1
|
Benedikt Brenner M, Wüst M, Kuentz M, Wagner KG. High loading of lipophilic compounds in mesoporous silica for improved solubility and dissolution performance. Int J Pharm 2024; 654:123946. [PMID: 38417728 DOI: 10.1016/j.ijpharm.2024.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Loading poorly soluble active pharmaceutical ingredients (API) into mesoporous silica can enable API stabilization in non-crystalline form, which leads to improved dissolution. This is particularly beneficial for highly lipophilic APIs (log D7.4 > 8) as these drugs often exhibit limited solubility in dispersion forming carrier polymers, resulting in low drug load and reduced solid state stability. To overcome this challenge, we loaded the highly lipophilic natural products coenzyme Q10 (CoQ10) and astaxanthin (ASX), as well as the synthetic APIs probucol (PB) and lumefantrine (LU) into the mesoporous silica carriers Syloid® XDP 3050 and Silsol® 6035. All formulations were physically stable in their non-crystalline form and drug loads of up to 50 % were achieved. At increasing drug loads, a marked increase in equilibrium solubility of the active ingredients in biorelevant medium was detected, leading to improved performance during biorelevant biphasic dissolution studies (BiPHa + ). Particularly the natural products CoQ10 and ASX showed substantial benefits from being loaded into mesoporous carrier particles and clearly outperformed currently available commercial formulations. Performance differences between the model compounds could be explained by in silico calculations of the mixing enthalpy for drug and silica in combination with an experimental chromatographic method to estimate molecular interactions.
Collapse
Affiliation(s)
- Marvin Benedikt Brenner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutics, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Matthias Wüst
- University of Bonn, Institute of Nutritional and Food Sciences, Food Chemistry, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Karl G Wagner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutics, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
| |
Collapse
|
2
|
Mathure D, Sonawane P, Ranpise H, Awasthi R. Nanoliposomes Embedded Nanocochleates for Codelivery of Artemether and Lumefantrine: An In Vitro and In Vivo Study. Assay Drug Dev Technol 2024; 22:63-72. [PMID: 38193797 DOI: 10.1089/adt.2023.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Antimalarial drugs are being encapsulated in nanotechnology-based carriers because there are not enough new treatment options and people are becoming more resistant to the ones that are already available. This approach uses two or more biochemical targets of malarial parasites. The codelivery of artemether and lumefantrine (AL) combines the synergistic effect of artemether for an early onset of action followed by the prolonged effect of lumefantrine. The bioavailability of artemether and lumefantrine is low due to their low solubility. Thus, an alternative lipidic formulation, namely nanocochleate, was developed for the selected drugs by adding calcium ions into preformed nanoliposomes (AL-loaded liposomes). Using phospholipon 90H and cholesterol, a thin-film hydration method produced drug-loaded liposomes. The synthesized AL-loaded liposomes were further incorporated into nanocochleates. The formulations were evaluated for in vitro and in vivo parameters. Nanocochleates had a particle size of 200.7 nm, a zeta potential of -9.4 mV, and an entrapment efficiency of 73.12% ± 1.82% and 61.46% ± 0.78%, respectively, for artemether and lumefantrine. Whereas liposomes had a particle size of 210 nm and an entrapment efficiency of 67.34% ± 1.52% and 53.24% ± 0.78%, respectively, for artemether and lumefantrine. An X-ray diffraction study confirmed the amorphous state of artemether and lumefantrine in liposomes and nanocochleate. Nanocochleate showed a controlled release profile for loaded drugs. When compared with free drugs, nanocochleate showed low tissue distribution and a 20-fold increase in bioavailability in rats. Thus, nanocochleate offers an interesting alternative to an existing dosage form for the treatment of malaria.
