1
|
Orszulak L, Lamrani T, Bernat R, Tarnacka M, Żakowiecki D, Jurkiewicz K, Zioła P, Mrozek-Wilczkiewicz A, Zięba A, Kamiński K, Kamińska E. The Influence of PVP Polymer Topology on the Liquid Crystalline Order of Itraconazole in Binary Systems. Mol Pharm 2024; 21:3027-3039. [PMID: 38755753 DOI: 10.1021/acs.molpharmaceut.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 μg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 μg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.
Collapse
Affiliation(s)
- Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland
| | - Taoufik Lamrani
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Bernat
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Daniel Żakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Patryk Zioła
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
- Biotechnology Centre, Silesian University of Technology, Boleslawa Krzywoustego 8, 44-100 Gliwice, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
2
|
Wang H, Zhao P, Ma R, Jia J, Fu Q. Drug-drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs. Drug Discov Today 2024; 29:103883. [PMID: 38219970 DOI: 10.1016/j.drudis.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Overcoming the poor water solubility of small-molecule drugs is a major challenge in the development of clinical pharmaceuticals. Amorphization of crystalline drugs is a highly effective strategy to improve their aqueous solubility. However, amorphous drugs are thermodynamically unstable and likely to crystallize during manufacturing and storage. Recently, drug-drug co-amorphous systems have emerged as a novel strategy to not only enable enhanced dissolution and physical stability of the individual drugs within the system but also to provide a strategy for combination therapy of the same or different clinical indications. This review serves to highlight advances in the methods used to manufacture and characterize drug-drug co-amorphous systems, summarize drug-drug co-amorphous applications reported in recent decades, and provide an outlook on future possibilities and perspectives.
Collapse
Affiliation(s)
- Hongge Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jirun Jia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
3
|
Rams-Baron M, Musial M, Kramarczyk D, Paluch M. Insight from high-pressure dielectric studies into molecular dynamics of the itraconazole-glycerol mixture in smectic and isotropic phases. J Chem Phys 2022; 156:154501. [DOI: 10.1063/5.0080726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present here the results of high-pressure broadband dielectric spectroscopy (BDS) measurements for a mixture of liquid-crystalline drug itraconazole (ITZ) and glycerol (GLY) at a critical concentration of 5% w/w in which the nematic order is eliminated. In the investigated system, smectic-A to isotropic phase transition leaves a clear fingerprint on the dielectric response allowing a phase diagram creation using BDS data. By following the α-relaxation dynamics under different thermodynamic conditions, we provide insight into the effect of pressure on temperature and the phenomenology of the smectic-A to the isotropic phase transition. Additional measurements of specific volume as a function of pressure and temperature provide us with deeper insight into material properties that could be analyzed comprehensively via the equation of state. We proved the validity of the density scaling concept showing that the mixture's complexity does not exclude thermodynamic scaling of dynamic properties related to the α-process in the smectic-A phase. The low value of scaling exponent γ = 2.00 {plus minus} 0.02 and a high ratio of the activation energy at constant volume, EV, to the activation enthalpy at constant pressure, HP, indicate that temperature is a dominant variable controlling α-relaxation dynamics in the ordered smectic-A phase of ITZ-GLY mixture.
