1
|
Benmameri M, Chantemargue B, Humeau A, Trouillas P, Fabre G. MemCross: Accelerated Weight Histogram method to assess membrane permeability. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184120. [PMID: 36669638 DOI: 10.1016/j.bbamem.2023.184120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Passive permeation events across biological membranes are determining steps in the pharmacokinetics of xenobiotics. To reach an accurate and rapid prediction of membrane permeation coefficients of drugs is a complex challenge, which can efficiently support drug discovery. Such predictions are indeed highly valuable as they may guide the selection of potential leads with optimum bioavailabilities prior to synthesis. Theoretical models exist to predict these coefficients. Many of them are based on molecular dynamics (MD) simulations, which allow calculation of permeation coefficients through the evaluation of both the potential of mean force (PMF) and the diffusivity profiles. However, these simulations still require intensive computational efforts, and novel methodologies should be developed and benchmarked. Free energy perturbation (FEP) method was recently shown to estimate PMF with a significantly reduced computational cost compared to the adaptive biasing force method. This benchmarking was achieved with small molecules, namely short-chain alcohols. Here, we show that to estimate the PMF of bulkier, drug-like xenobiotics, conformational sampling is a critical issue. To reach a sufficient sampling with FEP calculations requires a relatively long time-scale, which can lower the benefits related to the computational gain. In the present work, the Accelerated Weight Histogram (AWH) method was employed for the first time in all-atom membrane models. The AWH-based protocol, named MemCross, appears affordable to estimate PMF profiles of a series of drug-like xenobiotics, compared to other enhanced sampling methods. The continuous exploration of the crossing pathway by MemCross also allows modeling subdiffusion by computing fractional diffusivity profiles. The method is also versatile as its input parameters are largely insensitive to the molecule properties. It also ensures a detailed description of the molecule orientations along the permeation pathway, picturing all intermolecular interactions at an atomic resolution. Here, MemCross was applied on a series of 12 xenobiotics, including four weak acids, and a coherent structure-activity relationship was established.
Collapse
Affiliation(s)
| | | | | | - Patrick Trouillas
- INSERM, UMR 1248, F-87000 Limoges, France; CATRIN RCPTM, 779 00 Olomouc, Holice, Czech Republic
| | | |
Collapse
|
2
|
Silva AF, Monteiro M, Nunes R, Baião A, Braga SS, Sarmento B, Coimbra MA, Silva AM, Cardoso SM. Bread enriched with resveratrol: Influence of the delivery vehicles on its bioactivity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Listro R, Rossino G, Piaggi F, Sonekan FF, Rossi D, Linciano P, Collina S. Urea-based anticancer agents. Exploring 100-years of research with an eye to the future. Front Chem 2022; 10:995351. [PMID: 36186578 PMCID: PMC9520293 DOI: 10.3389/fchem.2022.995351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Suramin was the first urea-based drug to be approved in clinic, and in the following century a number of milestone drugs based on this scaffold were developed. Indeed, urea soon became a privileged scaffold in medicinal chemistry for its capability to establish a peculiar network of drug-target interactions, for its physicochemical properties that are useful for tuning the druggability of the new chemical entities, and for its structural and synthetic versatility that opened the door to numerous drug design possibilities. In this review, we highlight the relevance of the urea moiety in the medicinal chemistry scenario of anticancer drugs with a special focus on the kinase inhibitors for which this scaffold represented and still represents a pivotal pharmacophoric feature. A general outlook on the approved drugs, recent patents, and current research in this field is herein provided, and the role of the urea moiety in the drug discovery process is discussed form a medicinal chemistry standpoint. We believe that the present review can benefit both academia and pharmaceutical companies' medicinal chemists to prompt research towards new urea derivatives as anticancer agents.