Collapse
Affiliation(s)
- Dyandevi Mathure
- Department of Pharmaceutics, Bharati Vidyapeeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Prashant Sonawane
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Hemantkumar Ranpise
- Department of Pharmaceutics, RMPs Bhalchandra College of Pharmacy, Pune, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun, India
| |
Collapse
|
3
|
Lumefantrine solid dispersions with piperine for the enhancement of solubility, bioavailability and anti-parasite activity. Int J Pharm 2022; 628:122354. [DOI: 10.1016/j.ijpharm.2022.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
4
|
Shakeel K, Ahmad FJ, Harwansh RK, Rahman MA. β-Artemether and Lumefantrine Dual Drug Loaded Lipid Nanoparticles: Physicochemical Characterization, Pharmacokinetic Evaluation and Biodistribution Study. Pharm Nanotechnol 2022; 10:PNT-EPUB-123033. [PMID: 36029070 DOI: 10.2174/2211738510666220428133532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND β-artemether (BAT) and lumefantrine (LFT) combination therapies are well recognized for the treatment of malaria. However, the current conventional formulations have several drawbacks. OBJECTIVE The study aims to develop novel lipid nanoparticles (LNP) for efficient delivery of BAT and LFT. METHODS The LNP were prepared by solvent injection method and optimized by the Box-Behnken experimental design to achieve the desired particle size, maximum entrapment efficiency (EE), and percentage drug release. BAT and LFT in rat plasma were estimated by liquid chromatographytandem mass spectrometry (LC-MS/MS). RESULTS Freeze-dried LNP comprised of 78.74% (w/w) lipid, 15.74% (w/w) surfactant, 3.93% (w/w) co-surfactant and 1.57% mannitol with respect to the total inactive components. Mean particle size and zeta potential were found to be 140.22 ± 1.36 nm and -35.23 mv, respectively. EE was 80.60 ± 3.85% for BAT and 69.64 ± 2.63% for LFT. The optimized formulation exhibited a biphasic release profile in phosphate buffer (pH 7.2). In vivo study revealed an increased bioavailability of BAT and LFT from dual drug loaded LNP compared to the pure drug solution. Moreover, the tissue distribution study confirmed the high uptake of both the drugs in the liver and spleen. CONCLUSION The study demonstrated the potential use of the developed formulation for oral administration in the treatment of malaria.
Collapse
Affiliation(s)
- Kashif Shakeel
- Department of Pharmaceutics, Hamdard University, New Delhi, India
| | | | | | | |
Collapse
|
5
|
Seo EB, du Plessis LH, Viljoen JM. Solidification of Self-Emulsifying Drug Delivery Systems as a Novel Approach to the Management of Uncomplicated Malaria. Pharmaceuticals (Basel) 2022; 15:ph15020120. [PMID: 35215233 PMCID: PMC8877057 DOI: 10.3390/ph15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria affects millions of people annually, especially in third-world countries. The mainstay of treatment is oral anti-malarial drugs and vaccination. An increase in resistant strains of malaria parasites to most of the current anti-malarial drugs adds to the global burden. Moreover, existing and new anti-malarial drugs are hampered by significantly poor aqueous solubility and low permeability, resulting in low oral bioavailability and patient noncompliance. Lipid formulations are commonly used to increase solubility and efficacy and decrease toxicity. The present review discusses the findings from studies focusing on specialised oral lipophilic drug delivery systems, including self-emulsifying drug delivery systems (SEDDSs). SEDDSs facilitate the spontaneous formation of liquid emulsions that effectively solubilise the incorporated drugs into the gastrointestinal tract and thereby improve the absorption of poorly-soluble anti-malaria drugs. However, traditional SEDDSs are normally in liquid dosage forms, which are delivered orally to the site of absorption, and are hampered by poor stability. This paper discusses novel solidification techniques that can easily and economically be up-scaled due to already existing industrial equipment that could be utilised. This method could, furthermore, improve product stability and patient compliance. The possible impact that solid oral SEDDSs can play in the fight against malaria is highlighted.
Collapse
|
6
|
Volpe-Zanutto F, Fonseca-Santos B, McKenna PE, Paredes AJ, Dávila JL, McCrudden MTC, Tangerina MMP, Ceccheto Figueiredo M, Vilegas W, Brisibe A, Akira D'Ávila M, Donnelly RF, Chorilli M, Foglio MA. Novel transdermal bioadhesive surfactant-based system for release and solubility improvement of antimalarial drugs artemether-lumefantrine. Biomed Mater 2021; 16. [PMID: 34544052 DOI: 10.1088/1748-605x/ac2885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/20/2021] [Indexed: 01/10/2023]
Abstract
Artemether (ART) and lumefantrine (LUM) are the gold standard antimalarial drugs used for the treatment of malaria in children and pregnant women. Typically, ART and LUM are delivered orally in the form of a combined tablet, however, the appropriateness of this route of administration for these drugs is questionable due to the poor absorption and therefore bioavailability observed unless administered alongside lipid-rich foods. Transdermal drug delivery in the form of a patch-type system has been identified as a viable alternative to the conventional tablet-based therapy. A novel, surfactant-based ART-LUM formulation (S3AL), developed for transdermal delivery, may eliminate the shortcomings associated with oral delivery; namely poor drug absorption which is caused by the inherently low solubility of ART and LUM. Moreover, by successfully delivering these antimalarials transdermally, first-pass metabolism will be avoided leading to enhanced drug bioavailability in both cases. The S3AL formulation contained ART and LUM at equal concentrations (2.5% w/w of each) as well as Procetyl® AWS (30% w/w), oleic acid (10% w/w), 1-methyl-2-pyrrolidone (10% w/w), and water (45% w/w). The addition of LUM to the formulation changed the system from a striae structure to a dark field structure when visualized by a polarized light microscope. Additionally, this system possessed higher viscosity and superior skin bioadhesion, as evidenced by mechanical characterization, when compared to a similar formulation containing ART alone. S3AL was also proven to be biocompatible to human keratinocyte cells. Finally,in vitrostudies demonstrated the propensity of S3AL for successful delivery via the transdermal route, with 2279 ± 295 µg cm-2of ART and 94 ± 13 µg cm-2of LUM having permeated across dermatomed porcine skin after 24 h, highlighting its potential as a new candidate for the treatment of malaria.
