1
|
Xu R, Duan C, Meng Z, Zhao J, He Q, Zhang Q, Gong C, Huang J, Xie Q, Yang Q, Bai Y. Lipid Microcapsules Promoted Neural Stem Cell Survival in the Infarcted Area of Mice with Ischemic Stroke by Inducing Autophagy. ACS Biomater Sci Eng 2022; 8:4462-4473. [PMID: 36069708 DOI: 10.1021/acsbiomaterials.2c00228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracerebral transplantation of neural stem cells (NSCs) for ischemic stroke treatment has been demonstrated to be inefficient, with only <5% of delivered cells being retained. Microcapsules may be a good carrier for NSC delivery; however, the current microcapsules do not fully meet the demands for cell survival after transplantation. In the present study, we designed a strategy for the encapsulation of NSCs in a novel lipid-alginate (L-A) microcapsule based on a two-step method. The protective effect of a L-A microcapsule on oxygen-glucose deprivation (OGD) was investigated by using the CCK8 test, the LDH release test, and flow cytometry. Mechanisms underlying the prosurvival effect were investigated by detecting autophagy markers like P62, LC3-I, and LC3-II, and autophagy flux analysis was also performed. Lastly, the ability of the L-A microcapsule to support NSCs delivery for ischemic stroke was investigated in the middle cerebral artery occlusion (MCAO) model. We found that L-A microcapsules exerted a good protective effect against OGD compared with control and alginate microcapsules. The L-A microcapsules were found to promote cell survival by not only providing a "physical" barrier but also altering autophagy markers like P62 and LC3-II, which enhanced autophagy flux. This novel microcapsule was confirmed to be suitable for NSC delivery in vivo, which alleviated transplanted NSC apoptosis, reduced the infarct volume, decreased brain edema, improved neurological deficit scores, and lastly, improved survival rate. The findings of this study may provide a new method for stem cell delivery, raising the prospect that intracerebral cell transplantation may be used to treat, for instance, ischemic stroke, traumatic brain injury, and so on.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Chunmei Duan
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Zhaoyou Meng
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Jian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xichangan Street, Changan District, Xi'an 710119, China
| | - Qian He
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qin Zhang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Changxiong Gong
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Jiacheng Huang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qi Xie
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qingwu Yang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Yang Bai
- Department of Otolaryngology, The First Affiliated Hospital, Army Medical University, Gaotanyan Zheng Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
2
|
Influence of Starch on the Structure–Properties Relationship in Polyethylene Glycol/Polycaprolactone Diol Polyurethanes. Polymers (Basel) 2022; 14:polym14153184. [PMID: 35956699 PMCID: PMC9371100 DOI: 10.3390/polym14153184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Improvements in the antithrombogenicity activity of biomaterials for cardiovascular applications are necessary to meet the demand for vascular grafts in the world. Zwitterionic compounds tend to be used due to their anti-fouling properties, which reduce platelet adhesions and protein absorptions. Therefore, in this research, potato starch (AL-N) and zwitterionic starch (AL-Z) (obtained by Williamson etherification) were included as fillers in polyurethane (PU) matrices from polycaprolactone diol (PCL), polyethylene glycol (PEG), pentaerythritol (PE) and isophorone diisocyanate (IPDI) in order to study their effect in terms of their physicochemical, mechanical and thermal properties. We conducted our evaluation using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle analysis, swelling behavior, thermogravimetric analysis (TGA), tensile/strain analysis, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), dynamic mechanic analysis (DMA), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The results showed that AL-N and AL-Z modified these properties, where AL-N improved tensile strength, and AL-Z increased the hydrophilicity of polyurethanes matrices; additionally, AL-N had interactions with the soft segments, and AL-Z had interactions with the hard segments. Finally, both fillers reduced the degree of crystallinity and did not affect the thermal stability of polyurethanes.