Collapse
Affiliation(s)
- Marzena Rams-Baron
- Institute of Physics, University of Silesia in Katowice Institute of Physics, Poland
| | | | - Daniel Kramarczyk
- University of Silesia in Katowice Institute of Physics named after August Chelkowski, Poland
| | - Marian Paluch
- Biophysics and Molecular Physics Department, Silesian Center for Education and Interdisciplinary Research, Poland
| |
Collapse
|
4
|
Rams-Baron M, Kramarczyk D, Knapik-Kowalczuk J, Hachula B, Kocot A, Paluch M. Broadband-dielectric-spectroscopy study of molecular dynamics in a mixture of itraconazole and glycerol in glassy, smectic-A, and isotropic phases. Phys Rev E 2021; 104:034702. [PMID: 34654189 DOI: 10.1103/physreve.104.034702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022]
Abstract
Itraconazole (ITZ) is a thermotropic liquid crystal that exhibits isotropic, nematic, and smectic phases on cooling towards the glass transition upon melting. Over the years, new aspects regarding the liquid-crystalline ordering of this antifungal drug were systematically revealed. It has been shown recently that the temperature range of individual mesophases in ITZ can be modified by adding a small amount of glycerol (GLY). Moreover, above the critical concentration of 5% w/w, a smectic to nematic transition can be avoided. Here we go one step further, and we used broadband dielectric spectroscopy to investigate the new phase behavior of the ITZ-GLY mixture (5% w/w). To confirm the phase transformations of the ITZ-GLY mixture, differential scanning calorimetry was also employed. The analysis of molecular dynamics of the ITZ-GLY mixture in the glassy and isotropic phases revealed features similar to those observed for neat ITZ. Two relaxation processes were identified in the smectic-A phase, with similar temperature dependence, most likely related to the fast rotations around the long axis of a molecule. Additionally, the derivative analysis revealed another low-frequency process hidden under DC conductivity ascribed to the slow rotations about a short axis. We will show that the differences in the molecular organization in the smectic-A and isotropic phases leave a clear fingerprint on the temperature behavior of relaxation times and other dielectric parameters, such as DC conductivity and dielectric strength, for which a pretransition effect has been detected.
Collapse
Affiliation(s)
- M Rams-Baron
- August Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - D Kramarczyk
- August Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - J Knapik-Kowalczuk
- August Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - B Hachula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - A Kocot
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M Paluch
- August Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
5
|
Minecka A, Hachuła B, Jurkiewicz K, Kamiński K, Paluch M, Kamińska E. High pressure aging studies on the low-molecular weight glass-forming pharmaceutical – Probucol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Minecka A, Tarnacka M, Jurkiewicz K, Hachuła B, Wrzalik R, Kamiński K, Paluch M, Kamińska E. Impact of the Chain Length and Topology of the Acetylated Oligosaccharide on the Crystallization Tendency of Naproxen from Amorphous Binary Mixtures. Mol Pharm 2020; 18:347-358. [PMID: 33355470 PMCID: PMC7872431 DOI: 10.1021/acs.molpharmaceut.0c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The impact of the chain length or
dispersity of polymers in controlling
the crystallization of amorphous active pharmaceutical ingredients
(APIs) has been discussed for a long time. However, because of the
weak control of these parameters in the majority of macromolecules
used in pharmaceutical formulations, the abovementioned topic is poorly
understood. Herein, four acetylated oligosaccharides, maltose (acMAL),
raffinose (acRAF), stachyose (acSTA), and α-cyclodextrin (ac-α-CD)
of growing chain lengths and different topologies (linear vs cyclic), mimicking the growing backbone of the polymer,
were selected to probe the influence of these structural factors on
the crystallization of naproxen (NAP)—an API that does not
vitrify regardless of the cooling rate applied in our experiment.
