1
|
Huart J, Pozzi A, Bleedorn J, Lu TW, Knell S, Park B. Statistical shape modeling of the geometric morphology of the canine femur, tibia, and patella. Front Vet Sci 2024; 11:1366827. [PMID: 39051009 PMCID: PMC11266300 DOI: 10.3389/fvets.2024.1366827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Bone morphometry varies among dogs of different sizes and breeds. Studying these differences may help understand the predisposition of certain breeds for specific orthopedic pathologies. This study aimed to develop a statistical shape model (SSM) of the femur, patella, and tibia of dogs without any clinical orthopeadic abnormalities to analyze and compare morphological variations based on body weight and breed. A total of 97 CT scans were collected from different facilities and divided based on breed and body weight. The 3D models of the bones were obtained and aligned to a coordinate system. The SSM was created using principal component analysis (PCA) to analyze shape variations. The study found that the first few modes of variation accounted for a significant percentage of the total variation, with size/scale being the most prominent factor. The results provide valuable insights into normal anatomical variations and can be used for future research in understanding pathological bone morphologies and developing 3D imaging algorithms in veterinary medicine.
Collapse
Affiliation(s)
- Jeremy Huart
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty University of Zurich, Zürich, Switzerland
| | - Antonio Pozzi
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty University of Zurich, Zürich, Switzerland
| | - Jason Bleedorn
- Department of Veterinary Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Sebastian Knell
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty University of Zurich, Zürich, Switzerland
| | - Brian Park
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty University of Zurich, Zürich, Switzerland
| |
Collapse
|
2
|
Deschamps C, Denis S, Humbert D, Priymenko N, Chalancon S, De Bodt J, Van de Wiele T, Ipharraguerre I, Alvarez-Acero I, Achard C, Apper E, Blanquet-Diot S. Canine Mucosal Artificial Colon: development of a new colonic in vitro model adapted to dog sizes. Appl Microbiol Biotechnol 2024; 108:166. [PMID: 38261090 PMCID: PMC10806056 DOI: 10.1007/s00253-023-12987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Differences in dog breed sizes are an important determinant of variations in digestive physiology, mainly related to the large intestine. In vitro gut models are increasingly used as alternatives to animal experiments for technical, cost, societal, and regulatory reasons. Up to now, only one in vitro model of the canine colon incorporates the dynamics of different canine gut regions, yet no adaptations exist to reproduce size-related digestive parameters. To address this limitation, we developed a new model of the canine colon, the CANIne Mucosal ARtificial COLon (CANIM-ARCOL), simulating main physiochemical (pH, transit time, anaerobiosis), nutritional (ileal effluent composition), and microbial (lumen and mucus-associated microbiota) parameters of this ecosystem and adapted to three dog sizes (i.e., small under 10 kg, medium 10-30 kg, and large over 30 kg). To validate the new model regarding microbiota composition and activities, in vitro fermentations were performed in bioreactors inoculated with stools from 13 dogs (4 small, 5 medium, and 4 large). After a stabilization period, microbiota profiles clearly clustered depending on dog size. Bacteroidota and Firmicutes abundances were positively correlated with dog size both in vitro and in vivo, while opposite trends were observed for Actinobacteria and Proteobacteria. As observed in vivo, microbial activity also increased with dog size in vitro, as evidenced from gas production, short-chain fatty acids, ammonia, and bile acid dehydroxylation. In line with the 3R regulation, CANIM-ARCOL could be a relevant platform to assess bilateral interactions between food and pharma compounds and gut microbiota, capturing inter-individual or breed variabilities. KEY POINTS: • CANIM-ARCOL integrates main canine physicochemical and microbial colonic parameters • Gut microbiota associated to different dog sizes is accurately maintained in vitro • The model can help to move toward personalized approach considering dog body weight.
