1
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
2
|
Zhang T, Luo X, Xu K, Zhong W. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution. Adv Drug Deliv Rev 2023; 203:115139. [PMID: 37951358 DOI: 10.1016/j.addr.2023.115139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Transdermal drug delivery presents a less invasive pathway, circumventing the need to pass through the gastrointestinal tract and liver, thereby reducing drug breakdown, initial metabolism, and gastrointestinal discomfort. Nevertheless, the unique composition and dense structure of the stratum corneum present a significant barrier to transdermal delivery. This article presents an overview of the current developments in peptides and nanotechnology to address this challenge. Initially, we sum up peptide-containing nanoformulations for transdermal drug delivery, examining them through the lenses of both inorganic and organic materials. Particular emphasis is placed on the diverse roles that peptides play within these nanoformulations, including conferring functionality upon nanocarriers and enhancing the biological efficacy of drugs. Subsequently, we summarize innovative strategies for enhancing skin penetration, categorizing them into passive and active approaches. Lastly, we discuss the therapeutic potential of peptide-containing nanoformulations in addressing a range of diseases, drawing insights from the biological activities and functions of peptides. Furthermore, the challenges hindering clinical translation are also discussed, providing valuable insights for future advancements in transdermal drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Liu Y, Shen S, Wu Y, Wang M, Cheng Y, Xia H, Jia R, Liu C, Wang Y, Xia Y, Cheng X, Yue Y, Xie Z. Percutaneous Electroosmosis of Berberine-Loaded Ca 2+ Crosslinked Gelatin/Alginate Mixed Hydrogel. Polymers (Basel) 2022; 14:polym14235101. [PMID: 36501495 PMCID: PMC9737946 DOI: 10.3390/polym14235101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Flexible conductive hydrogel has been driven by scientific breakthroughs and offers a wide variety of applications, including sensors, electronic skins, biomedicine, energy storage, etc. Based on the mixed-ion crosslinking method, gelatin and sodium alginate (Gel-Alg) composite hydrogels were successfully prepared using Ca2+ crosslinking. The migration behavior of berberine hydrochloride (BBH) in the matrix network structure of Gel-Alg hydrogel with a certain pore size under an electric field was studied, and the transdermal effect of berberine hydrochloride under an electric field was also studied. The experimental results show that Gel-Alg has good flexibility and conductivity, and electrical stimulation can enhance the transdermal effect of drugs. Gel-Alg composite hydrogel may be a new material with potential application value in future biomedical directions.
Collapse
Affiliation(s)
- Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Mengmeng Wang
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| |
Collapse
|
4
|
Electrically controlled nicotine delivery through Carbon nanotube membranes via electrochemical oxidation and nanofluidically enhanced electroosmotic flow. Biomed Microdevices 2021; 23:48. [PMID: 34562167 DOI: 10.1007/s10544-021-00580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
A promising tool for nicotine addiction treatment is a programmable nicotine delivery device coupled to smart phone-assisted behavioral therapies. Key metrics for such a device are delivery of adjustable nicotine doses tailored to individual needs, compact size and power efficiency. Reported here is a detailed optimization of carbon nanotube (CNT) membrane fabrication based on electrochemical oxidation, to improve its electrically driven performance for nicotine fluxes and switching ON (-1.5 V)-OFF (0 V) flux ratio. ON- state nicotine flux of ~ 6 µmoles/cm2/h at -1.5 V applied bias was achieved allowing ~ 6-folds decrease in the size of device (4 cm2) to attain flux equivalent to high dose nicotine gum (1.1 µmoles/cm2/h). Application of + 1.5 V bias in OFF state reduced diffusional background flux, giving an ON (-1.5 V)/OFF (+ 1.5 V) flux ratio of 68 that enabled device to deliver between the highest nicotine gum (1.1 µmoles/cm2/h) and lowest nicotine patch (0.08 µmoles/cm2/h) doses, as well as taper off nicotine doses for long term addiction treatment. The nicotine transport mechanism was studied as a function of pH and applied bias, using neutral tracer molecule, showing a mechanism of both electroosmosis and electrophoresis in the atomically smooth nanofluidic pores of CNTs. Optimal power consumption/flux efficiency of 111(µW/cm2)/µmoles/cm2/h was achieved allowing watch-battery lifetimes of 7-62 days for conventional treatment dosing regimens. Bluetooth-enabled, remotely controlled CNT membrane system has potential for treatments of nicotine, opioid and alcohol addictions that needs dose adjustment with precise temporal control.