It was found that in equimolar systems composed of NAP and linear
acetylated oligosaccharides, the progress and activation barrier for
crystallization are dependent on the molecular weight of the excipient
despite the fact that results of Fourier transform infrared studies
indicated that there is no difference in the interaction pattern between
measured samples. On the other hand, complementary dielectric, calorimetric,
and X-ray diffraction data clearly demonstrated that NAP mixed with
ac-α-CD (cyclic saccharide) does not tend to crystallize even
in the system with a much higher content of APIs. To explain this
interesting finding, we have carried out further density functional
theory computations, which revealed that incorporation of NAP into
the cavity of ac-α-CD is hardly possible because this state
is of much higher energy (up to 80 kJ/mol) with respect to the one
where the API is located outside of the saccharide torus. Hence, although
at the moment, it is very difficult to explain the much stronger impact
of the cyclic saccharide on the suppression of crystallization and
enhanced stability of NAP with respect to the linear carbohydrates,
our studies clearly showed that the chain length and the topology
of the excipient play a significant role in controlling the crystallization
of this API.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Magdalena Tarnacka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Roman Wrzalik
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv 2020; 17:1411-1435. [DOI: 10.1080/17425247.2020.1796631] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yan Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Runze Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
8
|
Minecka A, Tarnacka M, Jurkiewicz K, Hachuła B, Kamiński K, Paluch M, Kamińska E. Influence of the Internal Structure and Intermolecular Interactions on the Correlation between Structural (α) and Secondary (β-JG) Relaxation below the Glass Transition Temperature in Neat Probucol and Its Binary Mixtures with Modified Saccharides. J Phys Chem B 2020; 124:4821-4834. [PMID: 32396358 DOI: 10.1021/acs.jpcb.0c02384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Broadband dielectric spectroscopy (BDS) has been used to study the molecular dynamics and aging process in neat probucol (PRO) as well as its binary mixtures with selected acetylated saccharides. In particular, we applied the Casalini and Roland approach to determine structural relaxation times in the glassy state of the examined systems (so-called isostructural times, τiso). Next, using the calculated τiso, primitive relaxation times of the coupling model were obtained and compared to the experimental secondary β (Johari-Goldstein (JG) type) relaxation times. Interestingly, it turned out that there is a correlation between the β-JG and the structural (α)-relaxation processes below the glass transition temperature (T < Tg) in each investigated sample. This is a new observation compared to previous studies demonstrating that such a relationship exists only in the supercooled liquid state of neat PRO. Moreover, it was revealed that the stretching parameters obtained from the aging procedure are very close to the ones determined by fitting the dielectric data above the Tg with the use of the Kohlrausch-Williams-Watts function, indicating that the aging process is governed by the α-relaxation. Complementary Fourier transform infrared and X-ray diffraction measurements allowed us to find a possible reason for these findings. It was demonstrated that although there are very weak intermolecular interactions between PRO and modified saccharides, the intra- and intermolecular structure of PRO is practically unaffected by the presence of modified saccharides.
Collapse
Affiliation(s)
- A Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - M Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K Jurkiewicz
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - B Hachuła
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - K Kamiński
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - E Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
9
|
Heczko D, Kamińska E, Jurkiewicz K, Tarnacka M, Merkel K, Kamiński K, Paluch M. The impact of various azole antifungals on the liquid crystalline ordering in itraconazole. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Kozyra A, Mugheirbi NA, Paluch KJ, Garbacz G, Tajber L. Phase Diagrams of Polymer-Dispersed Liquid Crystal Systems of Itraconazole/Component Immiscibility Induced by Molecular Anisotropy. Mol Pharm 2018; 15:5192-5206. [PMID: 30252481 DOI: 10.1021/acs.molpharmaceut.8b00724] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid crystalline (LC) materials and their nonmedical applications have been known for decades, especially in the production of displays; however, the pharmaceutical implications of the LC state are inadequately appreciated, and the misunderstanding of experimental data is leading to possible errors, especially in relation to the physical stability of medicines. The aim of this work was to study LC phases of itraconazole (ITZ), an azole antifungal active molecule, and for the first time, to generate full thermodynamic phase diagrams for ITZ/polymer systems, taking into account isotropic and anisotropic phases that this drug can form. It was found that supercooled ITZ does not form an amorphous but a vitrified smectic (vSm) phase with a glass transition temperature of 59.35 °C (determined using a 10 °C/min heating rate), as is evident from X-ray diffraction and thermomicroscopic (PLM) experiments. Two endothermic LC events with the onset temperature values for a smectic to nematic transition of 73.2 ± 0.4 °C and a nematic to isotropic transformation at 90.4 ± 0.35 °C and enthalpies of transition of 416 ± 34 J/mol and 842 ± 10 J/mol, respectively, were recorded. For the binary supercooled mixtures, PLM and differential scanning calorimetry showed a phase separation with birefringent vSm persistent over a wide polymer range, as noticed especially for the hypromellose acetate succinate (HAS) systems. Both, smectic and nematic, phases were detected for the supercooled ITZ/HAS and ITZ/methacrylic acid-ethyl acrylate copolymer (EUD) mixtures, while geometric restrictions inhibited the smectic formation in the ITZ/poly(acrylic acid) (CAR) systems. The Flory-Huggins lattice theory coupled with the Maier-Saupe-McMillan approach to model anisotropic ordering of molecules was successfully utilized to create phase diagrams for all ITZ/polymer mixtures. It was concluded that in a supercooled ITR/polymer mix, if ITZ is present in a LC phase, immiscibility as a result of molecule anisotropy is afforded. This study shows that the LC nature of ITZ cannot be disregarded when designing stable formulations containing this molecule.