Collapse
Affiliation(s)
- Charlotte Deschamps
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
- Lallemand Animal Nutrition, Blagnac, France
| | - Sylvain Denis
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Nathalie Priymenko
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31000, Toulouse, France
| | - Sandrine Chalancon
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Jana De Bodt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Inma Alvarez-Acero
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council, ICTAN-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
3
|
Hou Z, Cheng X, Zhao X, Lin J, Zhang H, Li Y, Ding J. Design and evaluation of gastro-swelling/gastro-floating sustained-release tablets of brivaracetam for epilepsy therapy. Int J Pharm 2023; 644:123301. [PMID: 37572859 DOI: 10.1016/j.ijpharm.2023.123301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
To prolong the absorption of the drug and achieve the effect of gastric retention, new brivaracetam tablets together with the characteristics of rapid swelling and sustained floating have been developed here. The tablets were optimized and prepared by direct compression techniques using Kollidon® SR and cross-linked polyvinylpyrrolidone (PVPP) XL as the matrix and disintegrant respectively, and carbomer 71G NF and polyethylene oxide (PEO) N60K as the gel materials to achieve sustained release effect. The characteristics of static expansion, floating time, drug release and dynamic swelling performance in vitro of the tablets were evaluated. The optimized formulations (F5 and F10) exhibited satisfactory swelling and floating properties, mechanical strength, and in vitro sustained-release characteristic with diffusion and matrix erosion mechanisms. X-ray images of beagle dogs showed that the tablet F5 could be retained in the stomach for more than 6 h. Furthermore, the pharmacokinetic studies in volunteers exhibited that the bioavailability of F5 and F10 was 95.70% (90% CI, 83.80%-109.28%) and 103.39% (90% CI, 87.61%-122.01%), respectively, relative to commercial tablets, with Tmax prolonged, demonstrating an excellent sustained-release effect. Therefore, the present system can reduce dosing frequency and improve patient compliance, which is expected to be a promising treatment option for epilepsy patients.
Collapse
Affiliation(s)
- Zhiyuan Hou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410006, China
| | - Xiaoxiao Cheng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410006, China
| | - Xiangcheng Zhao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410006, China
| | - Jianing Lin
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410006, China
| | - Hailong Zhang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410006, China; Changsha Jingyi Pharmaceutical Technology Co., LTD, Changsha, Hunan 410006, China.
| | - Youshan Li
- Changsha Jingyi Pharmaceutical Technology Co., LTD, Changsha, Hunan 410006, China.
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410006, China.
| |
Collapse
|
4
|
Opetz DL, Oba PM, Swanson KS. Effects of overfeeding on the digestive efficiency, voluntary physical activity levels, and fecal characteristics and microbiota of adult cats. J Anim Sci 2023; 101:skad338. [PMID: 37772600 PMCID: PMC10590176 DOI: 10.1093/jas/skad338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
The incidence of feline obesity continues to rise despite it being a preventable disease. There are many risks and health perturbations associated with obesity, with several of those impacting a pet's quality of life, wellness, and longevity. Feline obesity is commonly studied, but most research has been focused on weight loss rather than weight gain. To our knowledge, feline studies have not examined the implications of overfeeding and weight gain on gastrointestinal transit time (GTT) nor the association it has with the fecal microbiota. Therefore, the objective of this study was to determine the effects of overfeeding and weight gain on apparent total tract digestibility (ATTD), GTT, blood hormones, serum metabolites, hematology, fecal microbiota populations, and voluntary physical activity of cats. Eleven lean adult spayed female cats [body weight (BW) = 4.11 ± 0.43 kg; body condition score = 5.41 ± 0.3; age = 5.22 ± 0.03 y] were used in a longitudinal weight gain study. After a 2-wk baseline phase, cats were allowed to overeat for 18 wk. A commercially available complete and balanced diet was fed during the baseline phase to identify the intake needed to maintain BW. Cats were then fed the same diet ad libitum to induce weight gain. Fecal samples, blood samples, and voluntary physical activity data were collected at baseline (week 0) and 6, 12, and 18 wk after weight gain. Fecal samples were collected for microbiota analysis, determination of ATTD, and GTT measurement while blood samples were collected for serum chemistry, hematology, and insulin and leptin measurements. Microbiota data were evaluated using QIIME2. All other measures were evaluated statistically using the mixed models procedure of SAS using repeated measures analysis, with time effects being the focus. A P < 0.05 was considered significant. The ATTD of dry matter (P = 0.0061), organic matter (P = 0.0130), crude protein (P < 0.0001), fat (P = 0.0002), and gross energy (P = 0.0002), and GTT (P = 0.0418) decreased with overfeeding and weight gain. Fecal bacterial alpha diversity measures were unchanged, but fecal bacterial beta diversity was impacted (P < 0.05) with overfeeding and weight gain. The relative abundances of 16 bacterial genera, including Bifidobacterium, Collinsella, Erysipelatoclostridium were affected (P < 0.05) by overfeeding and weight gain. In conclusion, overfeeding and subsequent weight gain reduced ATTD, reduced GTT, and caused changes to the fecal microbial community of adult cats.
