1
|
Torkashvand A, Izadian A, Hajrasouliha A. Advances in ophthalmic therapeutic delivery: A comprehensive overview of present and future directions. Surv Ophthalmol 2024; 69:967-983. [PMID: 38986847 PMCID: PMC11392635 DOI: 10.1016/j.survophthal.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Ophthalmic treatment demands precision and consistency in delivering therapeutic agents over extended periods to address many conditions, from common eye disorders to complex diseases. This diversity necessitates a range of delivery strategies, each tailored to specific needs. We delve into various delivery cargos that are pivotal in ophthalmic care. These cargos encompass biodegradable implants that gradually release medication, nonbiodegradable implants for sustained drug delivery, refillable tools allowing flexibility in treatment, hydrogels capable of retaining substances while maintaining ocular comfort, and advanced nanotechnology devices that precisely target eye tissues. Within each cargo category, we explore cutting-edge research-level approaches and FDA-approved methods, providing a thorough overview of the current state of ophthalmic drug delivery. In particular, our focus on nanotechnology reveals the promising potential for gene delivery, cell therapy administration, and the implantation of active devices directly into the retina. These advancements hold the key to more effective, personalized, and minimally- invasive ophthalmic treatments, revolutionizing the field of eye care.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Afshin Izadian
- Electrical and Computer Engineering Technology, Purdue University, West Lafayette, IN, United States
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
2
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
3
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
4
|
Wang N, Zhang Y, Wang W, Ye Z, Chen H, Hu G, Ouyang D. How can machine learning and multiscale modeling benefit ocular drug development? Adv Drug Deliv Rev 2023; 196:114772. [PMID: 36906232 DOI: 10.1016/j.addr.2023.114772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hongyu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Guanghui Hu
- Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau, China.
| |
Collapse
|
5
|
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022; 350:538-568. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Priyanka Bangar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra 411038, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra 422005, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushboo Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shubham Joshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sonika Dhuri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
6
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
7
|
Yang CD, Jessen J, Lin KY. Ultrasound-assisted ocular drug delivery: A review of current evidence. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:685-693. [PMID: 35474512 DOI: 10.1002/jcu.23214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Efficient ocular drug delivery is a challenging clinical problem with various therapeutic options but no clearly preferred methodology. Given the ubiquity of ultrasound as a diagnostic technique, the safety profile of ultrasound in an ocular context, and the prospect of custom-made ultrasound-sensitive contrast agents, ultrasound presents an attractive ocular drug delivery modality. In this review, we evaluate our present understanding of ultrasound as it relates to ocular drug delivery and significant knowledge gaps in the field. In doing so, we hope to call attention to a potentially novel drug delivery pathway that could be manipulated to treat or cure ocular diseases.
Collapse
Affiliation(s)
- Christopher D Yang
- Department of Ophthalmology, University of California, Irvine School of Medicine, Irvine, California, USA
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
| | - Jordan Jessen
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
| | - Ken Y Lin
- Department of Ophthalmology, University of California, Irvine School of Medicine, Irvine, California, USA
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| |
Collapse
|
8
|
In-vitro and in-vivo biocompatibility of dECM-alginate as a promising candidate in cell delivery for kidney regeneration. Int J Biol Macromol 2022; 211:616-625. [PMID: 35577186 DOI: 10.1016/j.ijbiomac.2022.05.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
In this study, kidney decellularized extracellular matrix (dECM) and alginate (ALG) hybrid injectable hydrogel, with the purpose of delivering progenitor cells for tissue engineering, were prepared by using a physical crosslinking method in a CaCl2 solution with high porosity for the exchange of nutrition and waste. In addition, the physical appearance and surface morphology of the hydrogel were investigated using optical and scanning electron microscopy, respectively. The functional groups of the dECM/ALG xerogels was examined via Fourier transform infrared spectroscopy. The biocompatibility of dECM/ALG xerogels was examined in-vitro using renal progenitor cells obtained from adult rat kidney. Enhanced biocompatibility and significant hemostatic behavior was noticed. Furthermore, the in-vivo biocompatibility of dECM/ALG hydrogel with progenitor cells was determined in the deep renal cortex for 7 and 21 days, in order to assess the foreign body reaction and inflammatory response. Early-stage glomerulus-like structure and dense linear cell network-like phenomenon were noticed. Loading of progenitor cells together with hydrogel enhances the cell density obviously due to cell migration from host and form a pattern. The desired early stage in-vivo response to progenitor cell-laden dECM/ALG hydrogel plays a potential role in kidney regeneration long term.
