom.
| | - Dimitrios A Lamprou
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Cathedral Street, G4 0RE Glasgow, United Kingdom.
| | - Roy T McBurney
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Cathedral Street, G4 0RE Glasgow, United Kingdom
| | - Gavin W Halbert
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Cathedral Street, G4 0RE Glasgow, United Kingdom
| |
Collapse
|
21
|
Yin XZ, Wu L, Li Y, Guo T, Li HY, Xiao TQ, York P, Nangia A, Gui SY, Zhang JW. Visualization and quantification of deformation behavior of clopidogrel bisulfate polymorphs during tableting. Sci Rep 2016; 6:21770. [PMID: 26911359 PMCID: PMC4766417 DOI: 10.1038/srep21770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
The deformation behavior of particles under pressure dominates the mechanical properties of solid dosage forms. In this study, the in situ 3D deformation of two polymorphs (I and II) of clopidogrel bisulfate (CLP) was determined to illustrate pressure distribution profiles within the tablet by the deformation of the crystalline particles for the first time. Synchrotron radiation X-ray computed microtomography (SR-μCT) was utilized to visualize and quantify the morphology of thousands crystalline particles of CLP I and CLP II before and after compression. As a result, the deformation was examined across scale dimensions from microns to the size of the final dosage form. Three dimensional parameters such as volume, sphericity, oblate and prolate of individual particle and distributions were computed and analyzed for quantitative comparison to CLP I and CLP II. The different degrees of deformation under the same compression conditions of CLP I and CLP II were observed and characterized quantitatively. The map of deformation degrees within the tablet illustrated the heterogeneous pressure distribution in various regions of the compacted tablet. In conclusion, the polymorph deformation behaviors demonstrated by SR-μCT quantitative structure analysis deepen understanding of tableting across dimensions from microns to millimeters for the macrostrcuture of tablet.
Collapse
Affiliation(s)
- Xian-Zhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.,Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Li Wu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.,School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ying Li
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.,Anhui University of Chinese Medicine, Hefei 230038, China
| | - Tao Guo
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hai-Yan Li
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ti-Qiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Peter York
- Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Ashwini Nangia
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | - Ji-Wen Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.,School of Life Sciences, Jilin University, Changchun 130012, China.,Anhui University of Chinese Medicine, Hefei 230038, China
| |
Collapse
|
22
|
Agrawal AK, Sarkar PS, Singh B, Kashyap YS, Rao PT, Sinha A. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit. Appl Radiat Isot 2016; 108:133-142. [PMID: 26722834 DOI: 10.1016/j.apradiso.2015.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 11/28/2022]
Abstract
SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness.
Collapse
Affiliation(s)
- A K Agrawal
- Neutron and X-ray Physics Division, Bhabha Atomic Research Centre, Mumbai, India.
| | - P S Sarkar
- Neutron and X-ray Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - B Singh
- Neutron and X-ray Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Y S Kashyap
- Neutron and X-ray Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - P T Rao
- Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai, India
| | - A Sinha
- Neutron and X-ray Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
23
|
|
24
|
Fonteyne M, Fussell AL, Vercruysse J, Vervaet C, Remon JP, Strachan C, Rades T, De Beer T. Distribution of binder in granules produced by means of twin screw granulation. Int J Pharm 2014; 462:8-10. [DOI: 10.1016/j.ijpharm.2013.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
|
25
|
Kašpar O, Tokárová V, Oka S, Sowrirajan K, Ramachandran R, Štěpánek F. Combined UV/vis and micro-tomography investigation of acetaminophen dissolution from granules. Int J Pharm 2013. [DOI: 10.1016/j.ijpharm.2013.10.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Kucera SA, Felton LA, McGinity JW. Physical aging in pharmaceutical polymers and the effect on solid oral dosage form stability. Int J Pharm 2013; 457:428-36. [DOI: 10.1016/j.ijpharm.2013.01.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/25/2022]
|
27
|
Noguchi S, Kajihara R, Iwao Y, Fujinami Y, Suzuki Y, Terada Y, Uesugi K, Miura K, Itai S. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation. Int J Pharm 2013; 445:93-8. [DOI: 10.1016/j.ijpharm.2013.01.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/26/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
|
28
|
Characterization of internal structure, polymer erosion and drug release mechanisms of biodegradable poly(ester anhydride)s by X-ray microtomography. Eur J Pharm Sci 2012; 47:170-8. [DOI: 10.1016/j.ejps.2012.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/18/2012] [Accepted: 05/23/2012] [Indexed: 11/20/2022]
|
29
|
Comprehensive study of dynamic curing effect on tablet coating structure. Eur J Pharm Biopharm 2012; 81:657-65. [PMID: 22561957 DOI: 10.1016/j.ejpb.2012.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 11/23/2022]
Abstract
The dissolution method is still widely used to determine curing end-points to ensure long-term stability of film coatings. Nevertheless, the process of curing has not yet been fully investigated. For the first time, joint techniques were used to elucidate the mechanisms of dynamic curing over time from ethylcellulose (Aquacoat)-based coated tablets. X-ray micro-computed tomography (XμCT), Near Infrared (NIR), and Raman spectroscopies as well as X-ray microdiffraction were employed as non-destructive techniques to perform direct measurements on tablets. All techniques indicated that after a dynamic curing period of 4h, reproducible drug release can be achieved and no changes in the microstructure of the coating were any longer detected. XμCT analysis highlighted the reduced internal porosity, while both NIR and Raman measurements showed that spectral information remained unaltered after further curing. X-ray microdiffraction revealed densification of the coating layer with a decrease in the overall coating thickness of about 10 μm as a result of curing. In addition, coating heterogeneity attributed to cetyl alcohol was observed from microscopic images and Raman analysis. This observation was confirmed by X-ray microdiffraction that showed that crystalline cetyl alcohol melted and spread over the coating surface with curing. Prior to curing, X-ray microdiffraction also revealed the existence of two coating zones differing in crystalline cetyl alcohol and sodium lauryl sulfate concentrations which could be explained by migration of these constituents within the coating layer. Therefore, the use of non-destructive techniques allowed new insights into tablet coating structures and provided precise determination of the curing end-point compared to traditional dissolution testing. This thorough study may open up new possibilities for process and formulation control.
Collapse
|