Collapse
|
5
|
Saepang K, Li SK, Chantasart D. Effect of Pulsed Direct Current on Iontophoretic Delivery of Pramipexole across Human Epidermal Membrane In Vitro. Pharm Res 2021; 38:1187-1198. [PMID: 34136986 DOI: 10.1007/s11095-021-03055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Pulsed direct current (PDC) iontophoresis, by allowing skin depolarization, was suggested to provide more efficient ion transport, but the extent of its enhancement effect was unclear. PDC could also offer electric-customized drug delivery. This study examined the effect of PDC iontophoresis on transdermal delivery of pramipexole dihydrochloride (PXCl). METHODS Iontophoretic delivery of PXCl across human epidermal membrane from pH 7.0 solution was conducted in vitro using continuous direct current (DC) and 6- and 12-cycle PDC iontophoresis (0.5 mA/cm2 and total applied duration of 6 h). Different parameters of PDC iontophoresis were studied, including current density (0.1, 0.2 and 0.5 mA/cm2) and on-off current dosing pattern (1 h/3 h, 0.5 h/3.5 h, and 0.2 h/3.8 h). RESULTS Both 6- and 12-cycle PDC iontophoresis protocols provided modulation of the permeation profile but delivered smaller amounts of PXCl (396 and 400 μg/cm2, respectively) as compared with continuous DC iontophoresis (482 μg/cm2) at 24 h after 0.5 mA/cm2 and 180 mA/cm2 × min current dose application. Increasing applied current density from 0.1 to 0.5 mA/cm2 increased the PDC iontophoretic flux of PXCl linearly from 5.3 to 14.6 μg/cm2·h (R2 = 0.887). Varying the current level and duration but at the same applied current dose (36 mA/cm2 × min), the total amount of PXCl delivered by PDC iontophoresis at 24 h was independent of the on-off dosing pattern studied (114-128 μg/cm2). CONCLUSIONS The results indicate that PDC iontophoresis can benefit transdermal delivery of PXCl in terms of controlling its permeation but does not enhance iontophoretic transport compared to continuous DC iontophoresis under the conditions studied.
Collapse
Affiliation(s)
- Kamchai Saepang
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - S Kevin Li
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Doungdaw Chantasart
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Gratieri T, Zarhloule R, Dubey S, Kalia YN. The influence of skin barrier impairment on the iontophoretic transport of low and high molecular weight permeants. Int J Pharm 2021; 602:120607. [PMID: 33862130 DOI: 10.1016/j.ijpharm.2021.120607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/18/2023]
Abstract
The effect of skin barrier impairment on the iontophoretic transport of low (acetaminophen (ACM), lidocaine (LD), ketorolac (KT)) and high molecular weight permeants, (cytochrome c (Cyt c) and ribonuclease T1 (RNase T1)), was evaluated using tape-stripping (TS) and fractional laser ablation for "large-scale" and "localized" barrier disruption. Interestingly, removal of the stratum corneum did not invariably lead to an increase in iontophoretic delivery of the permeants. Decrease of electroosmotic (EO) flow and facilitated transport of Cl- ions in the cathode-to-anode direction, which reduced cation electromigration (EM), both impacted cation delivery by anodal iontophoresis but the effects were partly offset by enhanced passive diffusion. Decrease in EO increased cathodal iontophoresis of KT but not that of RNase T1. Permeability coefficients confirmed the superiority of EM over EO for small molecules, LD > KT > ACM. A combination of fractional laser ablation and iontophoresis was advantageous for both positively and negatively charged small molecules as passive penetration was significantly enhanced. In conclusion, results demonstrated that (i) skin ablation prior to anodal iontophoresis decreased EO and EM but could be advantageous for delivery if the ablative technique enhanced passive penetration thereby compensating reduction of electrotransport and (ii) reduced EO favored cathodal electrotransport.
Collapse
Affiliation(s)
- Taís Gratieri
- School of Pharmaceutical Sciences, University of Geneva, CMU - 1 rue Michel Servet, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Rhita Zarhloule
- School of Pharmaceutical Sciences, University of Geneva, CMU - 1 rue Michel Servet, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sachin Dubey
- School of Pharmaceutical Sciences, University of Geneva, CMU - 1 rue Michel Servet, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU - 1 rue Michel Servet, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - 1 rue Michel Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
7
|
Gulati GK, Berger LR, Hinds BJ. A preclinical evaluation of a programmable CNT membrane device for transdermal nicotine delivery in hairless Guinea pigs. J Control Release 2019; 293:135-143. [DOI: 10.1016/j.jconrel.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
8
|
Janićijević Ž, Radovanović F. Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
|
10
|
Programmable carbon nanotube membrane-based transdermal nicotine delivery with microdialysis validation assay. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1-9. [DOI: 10.1016/j.nano.2016.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/15/2016] [Accepted: 06/29/2016] [Indexed: 11/24/2022]
|
11
|
Abstract
The stratum corneum continues to pose considerable impediment to transdermal drug delivery. One of the effective ways of circumventing this challenge is through the use of iontophoresis. Iontophoresis uses low-level current to drive charged compounds across the skin. This review discusses progress made in the field of iontophoretic transport of small and large molecules. The major obstacles are also touched upon and advances made in the last few decades described. A number of iontophoretic systems approved for clinical use by regulatory authorities is also discussed.
Collapse
Affiliation(s)
- Kevin Ita
- a College of Pharmacy, Touro University , Mare Island-Vallejo , CA , USA
| |
Collapse
|