Collapse
|
9
|
Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264:118006. [DOI: 10.1016/j.carbpol.2021.118006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
|
10
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
11
|
Chaharband F, Daftarian N, Kanavi MR, Varshochian R, Hajiramezanali M, Norouzi P, Arefian E, Atyabi F, Dinarvand R. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: Formulation and in vivo efficacy evaluation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102181. [DOI: 10.1016/j.nano.2020.102181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
|
12
|
Kojima H, Raut B, Chen LJ, Nagai N, Abe T, Kaji H. A 3D Printed Self-Sustainable Cell-Encapsulation Drug Delivery Device for Periocular Transplant-Based Treatment of Retinal Degenerative Diseases. MICROMACHINES 2020; 11:mi11040436. [PMID: 32326233 PMCID: PMC7231335 DOI: 10.3390/mi11040436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023]
Abstract
Self-sustainable release of brain-derived neurotrophic factor (BDNF) to the retina using minimally invasive cell-encapsulation devices is a promising approach to treat retinal degenerative diseases (RDD). Herein, we describe such a self-sustainable drug delivery device with human retinal pigment epithelial (ARPE-19) cells (cultured on collagen coated polystyrene (PS) sheets) enclosed inside a 3D printed semi-porous capsule. The capsule was 3D printed with two photo curable polymers: triethylene glycol dimethacrylate (TEGDM) and polyethylene glycol dimethylacrylate (PEGDM). The capsule's semi-porous membrane (PEGDM) could serve three functions: protecting the cells from body's immune system by limiting diffusion (5.97 ± 0.11%) of large molecules like immunoglobin G (IgG)(150 kDa); helping the cells to survive inside the capsule by allowing diffusion (43.20 ± 2.16%) of small molecules (40 kDa) like oxygen and necessary nutrients; and helping in the treatment of RDD by allowing diffusion of cell-secreted BDNF to the outside environment. In vitro results showed a continuous BDNF secretion from the device for at least 16 days, demonstrating future potential of the cell-encapsulation device for the treatment of RDD in a minimally invasive and self-sustainable way through a periocular transplant.
Collapse
Affiliation(s)
- Hideto Kojima
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Bibek Raut
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (N.N.); (T.A.)
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (N.N.); (T.A.)
| | - Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Correspondence: ; Tel.: +81-22-795-4249
| |
Collapse
|
13
|
Mansour SE, Browning DJ, Wong K, Flynn HW, Bhavsar AR. The Evolving Treatment of Diabetic Retinopathy. Clin Ophthalmol 2020; 14:653-678. [PMID: 32184554 PMCID: PMC7061411 DOI: 10.2147/opth.s236637] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose To review the current therapeutic options for the management of diabetic retinopathy (DR) and diabetic macular edema (DME) and examine the evidence for integration of laser and pharmacotherapy. Methods A review of the PubMed database was performed using the search terms diabetic retinopathy, diabetic macular edema, neovascularization, laser photocoagulation, intravitreal injection, vascular endothelial growth factor (VEGF), vitrectomy, pars plana vitreous surgery, antiangiogenic therapy. With additional cross-referencing, this yielded 835 publications of which 301 were selected based on content and relevance. Results Many recent studies have evaluated the pharmacological, laser and surgical therapeutic strategies for the treatment and prevention of DR and DME. Several newer diagnostic systems such as optical coherence tomography (OCT), microperimetry, and multifocal electroretinography (mfERG) are also assisting in further refinements in the staging and classification of DR and DME. Pharmacological therapies for both DR and DME include both systemic and ocular agents. Systemic agents that promote intensive glycemic control, control of dyslipidemia and antagonists of the renin-angiotensin system demonstrate beneficial effects for both DR and DME. Ocular therapies include anti-VEGF agents, corticosteroids and nonsteroidal anti-inflammatory drugs. Laser therapy, both as panretinal and focal or grid applications continue to be employed in management of DR and DME. Refinements in laser devices have yielded more tissue-sparing (subthreshold) modes in which many of the benefits of conventional continuous wave (CW) lasers can be obtained without the adverse side effects. Recent attempts to lessen the burden of anti-VEGF injections by integrating laser therapy have met with mixed results. Increasingly, vitreoretinal surgical techniques are employed for less advanced stages of DR and DME. The development and use of smaller gauge instrumentation and advanced anesthesia agents have been associated with a trend toward earlier surgical intervention for diabetic retinopathy. Several novel drug delivery strategies are currently being examined with the goal of decreasing the therapeutic burden of monthly intravitreal injections. These fall into one of the five categories: non-biodegradable polymeric drug delivery systems, biodegradable polymeric drug delivery systems, nanoparticle-based drug delivery systems, ocular injection devices and with sustained release refillable devices. At present, there remains no one single strategy for the management of the particular stages of DR and DME as there are many options that have not been rigorously tested through large, randomized, controlled clinical trials. Conclusion Pharmacotherapy, both ocular and systemic, will be the primary mode of intervention in the management of DR and DME in many cases when cost and treatment burden are less constrained. Conventional laser therapy has become a secondary intervention in these instances, but remains a first-line option when cost and treatment burden are more constrained. Results with subthreshold laser appear promising but will require more rigorous study to establish its role as adjunctive therapy. Evidence to support an optimal integration of the various treatment options is lacking. Central to the widespread adoption of any therapeutic regimen for DR and DME is substantiation of safety, efficacy, and cost-effectiveness by a body of sound clinical trials.