Collapse
Affiliation(s)
- Agnieszka Kozyra
- School of Pharmacy and Pharmaceutical Sciences , Trinity College Dublin , Dublin 2 , Ireland
| | - Naila A Mugheirbi
- School of Pharmacy and Pharmaceutical Sciences , Trinity College Dublin , Dublin 2 , Ireland.,Drug Product Science and Technology , Bristol-Myers Squibb , East Brunswick , New Jersey 08901 , United States
| | - Krzysztof J Paluch
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, Centre for Pharmaceutical Engineering Science , University of Bradford , Richmond Road , Bradford , W. Yorks BD7 1DP , U.K
| | - Grzegorz Garbacz
- Physiolution GmbH , Walther-Rathenau Strasse 49a , 17489 Greifswald , Germany
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences , Trinity College Dublin , Dublin 2 , Ireland
| |
Collapse
|
11
|
Haznar-Garbacz D, Kaminska E, Zakowiecki D, Lachmann M, Kaminski K, Garbacz G, Dorożyński P, Kulinowski P. Melts of Octaacetyl Sucrose as Oral-Modified Release Dosage Forms for Delivery of Poorly Soluble Compound in Stable Amorphous Form. AAPS PharmSciTech 2018; 19:951-960. [PMID: 29098644 DOI: 10.1208/s12249-017-0912-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
The presented work describes the formulation and characterization of modified release glassy solid dosage forms (GSDFs) containing an amorphous nifedipine, as a model BCS (Biopharmaceutical Classification System) class II drug. The GSDFs were prepared by melting nifedipine together with octaacetyl sucrose. Dissolution profiles, measured under standard and biorelevant conditions, were compared to those obtained from commercially available formulations containing nifedipine such as modified release (MR) tablets and osmotic release oral system (OROS). The results indicate that the dissolution profiles of the GSDFs with nifedipine are neither affected by the pH of the dissolution media, type and concentration of surfactants, nor by simulated mechanical stress of biorelevant intensity. Furthermore, it was found that the dissolution profiles of the novel dosage forms were similar to the profiles obtained from the nifedipine OROS. The formulation of GSDFs is relatively simple, and the dosage forms were found to have favorable dissolution characteristics.
Collapse
|
12
|
Schammé B, Couvrat N, Tognetti V, Delbreilh L, Dupray V, Dargent É, Coquerel G. Investigation of Drug-Excipient Interactions in Biclotymol Amorphous Solid Dispersions. Mol Pharm 2018; 15:1112-1125. [PMID: 29328661 DOI: 10.1021/acs.molpharmaceut.7b00993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of low molecular weight excipients on drug-excipient interactions, molecular mobility, and propensity to recrystallization of an amorphous active pharmaceutical ingredient is investigated. Two structurally related excipients (α-pentaacetylglucose and β-pentaacetylglucose), five different drug:excipient ratios (1:5, 1:2, 1:1, 2:1, and 5:1, w/w), and three different solid state characterization tools (differential scanning calorimetry, X-ray powder diffraction, and dielectric relaxation spectroscopy) were selected for the present research. Our investigation has shown that the excipient concentration and its molecular structure reveal quasi-identical molecular dynamic behavior of solid dispersions above and below the glass transition temperature. Across to complementary quantum mechanical simulations, we point out a clear indication of a strong interaction between biclotymol and the acetylated saccharides. Moreover, the thermodynamic study on these amorphous solid dispersions highlighted a stabilizing effect of α-pentaacetylglucose regardless of its quantity while an excessive concentration of β-pentaacetylglucose revealed a poor crystallization inhibition. Finally, through long-term stability studies, we also showed the limiting excipient concentration needed to stabilize our amorphous API. Herewith, the developed procedure in this paper appears to be a promising tool for solid-state characterization of complex pharmaceutical formulations.