Collapse
|
3
|
Garbayo E, Ruiz-Villalba A, Hernandez SC, Saludas L, Abizanda G, Pelacho B, Roncal C, Sanchez B, Palacios I, Prósper F, Blanco-Prieto MJ. Delivery of cardiovascular progenitors with biomimetic microcarriers reduces adverse ventricular remodeling in a rat model of chronic myocardial infarction. Acta Biomater 2021; 126:394-407. [PMID: 33716175 DOI: 10.1016/j.actbio.2021.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/05/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022]
Abstract
Despite tremendous progress in cell-based therapies for heart repair, many challenges still exist. To enhance the therapeutic potential of cell therapy one approach is the combination of cells with biomaterial delivery vehicles. Here, we developed a biomimetic and biodegradable micro-platform based on polymeric microparticles (MPs) capable of maximizing the therapeutic potential of cardiac progenitor cells (CPCs) and explored its efficacy in a rat model of chronic myocardial infarction. The transplantation of CPCs adhered to MPs within the infarcted myocardial microenvironment improved the long-term engraftment of transplanted cells for up to one month. Furthermore, the enhancement of cardiac cellular retention correlated with an increase in functional recovery. In consonance, better tissue remodeling and vasculogenesis were observed in the animals treated with cells attached to MPs, which presented smaller infarct size, thicker right ventricular free wall, fewer deposition of periostin and greater density of vessels than animals treated with CPCs alone. Finally, we were able to show that part of this beneficial effect was mediated by CPC-derived extracellular vesicles (EVs). Taken together, these findings indicate that the biomimetic microcarriers support stem cell survival and increase cardiac function in chronic myocardial infarction through modulation of cardiac remodeling, vasculogenesis and CPCs-EVs mediated therapeutic effects. The biomimetic microcarriers provide a solution for biomaterial-assisted CPC delivery to the heart. STATEMENT OF SIGNIFICANCE: In this study, we evaluate the possibility of using a biomimetic and biodegradable micro-platform to improve cardiovascular progenitor therapy. The strategy reported herein serves as an injectable scaffold for adherent cells due to their excellent injectability through cardiac catheters, capacity for biomimetic three-dimensional stem cell support and controllable biodegradability. In a rat model of chronic myocardial infarction, the biomimetic microcarriers improved cardiac function, reduced chronic cardiac remodeling and increased vasculogenesis through the paracrine signaling of CPCs. We have also shown that extracellular vesicles derived from CPCs cultured on biomimetic substrates display antifibrotic effects, playing an important role in the therapeutic effects of our tissue-engineered approach. Therefore, biomimetic microcarriers represent a promising and effective strategy for biomaterial-assisted CPC delivery to the heart.
Collapse
Affiliation(s)
- E Garbayo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A Ruiz-Villalba
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Program of Regenerative Medicine, CIMA, University of Navarra, Pamplona, Spain; Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA) Faculty of Science, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - S C Hernandez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Program of Regenerative Medicine, CIMA, University of Navarra, Pamplona, Spain
| | - L Saludas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - G Abizanda
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Program of Regenerative Medicine, CIMA, University of Navarra, Pamplona, Spain
| | - B Pelacho
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Program of Regenerative Medicine, CIMA, University of Navarra, Pamplona, Spain
| | - C Roncal
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | | | | | - F Prósper
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Program of Regenerative Medicine, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red (CIBERONC), Madrid, Spain.