Collapse
Affiliation(s)
- Danielle L Opetz
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Tolbert MK, Telles NJ, Simon BT, Scallan EM, Price JM, Gould EN, Papich MG, Lidbury JA, Steiner JM, Kathrani A. Gastrointestinal transit time is faster in Beagle dogs compared to cats. J Am Vet Med Assoc 2022; 260:S8-S14. [PMID: 36044730 DOI: 10.2460/javma.22.07.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize gastrointestinal transit times (GITTs) and pH in dogs, and to compare to data recently described for cats. ANIMALS 7 healthy, colony-housed Beagles. PROCEDURES The GITTs and pH were measured using a continuous pH monitoring system. For the first period (prefeeding), food was withheld for 20 hours followed by pH capsule administration. Five hours after capsule administration, dogs were offered 75% of their historical daily caloric intake for 1 hour. For the second period (postfeeding), food was withheld for 24 hours. Dogs were allowed 1 hour to eat, followed by capsule administration. Both periods were repeated 3 times. The GITTs and pH were compared to published feline data. RESULTS The mean ± SD transit times in dogs for the pre- and postfeeding periods, respectively, were esophageal, 3 ± 5 minutes and 13 ± 37 minutes; gastric, 31 ± 60 minutes and 829 ± 249 minutes; and intestinal, 795 ± 444 minutes and 830 ± 368 minutes. The mean ± SD gastrointestinal pH in dogs for the pre- and postfeeding periods, respectively, were esophageal, 6.6 ± 0.6 and 5.7 ± 1.0; gastric, 3.0 ± 1.4 and 1.8 ± 0.3; intestinal, 7.9 ± 0.3 and 7.7 ± 0.6; first-hour small intestinal, 7.6 ± 0.5 and 7.1 ± 0.4; and last-hour large intestinal, 7.9 ± 0.6 and 7.7 ± 1.0. The first-hour small intestinal pH and total transit times varied between dogs and cats depending on feed period (P = .002 and P = .04, respectively). Post hoc analysis revealed significantly shorter total transit times in dogs prefeeding (P = .005; mean ± SD for cats, 2,441 ± 1,359 minutes; for dogs, 828 ± 439 minutes) and postfeeding (P = .03; mean ± SD for cats, 3,009 ± 1,220 minutes; for dogs, 1,671 ± 513 minutes). Total transit time for dogs was also shorter pre- versus postfeeding (P = .003). CLINICAL RELEVANCE GITT is faster in Beagles compared to cats, but gastrointestinal pH are similar when fed the same diet.