Collapse
Affiliation(s)
- Roberta Listro
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federica Piaggi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Falilat Folasade Sonekan
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Simona Collina
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Preparation, Characterization, Solubility, and Antioxidant Capacity of Ellagic Acid-Urea Complex. MATERIALS 2022; 15:ma15082836. [PMID: 35454528 PMCID: PMC9032788 DOI: 10.3390/ma15082836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
Abstract
Ellagic acid (EA), a natural polyphenol found in berries, has high antioxidant capacity. This study aimed to improve EA solubility by complex formation with urea (UR) using solvent evaporation method and evaluate its solubility, antioxidant capacity, and physical properties. The solubility test (25 °C, 72 h) showed that the solubility of EVP (EA/UR = 1/1) was approximately two-fold higher than that of EA (7.13 µg/mL versus 3.99 µg/mL). Moreover, the IC50 values of EA and EVP (EA/UR = 1/1) (1.50 µg/mL and 1.30 µg/mL, respectively) showed higher antioxidant capacity of EVP than that of EA. DSC analysis revealed that the UR peak at 134 °C disappeared, and a new endothermic peak was observed at approximately 250 °C for EVP (EA/UR = 1/1). PXRD measurements showed that the characteristic peaks of EA at 2θ = 12.0° and 28.0° and of UR at 2θ = 22.0°, 24.3°, and 29.1° disappeared and that new peaks were identified at 2θ = 10.6°, 18.7°, and 26.8° for EVP (EA/UR = 1/1). According to 2D NOESY NMR spectroscopy, cross-peaks were observed between the -NH and -OH groups, suggesting intermolecular interactions between EA and UR. Therefore, complexation was confirmed in EA/UR = 1/1 prepared by solvent evaporation, suggesting that it contributed to the improvement in solubility and antioxidant capacity of EA.
Collapse
|
5
|
Konopko A, Litwinienko G. Unexpected Role of pH and Microenvironment on the Antioxidant and Synergistic Activity of Resveratrol in Model Micellar and Liposomal Systems. J Org Chem 2021; 87:1698-1709. [PMID: 34842421 PMCID: PMC8822491 DOI: 10.1021/acs.joc.1c01801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Experimental and
theoretical studies indicate that resveratrol
(RSV, dietary polyphenol that effectively reduces cellular oxidative
stress) is a good scavenger of hydroxyl, alkoxyl, and peroxyl radicals
in homogeneous systems. However, the role of RSV as a chain-breaking
antioxidant is still questioned. Here, we describe pH dependent effectiveness
of RSV as an inhibitor of peroxidation of methyl linoleate in Triton
X-100 micelles and in 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC) liposomes, with the best effectiveness at pH 6 (stoichiometric
factors, n, are 4.9 and 5.6, and the rate constants
for reaction with peroxyl radicals, kinh, are 1200 and 3300 M–1 s–1 in
micellar and liposomal systems, respectively). We propose the mechanism
in which RSV-derived radicals are coupled to dimers with recovered
ability to trap lipidperoxyl radicals. The formation of such dimers
is facilitated due to increased local concentration of RSV at the
lipid–water interface. Good synergy of RSV with α-tocopherol
analogue in micelles and liposomes is in contrast to the previously
reported lack of synergy in non-polar solvents; however, the increased
persistency of tocopheroxyl radicals in dispersed lipid/water systems
and proximal localization of both antioxidants greatly facilitate
the possible recovery of α-TOH by RSV.