Collapse
Affiliation(s)
- Sam E Mansour
- George Washington University, Washington, DC, USA.,Virginia Retina Center, Warrenton, VA, 20186, USA
| | - David J Browning
- Charlotte Eye Ear Nose & Throat Associates, Charlotte, NC 28210, USA
| | - Keye Wong
- Retina Associates of Sarasota, Sarasota, FL 34233, USA
| | - Harry W Flynn
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | | |
Collapse
|
14
|
Vila A, Torras N, Castaño AG, García-Díaz M, Comelles J, Pérez-Berezo T, Corregidor C, Castaño Ó, Engel E, Fernández-Majada V, Martínez E. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa. Biofabrication 2020; 12:025008. [PMID: 31805546 DOI: 10.1088/1758-5090/ab5f50] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mounting evidence supports the importance of the intestinal epithelial barrier and its permeability both in physiological and pathological conditions. Conventional in vitro models to evaluate intestinal permeability rely on the formation of tightly packed epithelial monolayers grown on hard substrates. These two-dimensional models lack the cellular and mechanical components of the non-epithelial compartment of the intestinal barrier, the stroma, which are key contributors to the barrier permeability in vivo. Thus, advanced in vitro models approaching the in vivo tissue composition are fundamental to improve precision in drug absorption predictions, to provide a better understanding of the intestinal biology, and to faithfully represent related diseases. Here, we generate photo-crosslinked gelatine methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel co-networks that provide the required mechanical and biochemical features to mimic both the epithelial and stromal compartments of the intestinal mucosa, i.e. they are soft, cell adhesive and cell-loading friendly, and suitable for long-term culturing. We show that fibroblasts can be embedded in the GelMA-PEGDA hydrogels while epithelial cells can grow on top to form a mature epithelial monolayer that exhibits barrier properties which closely mimic those of the intestinal barrier in vivo, as shown by the physiologically relevant transepithelial electrical resistance (TEER) and permeability values. The presence of fibroblasts in the artificial stroma compartment accelerates the formation of the epithelial monolayer and boosts the recovery of the epithelial integrity upon temporary barrier disruption, demonstrating that our system is capable of successfully reproducing the interaction between different cellular compartments. As such, our hydrogel co-networks offer a technologically simple yet sophisticated approach to produce functional three-dimensional (3D) in vitro models of epithelial barriers with epithelial and stromal cells arranged in a spatially relevant manner and near-physiological functionality.
Collapse
Affiliation(s)
- Anna Vila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ylä‐Outinen L, Harju V, Joki T, Koivisto JT, Karvinen J, Kellomäki M, Narkilahti S. Screening of Hydrogels for Human Pluripotent Stem Cell–Derived Neural Cells: Hyaluronan‐Polyvinyl Alcohol‐Collagen‐Based Interpenetrating Polymer Network Provides an Improved Hydrogel Scaffold. Macromol Biosci 2019; 19:e1900096. [DOI: 10.1002/mabi.201900096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Ylä‐Outinen
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere University Kalevantie 4 33014 Tampere Finland
| | - Venla Harju
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere University Kalevantie 4 33014 Tampere Finland
| | - Tiina Joki
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere University Kalevantie 4 33014 Tampere Finland
| | - Janne T. Koivisto
- Biomaterials and Tissue Engineering GroupFaculty of Medicine and Health TechnologyTampere University Kalevantie 4 33014 Tampere Finland
| | - Jennika Karvinen
- Biomaterials and Tissue Engineering GroupFaculty of Medicine and Health TechnologyTampere University Kalevantie 4 33014 Tampere Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering GroupFaculty of Medicine and Health TechnologyTampere University Kalevantie 4 33014 Tampere Finland
| | - Susanna Narkilahti
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere University Kalevantie 4 33014 Tampere Finland
| |
Collapse
|
16
|
Gote V, Sikder S, Sicotte J, Pal D. Ocular Drug Delivery: Present Innovations and Future Challenges. J Pharmacol Exp Ther 2019; 370:602-624. [DOI: 10.1124/jpet.119.256933] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
|
17
|
Modified cells as potential ocular drug delivery systems. Drug Discov Today 2018; 24:1621-1626. [PMID: 30562585 DOI: 10.1016/j.drudis.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
Drug delivery to ocular targets is problematic, especially in retinal disease treatment. Therefore, targeted drug delivery, prolonged drug action, and minimally invasive treatments are needed. In this review, we describe cell technologies for drug delivery. These technologies are based on genetic engineering and nongenetic-based approaches for cell modification. In principle, cell technologies enable targeted delivery, long drug action, and minimally invasive administration, but they have only been sparsely studied for ocular drug delivery. Herein, these technologies are discussed in the ocular context.