Collapse
Affiliation(s)
- M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Naila J Telles
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Bradley T Simon
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Elizabeth M Scallan
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Joshua M Price
- Research Computing Support, University of Tennessee, Knoxville, TN
| | - Emily N Gould
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Mark G Papich
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Aarti Kathrani
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London,UK
| |
Collapse
|
6
|
Deschamps C, Humbert D, Zentek J, Denis S, Priymenko N, Apper E, Blanquet-Diot S. From Chihuahua to Saint-Bernard: how did digestion and microbiota evolve with dog sizes. Int J Biol Sci 2022; 18:5086-5102. [PMID: 35982892 PMCID: PMC9379419 DOI: 10.7150/ijbs.72770] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/17/2022] [Indexed: 11/05/2022] Open
Abstract
Health and well-being of dogs are of paramount importance to their owners. Digestion plays a key role in dog health, involving physicochemical, mechanical and microbial actors. However, decades of breeding selection led to various dog sizes associated with different digestive physiology and disease sensitivity. Developing new products requires the consideration of all the multi-faceted aspects of canine digestion, the evaluation of food digestibility, drug release and absorption in the gut. This review paper provides an exhaustive literature survey on canine digestive physiology, focusing on size effect on anatomy and digestive parameters, with graphical representation of data classified as "small", "medium" and "large" dogs. Despite the huge variability between protocols and animals, interesting size effects on gastrointestinal physiology were highlighted, mainly related to the colonic compartment. Colonic measurements, transit time permeability, fibre degradation, faecal short-chain fatty acid concentration and faecal water content increase while faecal bile acid concentration decreases with body size. A negative correlation between body weight and Proteobacteria relative abundance was observed suggesting an effect of dog body size on faecal microbiota. This paper gathers helpful in vivo data for academics and industrials and supports the development of new food and pharma products to move towards canine personalized nutrition and health.
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France.,Lallemand Animal Nutrition, Blagnac, France
| | | | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Strasse 49, Berlin, Germany
| | - Sylvain Denis
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France
| | - Nathalie Priymenko
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | |
Collapse
|
7
|
Pereira AM, Clemente A. Dogs' Microbiome From Tip to Toe. Top Companion Anim Med 2021; 45:100584. [PMID: 34509665 DOI: 10.1016/j.tcam.2021.100584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Microbiota and microbiome, which refers, respectively, to the microorganisms and conjoint of microorganisms and genes are known to live in symbiosis with hosts, being implicated in health and disease. The advancements and cost reduction associated with high-throughput sequencing techniques have allowed expanding the knowledge of microbial communities in several species, including dogs. Throughout their body, dogs harbor distinct microbial communities according to the location (e.g., skin, ear canal, conjunctiva, respiratory tract, genitourinary tract, gut), which have been a target of study mostly in the last couple of years. Although there might be a core microbiota for different body sites, shared by dogs, it is likely influenced by intrinsic factors such as age, breed, and sex, but also by extrinsic factors such as the environment (e.g., lifestyle, urban vs rural), and diet. It starts to become clear that some medical conditions are mediated by alterations in microbiota namely dysbiosis. Moreover, understanding microbial colonization and function can be used to prevent medical conditions, for instance, modulation of gut microbiota of puppies is more effective to ensure a healthy gut than interventions in adults. This paper gathers current knowledge of dogs' microbial communities, exploring their function, implications in the development of diseases, and potential interactions among communities while providing hints for further research.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- University of the Azores, Faculty of Agricultural and Environmental Sciences, Institute of Agricultural and Environmental Research and Technology (IITAA). Rua Capitão João d'Ávila, Azores, Portugal.