| | - M J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
4
|
Toh HW, Toong DWY, Ng JCK, Ow V, Lu S, Tan LP, Wong PEH, Venkatraman S, Huang Y, Ang HY. Polymer blends and polymer composites for cardiovascular implants. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110249] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Liang T, Wen D, Zhong X, Jiang L, Zhu JJ, Gu Z. Therapeutic potential of adipose tissue. Sci Bull (Beijing) 2020; 65:1702-1704. [PMID: 36659240 DOI: 10.1016/j.scib.2020.06.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tingxizi Liang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China; Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Di Wen
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Xintong Zhong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Liping Jiang
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Cacciapuoti M, Johnson B, Kapdia A, Powell S, Gallicano GI. The Role of Neuregulin and Stem Cells as Therapy Post-Myocardial Infarction. Stem Cells Dev 2020; 29:1266-1274. [PMID: 32731805 DOI: 10.1089/scd.2020.0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease, including myocardial infarction (MI), is a leading cause of morbidity and mortality in the United States. Due to the limited self-renewal capacity of cardiac tissue, MIs can lead to progressive heart disease with a lasting impact on health and quality of life. The recent discovery of cardiac stem cells has incited research into their potential therapeutic applications for patients suffering from cardiovascular disease. Studies have demonstrated the ability of stem cells to both generate cardiac tissues in vitro and aid in the recovery of cardiovascular function in vivo in animal models. However, the long-term efficacy of stem cells as regenerative therapy is still unknown. Exploration of alternative therapies is underway, including the use of cardiac growth factor neuregulin-1 (NRG-1). Research has demonstrated that NRG-1 not only has direct effects on cardiomyocytes (CM) but also acts within the tissues supporting the CM. Transplantation of NRG-1 into ischemic cardiac tissue mitigates the progression of heart failure and can reverse cardiac remodeling. Recent publications have sought to study the combined use of these agents, and while the results are promising, they do warrant further research. This review aims to consider these therapies separately as well as in combination.
Collapse
Affiliation(s)
- Maria Cacciapuoti
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Bria Johnson
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Anjani Kapdia
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Sarah Powell
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - G Ian Gallicano
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Epigenetic Regulation of Neuregulin-1 Tunes White Adipose Stem Cell Differentiation. Cells 2020; 9:cells9051148. [PMID: 32392729 PMCID: PMC7290571 DOI: 10.3390/cells9051148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Expansion of subcutaneous adipose tissue by differentiation of new adipocytes has been linked to improvements in metabolic health. However, an expandability limit has been observed wherein new adipocytes cannot be produced, the existing adipocytes become enlarged (hypertrophic) and lipids spill over into ectopic sites. Inappropriate ectopic storage of these surplus lipids in liver, muscle, and visceral depots has been linked with metabolic dysfunction. Here we show that Neuregulin-1 (NRG1) serves as a regulator of adipogenic differentiation in subcutaneous primary human stem cells. We further demonstrate that DNA methylation modulates NRG1 expression in these cells, and a 3-day exposure of stem cells to a recombinant NRG1 peptide fragment is sufficient to reprogram adipogenic cellular differentiation to higher levels. These results define a novel molecular adipogenic rheostat with potential implications for the expansion of adipose tissue in vivo.
Collapse
|
8
|
Garbayo E, Pascual‐Gil S, Rodríguez‐Nogales C, Saludas L, Estella‐Hermoso de Mendoza A, Blanco‐Prieto MJ. Nanomedicine and drug delivery systems in cancer and regenerative medicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1637. [DOI: 10.1002/wnan.1637] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition University of Navarra Pamplona Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona Spain
| | - Simon Pascual‐Gil
- Toronto General Hospital Research Institute, University Health Network Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Ontario Canada
| | - Carlos Rodríguez‐Nogales
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition University of Navarra Pamplona Spain
| | - Laura Saludas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition University of Navarra Pamplona Spain
| | | | - Maria J. Blanco‐Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition University of Navarra Pamplona Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona Spain
| |
Collapse
|
9
|
Tudek A, Czerwińska J, Kosicki K, Zdżalik-Bielecka D, Shahmoradi Ghahe S, Bażlekowa-Karaban M, Borsuk EM, Speina E. DNA damage, repair and the improvement of cancer therapy - A tribute to the life and research of Barbara Tudek. Mutat Res 2020; 852:503160. [PMID: 32265045 DOI: 10.1016/j.mrgentox.2020.503160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
Professor Barbara Tudek received the Frits Sobels Award in 2019 from the European Environmental Mutagenesis and Genomics Society (EEMGS). This article presents her outstanding character and most important lines of research. The focus of her studies covered alkylative and oxidative damage to DNA bases, in particular mutagenic and carcinogenic properties of purines with an open imidazole ring and 8-oxo-7,8-dihydroguanine (8-oxoGua). They also included analysis of mutagenic properties and pathways for the repair of DNA adducts of lipid peroxidation (LPO) products arising in large quantities during inflammation. Professor Tudek did all of this in the hope of deciphering the mechanisms of DNA damage removal, in particular by the base excision repair (BER) pathway. Some lines of research aimed at discovering factors that can modulate the activity of DNA damage repair in hope to enhance existing anti-cancer therapies. The group's ongoing research aims at deciphering the resistance mechanisms of cancer cell lines acquired following prolonged exposure to photodynamic therapy (PDT) and the possibility of re-sensitizing cells to PDT in order to increase the application of this minimally invasive therapeutic method.