Collapse
Affiliation(s)
- Benjamin Schammé
- Sciences et Méthodes Séparatives, UNIROUEN , Normandie Université , 76000 Rouen , France.,Groupe de Physique des Matériaux, CNRS, INSA Rouen, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Nicolas Couvrat
- Sciences et Méthodes Séparatives, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Vincent Tognetti
- COBRA UMR 6014, CNRS, INSA Rouen, UNIROUEN , Normandie Université , 76821 Mont-Saint-Aignan , France
| | - Laurent Delbreilh
- Groupe de Physique des Matériaux, CNRS, INSA Rouen, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Valérie Dupray
- Sciences et Méthodes Séparatives, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Éric Dargent
- Groupe de Physique des Matériaux, CNRS, INSA Rouen, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Gérard Coquerel
- Sciences et Méthodes Séparatives, UNIROUEN , Normandie Université , 76000 Rouen , France
| |
Collapse
|
13
|
Singh A, Bharati A, Frederiks P, Verkinderen O, Goderis B, Cardinaels R, Moldenaers P, Van Humbeeck J, Van den Mooter G. Effect of Compression on the Molecular Arrangement of Itraconazole-Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation? Mol Pharm 2016; 13:1879-93. [PMID: 27092396 DOI: 10.1021/acs.molpharmaceut.6b00046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.
Collapse
Affiliation(s)
- Abhishek Singh
- Drug Delivery and Disposition, KU Leuven , Leuven, Belgium
| | - Avanish Bharati
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven , Leuven, Belgium
| | | | - Olivier Verkinderen
- Polymer Chemistry and Materials, Department of Chemistry, KU Leuven , Leuven, Belgium
| | - Bart Goderis
- Polymer Chemistry and Materials, Department of Chemistry, KU Leuven , Leuven, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven , Leuven, Belgium.,Polymer Technology, Department of Mechanical Engineering, TU Eindhoven , Eindhoven, The Netherlands
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven , Leuven, Belgium
| | - Jan Van Humbeeck
- Department of Metallurgy and Materials Engineering, KU Leuven , Leuven, Belgium
| | | |
Collapse
|
14
|
Changes in dynamics of the glass-forming pharmaceutical nifedipine in binary mixtures with octaacetylmaltose. Eur J Pharm Biopharm 2015; 97:185-91. [DOI: 10.1016/j.ejpb.2015.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/20/2022]
|
15
|
Mesophase and size manipulation of itraconazole liquid crystalline nanoparticles produced via quasi nanoemulsion precipitation. Eur J Pharm Biopharm 2015; 96:226-36. [DOI: 10.1016/j.ejpb.2015.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022]
|
16
|
Kaminska E, Tarnacka M, Wlodarczyk P, Jurkiewicz K, Kolodziejczyk K, Dulski M, Haznar-Garbacz D, Hawelek L, Kaminski K, Wlodarczyk A, Paluch M. Studying the Impact of Modified Saccharides on the Molecular Dynamics and Crystallization Tendencies of Model API Nifedipine. Mol Pharm 2015; 12:3007-19. [DOI: 10.1021/acs.molpharmaceut.5b00271] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E. Kaminska
- Department
of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - M. Tarnacka
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - P. Wlodarczyk
- Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice, Poland
| | - K. Jurkiewicz
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - K. Kolodziejczyk
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - M. Dulski
- Institute
of Material Science, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - D. Haznar-Garbacz
- Institute
of Pharmacy, Center of Drug Absorption and Targeting, Felix-Hausdorff-Strasse
3a, 17489 Greifswald, Germany
| | - L. Hawelek
- Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice, Poland
| | - K. Kaminski
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - A. Wlodarczyk
- Department
of Animal Histology and Embryology, University of Silesia, ul. Bankowa
9, 40-007 Katowice, Poland
| | - M. Paluch
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|