Collapse
Affiliation(s)
- Fabiana Volpe-Zanutto
- Graduate School of Bioscience and Technology of Bioactive Products, Biology Institute, University at Campinas, Campinas, Sao Paulo, Brazil.,School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Bruno Fonseca-Santos
- UNESP- University Estadual Paulista, Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Sao Paulo, Brazil.,Faculty of Pharmaceutical Science, University at Campinas, Campinas, Sao Paulo, Brazil
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | | | - José Luis Dávila
- Centre for Information Technology 'Renato Archer' (CTI), 3D Printing open lab-Laprint, Campinas, Sao Paulo, Brazil
| | | | | | | | - Wagner Vilegas
- UNESP- Univ Estadual Paulista, Instituto de Biociências, São Vicente, Sao Paulo, Brazil
| | | | - Marcos Akira D'Ávila
- School of Mechanical Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Marlus Chorilli
- UNESP- University Estadual Paulista, Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Sao Paulo, Brazil
| | - Mary Ann Foglio
- Faculty of Pharmaceutical Science, University at Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
7
|
Kaur R, Gorki V, Katare OP, Dhingra N, Chauhan M, Kaur R, Nirmalan N, Singh B. Improved biopharmaceutical attributes of lumefantrine using choline mimicking drug delivery system: preclinical investigation on NK-65 P.berghei murine model. Expert Opin Drug Deliv 2021; 18:1533-1552. [PMID: 34176411 DOI: 10.1080/17425247.2021.1946512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Lumefantrine (LMF) is first-line antimalarial drug, possesses activity against almost all human malarial parasites, but the in vivo activity of this molecule gets thwarted due to its low and inconsistent oral bioavailability (i.e. 4-12%) owing to poor biopharmaceutical attributes. METHODS Lumefantrine phospholipid complex (LMF-PC) was prepared by rota-evaporation method following job's plot technique for the selection of apt stoichiometric ratios. Docking studies were carried out to determine the possible interaction(s) of LMF with phosphatidylcholine analogue. Comparative in vitro physiochemical, solid-state characterization, MTT assay, dose-response on P. falciparum, in vivo efficacy studies including pharmacokinetic and chemosuppression on NK-65 P. berghei infected mice were carried out. RESULTS Aqueous solubility was distinctly improved (i.e. 345 times) with phospholipid complex of LMF. Cytotoxicity studies on Hela and fibroblast cell lines demonstrated safety of LMF-PC with selectivity indices of 4395 and 5139, respectively. IC50 value was reduced almost 2.5 folds. Significant enhancement in Cmax (3.3-folds) and AUC (2.7-folds) of rat plasma levels indicated notable pharmacokinetic superiority of LMF-PC over LMF suspension. Differential leukocytic count and cytokine assay delineated plausible immunoregulatory role of LMF-PC with nearly 98% chemosuppression and over 30 days of post-survival. CONCLUSION Superior antimalarial efficacy and survival time with full recovery of infected mice revealed through histopathological studies.