Collapse
Affiliation(s)
- Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jolanta Czerwińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Konrad Kosicki
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Somayeh Shahmoradi Ghahe
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Milena Bażlekowa-Karaban
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland; UMR 8200 C.N.R.S., Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Ewelina M Borsuk
- Laboratory of Structural Biology, International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
10
|
Effective Cryopreservation and Recovery of Living Cells Encapsulated in Multiple Emulsions. Biopreserv Biobank 2019; 17:468-476. [DOI: 10.1089/bio.2018.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Saludas L, Garbayo E, Mazo M, Pelacho B, Abizanda G, Iglesias-Garcia O, Raya A, Prósper F, Blanco-Prieto MJ. Long-Term Engraftment of Human Cardiomyocytes Combined with Biodegradable Microparticles Induces Heart Repair. J Pharmacol Exp Ther 2019; 370:761-771. [PMID: 30728248 DOI: 10.1124/jpet.118.256065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/29/2019] [Indexed: 03/08/2025] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are a promising cell source for cardiac repair after myocardial infarction (MI) because they offer several advantages such as potential to remuscularize infarcted tissue, integration in the host myocardium, and paracrine therapeutic effects. However, cell delivery issues have limited their potential application in clinical practice, showing poor survival and engraftment after transplantation. In this work, we hypothesized that the combination of hiPSC-CMs with microparticles (MPs) could enhance long-term cell survival and retention in the heart and consequently improve cardiac repair. CMs were obtained by differentiation of hiPSCs by small-molecule manipulation of the Wnt pathway and adhered to biomimetic poly(lactic-co-glycolic acid) MPs covered with collagen and poly(d-lysine). The potential of the system to support cell survival was analyzed in vitro, demonstrating a 1.70-fold and 1.99-fold increase in cell survival after 1 and 4 days, respectively. The efficacy of the system was tested in a mouse MI model. Interestingly, 2 months after administration, transplanted hiPSC-CMs could be detected in the peri-infarct area. These cells not only maintained the cardiac phenotype but also showed in vivo maturation and signs of electrical coupling. Importantly, cardiac function was significantly improved, which could be attributed to a paracrine effect of cells. These findings suggest that MPs represent an excellent platform for cell delivery in the field of cardiac repair, which could also be translated into an enhancement of the potential of cell-based therapies in other medical applications.