Collapse
Affiliation(s)
- Adrian Konopko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland
| | | |
Collapse
|
6
|
Paul R, Chattaraj KG, Paul S. Role of Hydrotropes in Sparingly Soluble Drug Solubilization: Insight from a Molecular Dynamics Simulation and Experimental Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4745-4762. [PMID: 33853331 DOI: 10.1021/acs.langmuir.1c00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drug molecules' therapeutic efficacy depends on their bioavailability and solubility. But more than 70% of the formulated drug molecules show limited effectiveness due to low water solubility. Thus, the water solubility enhancement technique of drug molecules becomes the need of time. One such way is hydrotropy. The solubilizing agent of a hydrophobic molecule is generally referred to as a hydrotrope, and this phenomenon is termed hydrotropy. This method has high industrial demand, as hydrotropes are noninflammable, readily available, environmentally friendly, quickly recovered, cost-effective, and not involved in solid emulsification. The endless importance of hydrotropes in industry (especially in the pharmaceutical industry) motivated us to prepare a feature article with a clear introduction, detailed mechanistic insights into the hydrotropic solubilization of drug molecules, applications in pharma industries, and some future directions of this technique. Thus, we believe that this feature article will become an adequate manual for the pharmaceutical researchers who want to explore all of the past perspectives of the hydrotropic action of hydrotropes in pharmaceutics.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | | | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Nainwal N, Singh R, Jawla S, Saharan VA. The Solubility-Permeability Interplay for Solubility-Enabling Oral Formulations. Curr Drug Targets 2020; 20:1434-1446. [PMID: 31333138 DOI: 10.2174/1389450120666190717114521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023]
Abstract
The Biopharmaceutical classification system (BCS) classifies the drugs based on their intrinsic solubility and intestinal permeability. The drugs with good solubility and intestinal permeability have good bioavailability. The drugs with poor solubility and poor permeability have solubility dependent and permeability dependent bioavailability, respectively. In the current pharmaceutical field, most of the drugs have poor solubility. To solve the problem of poor solubility, various solubility enhancement approaches have been successfully used. The effects of these solubility enhancing approaches on the intestinal permeability of the drugs are a matter of concern, and must not be overlooked. The current review article focuses on the effect of various solubility enhancing approaches viz. cyclodextrin, surfactant, cosolvent, hydrotropes, and amorphous solid dispersion, on the intestinal permeability of drugs. This article will help in the designing of the optimized formulations having balanced solubility enhancement without affecting the permeability of drugs.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, India
| | - Ranjit Singh
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, India
| | - Sunil Jawla
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, India
| |
Collapse
|
8
|
Abstract
The urea functionality is inherent to numerous bioactive compounds, including a variety of clinically approved therapies. Urea containing compounds are increasingly used in medicinal chemistry and drug design in order to establish key drug-target interactions and fine-tune crucial drug-like properties. In this perspective, we highlight physicochemical and conformational properties of urea derivatives. We provide outlines of traditional reagents and chemical procedures for the preparation of ureas. Also, we discuss newly developed methodologies mainly aimed at overcoming safety issues associated with traditional synthesis. Finally, we provide a broad overview of urea-based medicinally relevant compounds, ranging from approved drugs to recent medicinal chemistry developments.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Excellence of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
9
|
Ephrem E, Najjar A, Charcosset C, Greige-Gerges H. Selection of nerolidol among a series of terpenic and phenolic compounds for its potent activity against Lactobacillus fermentum ATCC 9338. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Topical antifungal bigels: Formulation, characterization and evaluation. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:223-233. [PMID: 29702483 DOI: 10.2478/acph-2018-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Bigels with antifungal substances, ciclopirox olamine and terbinafine hydrochloride, were made of hydrogel (poloxamer 407 gel) and oleogel (polyethylene and liquid paraffin mixture). Prepared bigels were found physically stable at room temperature for six months and at least four months at 40 °C. Released amount of drug decreased when oleogel concentration in the formulation increased. Release test results depended on the insertion place of active substances. The amount of released substance was highest when ciclopirox olamine was incorporated in both phases in an equal quantity, and terbinafine hydrochloride in oleogel or in hydrogel. All formulations showed great inhibition of Microsporum canis. Thus, bigels with ciclopirox olamine and terbinafine hydrochloride are a promising dosage form for topical use.
Collapse
|
11
|
Mucoadhesive Interpolyelectrolyte Complexes for the Buccal Delivery of Clobetasol. Polymers (Basel) 2018; 10:polym10010085. [PMID: 30966120 PMCID: PMC6414932 DOI: 10.3390/polym10010085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
Abstract
This work aimed to investigate the feasibility to design: (a) a mucoadhesive interpolyelectrolyte complex (IPEC) loaded with clobetasol propionate (CP) intended to treat oral lichen planus and (b) individuate an orodispersible dosage form suitable for its administration. IPECs were synthesized by mixing Eudragit® E PO (EPO) and different grades of cross-linked polyacrylate derivatives, in different molar ratios, namely 1:1, 1:2, and 2:1. All IPECs resulted at nanoscale independently of their composition (120⁻200 nm). Both zeta-potentials (ζ) and mucoadhesive performances were influenced by the ratio between polymers. On the bases of the preliminary data, IPECs made of Polycarbophil and EPO in the 1:2 ratio were loaded with CP. The encapsulation efficiency was up 88% independently of the CP-IPEC ratio. The drug encapsulation caused IPEC destabilization in water, as it was noticed by the increase of ζ values and the formation of aggregates. Oral lyophilisates were prepared by freeze-drying slurries made of placebo or CP loaded IPECs, maltodextrin with a dextrose equivalent 38 and Span®80. The optimized formulation permitted to obtain a fast disintegration upon contact with water reducing the tendency of IPECs to aggregate. Moreover, oral lyophilisates allowed improving the apparent solubility of CP throughout the in vitro release experiment.