| | - Alfonso Clemente
- Department of Physiology and Biochemistry in Animal Nutrition, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
8
|
Furthner E, Kowalewski MP, Torgerson P, Reichler IM. Verifying the placement and length of feeding tubes in canine and feline neonates. BMC Vet Res 2021; 17:208. [PMID: 34098946 PMCID: PMC8185947 DOI: 10.1186/s12917-021-02909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background Tube feeding is a common procedure in neonatology. In humans, tube misplacement reportedly occurs in up to 59% of all cases and may lead to perforation in 1.1% of preterm intubated neonates. While numerous studies on optimal tube placement have been performed in human neonates, current recommendations on tube feeding in canine and feline neonatology are based, at best, on studies performed in adult animals. Herein, we aimed to test ultrasonography as a tool to verify tube placement in puppies and kittens and to compare different anatomical predictive markers used in human, canine and feline neonates. Results The predictive tube length when held bent between the last rib and the mouth may induce trauma compared to when held straight. A strong positive linear correlation was observed between birthweight and gastric cardia localization. Ultrasonography findings were similar to coeliotomy findings. Stomach volume was less than 2 mL per 100 g in the less-than-one-day-old studied puppies (n = 25) and kittens (n = 28). Conclusions A weight-based equation was calculated to help predict appropriate tube placement. Ultrasonography can be used to control gastric tube placement, and neonates less than one-day-old have a smaller stomach capacity. Further studies are required to evaluate whether more-than-one-day-old puppies follow the same linear correlation with their weight. Further in vivo studies are warranted to determine the gold standard procedure for tube feeding in neonatal puppies and kittens.
Collapse
Affiliation(s)
- Etienne Furthner
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| | - Mariusz Paweł Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul Torgerson
- Institute of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Iris Margaret Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| |
Collapse
|
9
|
Pereira AM, Guedes M, Matos E, Pinto E, Almeida AA, Segundo MA, Correia A, Vilanova M, Fonseca AJM, Cabrita ARJ. Effect of Zinc Source and Exogenous Enzymes Supplementation on Zinc Status in Dogs Fed High Phytate Diets. Animals (Basel) 2020; 10:ani10030400. [PMID: 32121315 PMCID: PMC7142709 DOI: 10.3390/ani10030400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Zinc is an essential element, a cofactor of many enzymes, and performs catalytic, structural and regulatory functions. Once in the gastrointestinal tract, zinc can interact with food constituents. Phytic acid, the major phosphorus storage in plants, limits zinc availability from animal feeds due to the formation of insoluble complexes with phytates. This study tested the effect of supplemental zinc source (zinc sulfate and a chelate zinc proteinate) and the addition of exogenous enzymes from a solid-state fermentation product of Aspergillus niger to a high phytate diet. The study was designed according to three Latin Squares 4 × 4 with a 2 × 2 factorial arrangement of treatments, with four periods, four diets, and 12 young adult Beagles. Periods lasted 5 weeks each. Diets were supplemented with 75 mg/kg of zinc sulfate (IZ) or zinc proteinate (OZ), and without or with 200 mg/kg of exogenous enzymes (IZ+, OZ+). Results showed that zinc proteinate increased the bioavailability of phosphorus, yet the zinc biomarkers remained unaffected by the zinc source, with the exception of lymphocyte subsets that benefit from zinc proteinate. The use of exogenous enzymes did not affect zinc availability nor nutrient and energy digestibility.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (A.M.P.); (M.G.); (A.J.M.F.)
| | - Margarida Guedes
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (A.M.P.); (M.G.); (A.J.M.F.)
| | - Elisabete Matos
- SORGAL, Sociedade de Óleos e Rações S.A., Estrada Nacional 109 Lugar da Pardala, 3880-728 S. João Ovar, Portugal;
| | - Edgar Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (E.P.); (A.A.A.); (M.A.S.)
| | - Agostinho A. Almeida
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (E.P.); (A.A.A.); (M.A.S.)
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (E.P.); (A.A.A.); (M.A.S.)
| | - Alexandra Correia
- i3S/IBMC—Instituto de Investigação e Inovação em Saúde/Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal; (A.C.); (M.V.)
| | - Manuel Vilanova
- i3S/IBMC—Instituto de Investigação e Inovação em Saúde/Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal; (A.C.); (M.V.)
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - António J. M. Fonseca
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (A.M.P.); (M.G.); (A.J.M.F.)
| | - Ana Rita J. Cabrita
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (A.M.P.); (M.G.); (A.J.M.F.)