Collapse
Affiliation(s)
- Laura Saludas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| | - Manuel Mazo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| | - Beatriz Pelacho
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| | - Gloria Abizanda
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| | - Olalla Iglesias-Garcia
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| | - Angel Raya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| | - Felipe Prósper
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (L.S., E.G., M.J.B.-P.); Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain (L.S., E.G., M.M., B.P., G.A., F.P., M.J.B.-P.); Hematology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, Pamplona, Spain (M.M., B.P., G.A., F.P.); Center of Regenerative Medicine in Barcelona (CRMB), Hospitalet de Llobregat, Barcelona, Spain, Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain (O.I.-G., A.R.) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| |
Collapse
|
12
|
Luo ML, Liu XP, Wang F, Liu XX, Liu WF, Wu D, Tao H, Wang RL, Zhao Y, Zhu JW, Zou L. Conditioned Medium from Human Umbilical Vein Endothelial Cells Promotes Proliferation, Migration, Invasion and Angiogenesis of Adipose Derived Stem Cells. Curr Med Sci 2018; 38:124-130. [PMID: 30074161 DOI: 10.1007/s11596-018-1855-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/11/2017] [Indexed: 12/24/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive complication, closely related to endothelial dysfunction. Adipose derived stem cells (ADSCs) have the capacity to differentiate into endothelial cells for vascular repair. Therefore, we hypothesized that induced endothelial differentiation of ADSCs might hold great potential for the treatment of PE. In this study, the primary ADSCs and human umbilical vein endothelial cells (HUVECs) were isolated by the collagenase digestion method. The supernatant of HUVECs was collected from the first generation of cells. Then, ADSCs were divided into two groups: ADSCs alone group and induced ADSCs (iADSCs) group. In iADSCs group, ADSCs were induced by HUVECs conditioned medium and ADSCs special culture medium at a ratio of 1:1 over a two-week period. In order to identify the endothelial characteristics of iADSCs, CD31 and CD34 were examined by flow cytometry. The proliferation, migration, invasion and angiogenesis assays were employed to compare the bioactivity of iADSCs and ADSCs. Furthermore, The levels of angiogenic related factors including vascular endothelial growth factor (VEGF) and placenta growth factor (P1GF) were detected by RT-PCR and Western blotting. Results showed conditioned medium from HUVECs promoted ADSCs proliferation, migration, invasion and angiogenesis. In addition, the levels of VEGF and P1GF were significantly enhanced in iADSCs group. This study uncovered the iADSCs application potential in the therapy and intervention of PE.
Collapse
Affiliation(s)
- Ming-Lian Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Obstetrics and Gynecology, Wuhan First Hospital, Wuhan, 430022, China
| | - Xiao-Ping Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Xia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei-Fang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong-Li Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian-Wen Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Shamirzaei Jeshvaghani E, Ghasemi-Mobarakeh L, Mansurnezhad R, Ajalloueian F, Kharaziha M, Dinari M, Sami Jokandan M, Chronakis IS. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering. J Biomed Mater Res B Appl Biomater 2017; 106:2371-2383. [DOI: 10.1002/jbm.b.34043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/15/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering; Isfahan University of Technology; Isfahan, 8415683111 Iran
| | - Reza Mansurnezhad
- Department of Textile Engineering; Isfahan University of Technology; Isfahan, 8415683111 Iran
| | - Fatemeh Ajalloueian
- Research Group for Nano-Bio Science; National Food Institute, Technical University of Denmark; Kgs. Lyngby Denmark
| | - Mahshid Kharaziha
- Department of Materials Engineering; Isfahan University of Technology; Isfahan, 8415683111 Iran
| | - Mohammad Dinari
- Department of Chemistry; Isfahan University of Technology; Isfahan, 8415683111 Iran
| | - Maryam Sami Jokandan
- Research Group for Nano-Bio Science; National Food Institute, Technical University of Denmark; Kgs. Lyngby Denmark
| | - Ioannis S. Chronakis
- Research Group for Nano-Bio Science; National Food Institute, Technical University of Denmark; Kgs. Lyngby Denmark
| |
Collapse
|
14
|
Dluska E, Markowska-Radomska A, Metera A, Tudek B, Kosicki K. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery. Nanomedicine (Lond) 2017; 12:2183-2197. [DOI: 10.2217/nnm-2017-0112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Developing pH-responsive multiple emulsion platforms for effective glioblastoma multiforme therapy with reduced toxicity, a drug release study and modeling. Materials & methods: Cancer cell line: U87 MG, multiple emulsions with pH-responsive biopolymer and encapsulated doxorubicin (DOX); preparation of multiple emulsions in a Couette–Taylor flow biocontactor, in vitro release study of DOX (fluorescence intensity analysis), in vitro cytotoxicity study (alamarBlue cell viability assay) and numerical simulation of DOX release rates. Results: The multiple emulsions offered a high DOX encapsulation efficiency (97.4 ± 1%) and pH modulated release rates of a drug. Multiple emulsions with a low concentration of DOX (0.02 μM) exhibited broadly advanced cell (U87 MG) cytotoxicity than free DOX solution used at the same concentration. Conclusion: Emulsion platforms could be explored for potential delivery of chemotherapeutics in glioblastoma multiforme therapy.