Collapse
|
12
|
Usefulness of Urea as a Means of Improving the Solubility of Poorly Water-Soluble Ascorbyl Palmitate. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2017; 2017:4391078. [PMID: 29234526 PMCID: PMC5695080 DOI: 10.1155/2017/4391078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
Abstract
The aim of this study was to evaluate complexes of L-ascorbyl palmitate (ASCP) and urea (UR). This evaluation involved differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), near-infrared spectroscopy (NIR), a solubility test, a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging test, and a mushroom tyrosinase inhibition assay. Physicochemical evaluation revealed that ASCP/UR complexes form at a molar ratio of 1/12. The solubility test revealed that ASCP/UR complexes had increased solubility compared to ASCP. The DPPH radical scavenging test and mushroom tyrosinase inhibition assay revealed that the activity of ASCP/UR complexes was not impaired by complex formation. These results are probably due to the tetragonal crystal system of UR changing to a hexagonal crystal system and interaction with the alkyl group of ASCP.
Collapse
|
13
|
Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, Abagyan R, Nes WD, McKerrow JH, Podust LM. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Negl Trop Dis 2017; 11:e0006104. [PMID: 29284029 PMCID: PMC5746216 DOI: 10.1371/journal.pntd.0006104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022] Open
Abstract
Primary Amoebic Meningoencephalitis (PAM) is caused by Naegleria fowleri, a free-living amoeba that occasionally infects humans. While considered "rare" (but likely underreported) the high mortality rate and lack of established success in treatment makes PAM a particularly devastating infection. In the absence of economic inducements to invest in development of anti-PAM drugs by the pharmaceutical industry, anti-PAM drug discovery largely relies on drug 'repurposing'-a cost effective strategy to apply known drugs for treatment of rare or neglected diseases. Similar to fungi, N. fowleri has an essential requirement for ergosterol, a building block of plasma and cell membranes. Disruption of sterol biosynthesis by small-molecule inhibitors is a validated interventional strategy against fungal pathogens of medical and agricultural importance. The N. fowleri genome encodes the sterol 14-demethylase (CYP51) target sharing ~35% sequence identity to fungal orthologues. The similarity of targets raises the possibility of repurposing anti-mycotic drugs and optimization of their usage for the treatment of PAM. In this work, we (i) systematically assessed the impact of anti-fungal azole drugs, known as conazoles, on sterol biosynthesis and viability of cultured N. fowleri trophozotes, (ii) identified the endogenous CYP51 substrate by mass spectrometry analysis of N. fowleri lipids, and (iii) analyzed the interactions between the recombinant CYP51 target and conazoles by UV-vis spectroscopy and x-ray crystallography. Collectively, the target-based and parasite-based data obtained in these studies validated CYP51 as a potentially 'druggable' target in N. fowleri, and conazole drugs as the candidates for assessment in the animal model of PAM.