Collapse
|
18
|
Guter M, Breunig M. Hyaluronan as a promising excipient for ocular drug delivery. Eur J Pharm Biopharm 2016; 113:34-49. [PMID: 27914235 DOI: 10.1016/j.ejpb.2016.11.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 01/11/2023]
Abstract
Hyaluronan (HA) is a naturally occurring polysaccharide and well known for its exceptional properties such as high biocompatibility and biodegradability, along with a low immunogenicity. Besides its use for various biomedical applications it recently came into focus as a favorable excipient for the formulation of various ocular therapeutics. This review article summarizes the ocular distribution of HA and its most heavily investigated binding protein "cluster of differentiation 44" (CD44) which is the rationale for the clinical use of HA, primarily as an additive in ocular applications ranging from eye drops to contact lenses. Moreover, examples will be given for using HA in various pre-clinical approaches to generate entirely new therapeutics, most notably in the field of nanotechnology.
Collapse
Affiliation(s)
- Michaela Guter
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93049 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93049 Regensburg, Germany.
| |
Collapse
|
19
|
Vaziri K, Schwartz SG, Relhan N, Kishor KS, Flynn Jr HW. New Therapeutic Approaches in Diabetic Retinopathy. Rev Diabet Stud 2015; 12:196-210. [PMID: 26676668 PMCID: PMC5397990 DOI: 10.1900/rds.2015.12.196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy is a common microvascular complication of diabetes mellitus. It affects a substantial proportion of US adults over age 40. The condition is a leading cause of visual loss. Much attention has been given to expanding the role of current treatments along with investigating various novel therapies and drug delivery methods. In the treatment of diabetic macular edema (DME), intravitreal pharmacotherapies, especially anti-vascular endothelial growth factor (anti-VEGF) agents, have gained popularity. Currently, anti-VEGF agents are often used as first-line agents in center-involved DME, with recent data suggesting that among these agents, aflibercept leads to better visual outcomes in patients with worse baseline visual acuities. While photocoagulation remains the standard treatment for proliferative diabetic retinopathy (PDR), recent FDA approvals of ranibizumab and aflibercept in the management of diabetic retinopathy associated with DME may suggest a potential for pharmacologic treatments of PDR as well. Novel therapies, including small interfering RNAs, chemokines, kallikrein-kinin inhibitors, and various anti-angiogenic agents, are currently being evaluated for the management of diabetic retinopathy and DME. In addition to these strategies, novel drug delivery methods such as sustained-release implants and refillable reservoir implants are either under active evaluation or have recently gained FDA approval. This review provides an update on the novel developments in the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
| | - Stephen G. Schwartz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Emerging developments and research for drug delivery to the posterior segment offer a promising future for the treatment of vitreoretinal disease. As new technologies enter the market, clinicians should be aware of new indications and ongoing clinical trials. RECENT FINDINGS This review summarizes the advantages and shortcomings of the most commonly used drug delivery methods, including vitreous dynamics, physician sustainability and patient preferences. Currently available, intravitreal, corticosteroid-release devices offer surgical and in-office management of retinal vascular disease and posterior uveitis. The suprachoroidal space offers a new anatomic location for the delivery of lower dose medications directly to the target tissue. Implantable drug reservoirs would potentially allow for less frequent intravitreal injections reducing treatment burdens and associated risks. Newer innovations in encapsulated cell technology offer promising results in early clinical trials. SUMMARY Although pars plana intravitreal injection remains the mainstay of therapy for many vitreoretinal diseases, targeted delivery and implantable eluting devices are rapidly demonstrating safety and efficacy. These therapeutic modalities offer promising options for the vitreoretinal therapeutic landscape.
Collapse
|