Collapse
Affiliation(s)
- Ewa Dluska
- Faculty of Chemical & Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| | - Agnieszka Markowska-Radomska
- Faculty of Chemical & Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| | - Agata Metera
- Faculty of Chemical & Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| | - Barbara Tudek
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Institute of Genetics & Biotechnology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Konrad Kosicki
- Faculty of Biology, University of Warsaw, Institute of Genetics & Biotechnology, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
15
|
Xu HL, Yu WZ, Lu CT, Li XK, Zhao YZ. Delivery of growth factor-based therapeutics in vascular diseases: Challenges and strategies. Biotechnol J 2017; 12. [PMID: 28296342 DOI: 10.1002/biot.201600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Either cardiovascular or peripheral vascular diseases have become the major cause of morbidity and mortality worldwide. Recently, growth factors therapeutics, whatever administrated in form of exogenous growth factors or their relevant genes have been discovered to be an effective strategy for the prevention and therapy of vascular diseases, because of their promoting angiogenesis. Besides, as an alternative, stem cell-based therapy has been also developed in view of their paracrine-mediated effect or ability of differentiation toward angiogenesis-related cells under assistance of growth factors. Despite of being specific and potent, no matter growth factors or stem cells-based therapy, their full clinical transformation is limited from bench to bedside. In this review, the potential choices of therapeutic modes based on types of different growth factors or stem cells were firstly summarized for vascular diseases. The confronted various challenges such as lack of non-invasive delivery method, the physiochemical challenge, the short half-life time, and poor cell survival, were carefully analyzed for these therapeutic modes. Various strategies to overcome these limitations are put forward from the perspective of drug delivery. The expertised design of a suitable delivery form will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China.,Collaborative Innovation Center of Biomedical Science by Wenzhou University & Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
16
|
Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model. J Control Release 2017; 249:23-31. [DOI: 10.1016/j.jconrel.2017.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
|
17
|
RETRACTED: Recent advances in cardiac regeneration: Stem cell, biomaterial and growth factors. Biomed Pharmacother 2017; 87:37-45. [DOI: 10.1016/j.biopha.2016.12.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
|
18
|
Tracking the in vivo release of bioactive NRG from PLGA and PEG–PLGA microparticles in infarcted hearts. J Control Release 2015; 220:388-396. [DOI: 10.1016/j.jconrel.2015.10.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/21/2022]
|
19
|
Blocki A, Beyer S, Dewavrin JY, Goralczyk A, Wang Y, Peh P, Ng M, Moonshi SS, Vuddagiri S, Raghunath M, Martinez EC, Bhakoo KK. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium. Biomaterials 2015; 53:12-24. [DOI: 10.1016/j.biomaterials.2015.02.075] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 12/16/2022]
|
20
|
Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis 2015; 6:e1765. [PMID: 25996292 PMCID: PMC4669719 DOI: 10.1038/cddis.2015.91] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation has achieved only modest success in the treatment of ischemic heart disease owing to poor cell viability in the diseased microenvironment. Activation of the NRG1 (neuregulin1)-ERBB4 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4) signaling pathway has been shown to stimulate mature cardiomyocyte cell cycle re-entry and cell division. In this connection, we aimed to determine whether overexpression of ERBB4 