- Correspondence: ; Tel.: +351-220-428-000
| |
Collapse
|
10
|
Ozdemir Z, Faki HE, Uney K, Tras B. Investigation of pharmacokinetic interaction between ivermectin and praziquantel after oral administration in healthy dogs. J Vet Pharmacol Ther 2019; 42:497-504. [PMID: 31183888 DOI: 10.1111/jvp.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to determine the pharmacokinetic interaction between ivermectin (0.4 mg/kg) and praziquantel (10 mg/kg) administered either alone or co-administered to dogs after oral treatment. Twelve healthy cross-bred dogs (weighing 18-21 kg, aged 1-3 years) were allocated randomly into two groups of six dogs (four females, two males) each. In first group, the tablet forms of praziquantel and ivermectin were administered using a crossover design with a 15-day washout period, respectively. Second group received tablet form of ivermectin plus praziquantel. The plasma concentrations of ivermectin and praziquantel were determined by high-performance liquid chromatography using a fluorescence and ultraviolet detector, respectively. The pharmacokinetic parameters of ivermectin following oral alone-administration were as follows: elimination half-life (t1/2λz ) 110 ± 11.06 hr, area under the plasma concentration-time curve (AUC0-∞ ) 7,805 ± 1,768 hr. ng/ml, maximum concentration (Cmax ) 137 ± 48.09 ng/ml, and time to reach Cmax (Tmax ) 14.0 ± 4.90 hr. The pharmacokinetic parameters of praziquantel following oral alone-administration were as follows: t1/2λz 7.39 ± 3.86 hr, AUC0-∞ 4,301 ± 1,253 hr. ng/ml, Cmax 897 ± 245 ng/ml, and Tmax 5.33 ± 0.82 hr. The pharmacokinetics of ivermectin and praziquantel were not changed, except Tmax of praziquantel in the combined group. In conclusion, the combined formulation of ivermectin and praziquantel can be preferred in the treatment and prevention of diseases caused by susceptible parasites in dogs because no pharmacokinetic interaction was determined between them.
Collapse
Affiliation(s)
- Zeynep Ozdemir
- Anatolia Medicine & Chemical Industry Corporation, Konya, Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
11
|
Haligur A, Ozkadif S, Alan A. Light and scanning electron microscopic study of lingual papillae in the wolf (
Canis lupus
). Microsc Res Tech 2018; 82:501-506. [DOI: 10.1002/jemt.23193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Ayse Haligur
- Department of Anatomy, Ceyhan Veterinary FacultyCukurova University Ceyhan Adana Turkey
| | - Sema Ozkadif
- Department of Anatomy, Ceyhan Veterinary FacultyCukurova University Ceyhan Adana Turkey
| | - Aydin Alan
- Department of Anatomy, Veterinary FacultyErciyes University Kayseri Turkey
| |
Collapse
|
12
|
Dahlgren D, Roos C, Johansson P, Lundqvist A, Tannergren C, Abrahamsson B, Sjögren E, Lennernäs H. Regional Intestinal Permeability in Dogs: Biopharmaceutical Aspects for Development of Oral Modified-Release Dosage Forms. Mol Pharm 2016; 13:3022-33. [DOI: 10.1021/acs.molpharmaceut.6b00515] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- David Dahlgren
- Department
of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Carl Roos
- Department
of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | | | | | | | | | - Erik Sjögren
- Department
of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Hans Lennernäs
- Department
of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| |
Collapse
|
13
|
Lin Z, Gehring R, Mochel JP, Lavé T, Riviere JE. Mathematical modeling and simulation in animal health – Part
II
: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J Vet Pharmacol Ther 2016; 39:421-38. [DOI: 10.1111/jvp.12311] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Z. Lin
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| | - R. Gehring
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| | - J. P. Mochel
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Basel Switzerland
| | - T. Lavé
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Basel Switzerland
| | - J. E. Riviere
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| |
Collapse
|