Collapse
Affiliation(s)
- Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Claudia M. Calvet
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Gareth Jennings
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wenxu Zhou
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Alexander Aksenov
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Madeline R. Luth
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - W. David Nes
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
14
|
Ephrem E, Elaissari H, Greige-Gerges H. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge. Int J Pharm 2017; 526:50-68. [DOI: 10.1016/j.ijpharm.2017.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
15
|
Orgován G, Gonda I, Noszál B. Biorelevant physicochemical profiling of (E)- and (Z)-resveratrol determined from isomeric mixtures. J Pharm Biomed Anal 2016; 138:322-329. [PMID: 28242573 DOI: 10.1016/j.jpba.2016.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Biorelevant, isomer-specific physicochemical parameters of resveratrol, a multifunctional component in red wines, with cardioprotective, anti-Alzheimer and several other pharmacologic activities were determined. The parameters include site-specific basicities, lipophilicities, solubilities and diffusion constants for the two geometric isomers. The protonation equilibria of (E)- and (Z)-resveratrol were monitored by 1H NMR-pH titrations. Five closely related auxiliary compounds ((E)-pinostilbene, (Z)-pinostilbene, (E)-pterostilbene, (Z)-pterostilbene and resorcinol) were also studied. Combining the datasets, the group-specific protonation constants of resveratrol isomers were determined. The results show that (Z)-resveratrol is more basic at every protonation site than the (E)-isomer. Lipophilicities are quantified in terms of logP values and were determined by octanol/water partition experiments and quantitative NMR spectroscopy: (E)-resveratrol was found to be more lipophilic. Since the molecular geometries of the isomers differ, diffusion ordered NMR spectroscopy (DOSY) experiments were also carried out to quantify the diffusion capabilities of the isomers: (Z)-resveratrol of bent shape has a slightly higher diffusion coefficient than its extended (E) counterpart. A striking 10-fold difference of water solubility was found in favor of the (Z) isomer, due obviously to the reduced water-repellent character in the more compact molecule. This is so far the greatest recorded solubility difference between geometric isomers of any compounds.
Collapse
Affiliation(s)
- Gábor Orgován
- Department of Pharmaceutical Chemistry, Semmelweis University, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, Budapest, H-1092, Hőgyes Endre u. 9, Hungary.
| | - Imre Gonda
- Department of Pharmaceutical Chemistry, Semmelweis University, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, Budapest, H-1092, Hőgyes Endre u. 9, Hungary
| | - Béla Noszál
- Department of Pharmaceutical Chemistry, Semmelweis University, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, Budapest, H-1092, Hőgyes Endre u. 9, Hungary
| |
Collapse
|
16
|
Beig A, Lindley D, Miller JM, Agbaria R, Dahan A. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility-Permeability Interplay. Front Pharmacol 2016; 7:379. [PMID: 27826241 PMCID: PMC5078674 DOI: 10.3389/fphar.2016.00379] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/28/2016] [Indexed: 01/14/2023] Open
Abstract
Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure.
Collapse
Affiliation(s)
- Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | | | | - Riad Agbaria
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| |
Collapse
|
17
|
Al balkhi MH, Mohammad MA, Tisserant LP, Boitel-Conti M. Development of a liquid-liquid extraction method of resveratrol from cell culture media using solubility parameters. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Generalizing the Concept of Specific Compound Formulation Additives towards Non-Fluorescent Drugs: A Solubilization Study on Potential Anti-Alzheimer-Active Small-Molecule Compounds. Angew Chem Int Ed Engl 2016; 55:8752-6. [DOI: 10.1002/anie.201601147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 11/07/2022]
|
19
|
Lawatscheck C, Pickhardt M, Wieczorek S, Grafmüller A, Mandelkow E, Börner HG. Erweiterung des Konzeptes spezifischer Wirkstoff-Formulierungsadditive auf nichtfluoreszierende Wirkstoffe: eine Studie zur Solubilisierung potenzieller Anti-Alzheimer-Wirkstoffe. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carmen Lawatscheck
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Marcus Pickhardt
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Forschungszentrum CAESAR; Ludwig-Erhard-Allee 2 53175 Bonn Deutschland
| | - Sebastian Wieczorek
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Andrea Grafmüller
- Max-Planck-Institut für Kolloide und Grenzflächen; Abteilung Theorie & Bio-Systeme; Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Forschungszentrum CAESAR; Ludwig-Erhard-Allee 2 53175 Bonn Deutschland
- Max-Planck-Institut für Stoffwechselforschung; Außenstation Hamburg, c/o DESY; Hamburg Deutschland
| | - Hans G. Börner
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
20
|
A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin. Eur J Pharm Biopharm 2015; 95:99-109. [DOI: 10.1016/j.ejpb.2015.03.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 11/22/2022]
|