in MSCs can enhance their cardio-protective effects following myocardial infarction. NRG1, MSCs or MSC-ERBB4 (MSC with ERBB4 overexpression), were transplanted into mice following myocardial infarction. Superior to that of MSCs and solely NRG1, MSC-ERBB4 transplantation significantly preserved heart functions accompanied with reduced infarct size, enhanced cardiomyocyte division and less apoptosis during early phase of infarction. The transduction of ERBB4 into MSCs indeed increased cell mobility and apoptotic resistance under hypoxic and glucose-deprived conditions via a PI3K/Akt signaling pathway in the presence of NRG1. Unexpectedly, introduction of ERBB4 into MSC in turn potentiates NRG1 synthesis and secretion, thus forming a novel NRG1-ERBB4-NRG1 autocrine loop. Conditioned medium of MSC-ERBB4 containing elevated NRG1, promoted cardiomyocyte growth and division, whereas neutralization of NRG1 blunted this proliferation. These findings collectively suggest that ERBB4 overexpression potentiates MSC survival in the infarcted heart, enhances NRG1 generation to restore declining NRG1 in the infarcted region and stimulates cardiomyocyte division. ERBB4 has an important role in MSC-mediated myocardial repairs.
Collapse
|
21
|
Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto M. Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 2015; 203:23-38. [DOI: 10.1016/j.jconrel.2015.02.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/24/2022]
|
22
|
Savi M, Bocchi L, Fiumana E, Karam JP, Frati C, Bonafé F, Cavalli S, Morselli PG, Guarnieri C, Caldarera CM, Muscari C, Montero-Menei CN, Stilli D, Quaini F, Musso E. Enhanced engraftment and repairing ability of human adipose-derived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats. J Biomed Mater Res A 2015; 103:3012-25. [DOI: 10.1002/jbm.a.35442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Monia Savi
- Department of Life Sciences; University of Parma; Parco Area delle Scienze 11/A 43124 Parma Italy
| | - Leonardo Bocchi
- Department of Life Sciences; University of Parma; Parco Area delle Scienze 11/A 43124 Parma Italy
| | - Emanuela Fiumana
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Jean-Pierre Karam
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
- UMR S-1066 F-49933; LUNAM University; Angers France
- INSERM U1066; MINT “Micro Et Nanomédecines Biomimétiques” F-49933; Angers France
| | - Caterina Frati
- Department of Clinical and Experimental Medicine; University of Parma; Via A. Gramsci 14 43126 Parma Italy
| | - Francesca Bonafé
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Stefano Cavalli
- Department of Clinical and Experimental Medicine; University of Parma; Via A. Gramsci 14 43126 Parma Italy
| | - Paolo G. Morselli
- Department of Specialist; Diagnostic and Experimental Medicine, University of Bologna; Bologna Italy
| | - Carlo Guarnieri
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Claudio M. Caldarera
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Claudio Muscari
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Claudia N. Montero-Menei
- UMR S-1066 F-49933; LUNAM University; Angers France
- INSERM U1066; MINT “Micro Et Nanomédecines Biomimétiques” F-49933; Angers France
| | - Donatella Stilli
- Department of Life Sciences; University of Parma; Parco Area delle Scienze 11/A 43124 Parma Italy
- National Institute for Cardiovascular Research; Bologna Italy
| | - Federico Quaini
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Clinical and Experimental Medicine; University of Parma; Via A. Gramsci 14 43126 Parma Italy
| | - Ezio Musso
- Department of Life Sciences; University of Parma; Parco Area delle Scienze 11/A 43124 Parma Italy
- National Institute for Cardiovascular Research; Bologna Italy
| |
Collapse
|
23
|
Drug delivery in aortic valve tissue engineering. J Control Release 2014; 196:307-23. [DOI: 10.1016/j.jconrel.2014.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023]
|