Collapse
Affiliation(s)
- Ripandeep Kaur
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.,School of Science, Engineering & Environment, University of Salford, Manchester, UK.,UGC-Centre of Excellence in Nano Applications (Biomedical Sciences), Panjab University, Chandigarh, India
| | - Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - O P Katare
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Neelima Dhingra
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Monika Chauhan
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjot Kaur
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Niroshini Nirmalan
- School of Science, Engineering & Environment, University of Salford, Manchester, UK
| | - Bhupinder Singh
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.,UGC-Centre of Excellence in Nano Applications (Biomedical Sciences), Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Knaab TC, Held J, Burckhardt BB, Rubiano K, Okombo J, Yeo T, Mok S, Uhlemann AC, Lungerich B, Fischli C, Pessanha de Carvalho L, Mordmüller B, Wittlin S, Fidock DA, Kurz T. 3-Hydroxy-propanamidines, a New Class of Orally Active Antimalarials Targeting Plasmodium falciparum. J Med Chem 2021; 64:3035-3047. [PMID: 33666415 DOI: 10.1021/acs.jmedchem.0c01744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Hydroxypropanamidines are a new promising class of highly active antiplasmodial agents. The most active compound 22 exhibited excellent antiplasmodial in vitro activity with nanomolar inhibition of chloroquine-sensitive and multidrug-resistant parasite strains ofPlasmodium falciparum (with IC50 values of 5 and 12 nM against 3D7 and Dd2 strains, respectively) as well as low cytotoxicity in human cells. In addition, 22 showed strong in vivo activity in thePlasmodium berghei mouse model with a cure rate of 66% at 50 mg/kg and a cure rate of 33% at 30 mg/kg in the Peters test after once daily oral administration for 4 consecutive days. A quick onset of action was indicated by the fast drug absorption shown in mice. The new lead compound was also characterized by a high barrier to resistance and inhibited the heme detoxification machinery in P. falciparum.
Collapse
Affiliation(s)
- Tanja C Knaab
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstraße 1, Düsseldorf 40225, Germany
| | - Jana Held
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné B.P.: 242, Gabon
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitaetsstraße 1, Düsseldorf 40225, Germany
| | - Kelly Rubiano
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - John Okombo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstraße 1, Düsseldorf 40225, Germany
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, Socinstraße 57, Basel 4002, Switzerland.,University of Basel, Basel CH-4003, Switzerland
| | - Lais Pessanha de Carvalho
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné B.P.: 242, Gabon
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstraße 57, Basel 4002, Switzerland.,University of Basel, Basel CH-4003, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
9
|
Adegbola AJ, Soyinka JO, Bolaji OO. Effect of CYP3A5*3 genotypes on lumefantrine plasma concentrations among malaria-HIV-infected women. Pharmacogenomics 2020; 21:1289-1297. [PMID: 33243092 DOI: 10.2217/pgs-2020-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: We aimed to assess the effect of a functional polymorphism of CYP3A5 on lumefantrine pharmacokinetics. Patients & methods: Sixty-nine women diagnosed with malaria received standard doses of artemether-lumefantrine. Concentration-time data for lumefantrine and genotyping data were obtained for each participant. Pharmacokinetic-genotype associative relationships were assessed using linear regressions, Mann-Whitney U-test or Kruskal-Wallis statistics. Results: Average age and weight (standard deviation) of the patients were 33 (6.8) years and 59.5 (11.6) kg, respectively. CYP3A5*3 genotype associated with the log-transformed maximum concentration with the median (interquartile range) values of 8279 (6516-13,420) and 6331 (4093-8631) ng/ml (p = 0.032) among the carriers and noncarriers of CYP3A5*3, respectively. Besides, the NR1I3 c.152-1089T>C genotypes had an associative trend with the lumefantrine area under the curve (AUC0-96h) and clearance. Conclusion: CYP3A5*3 genetic variant is associated with a high maximum plasma concentration of lumefantrine. This warrants further investigations on the association between CYP3A5*3 gene variants, lumefantrine pharmacokinetics and electrophysiological effect.
Collapse
Affiliation(s)
- Adebanjo J Adegbola
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Julius O Soyinka
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Oluseye O Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| |
Collapse
|
10
|
Liang Q, Ma P, Zhang Q, Yin Y, Wang P, Wang S, Zhang Y, Han R, Deng H. A gum Arabic assisted sustainable drug delivery system for adult Drosophila. Biol Open 2020; 9:bio052241. [PMID: 32487516 PMCID: PMC7328006 DOI: 10.1242/bio.052241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/11/2020] [Indexed: 01/26/2023] Open
Abstract
Large-scale compound screening in adult flies is hampered by the lack of continuous drug delivery systems and poor solubility of numerous compounds. Here we found that gum Arabic (Acacia/Senegal gum), a widely used stabilizer, can also emulsify lipophilic compounds and profoundly increase their accessibility to target tissues in Drosophila and mice. We further developed a gum Arabic-based drug delivery system, wherein the drug was ground into gum Arabic and emulsified in liquid food fed to flies by siphoning through a U-shape glass capillary. This system did not affect food intake nor cell viability. Since drugs were continuously delivered by siphoning, minimal compound waste and less frequent food changes make this system ideal for large-scale long-term screenings. In our pilot screening for antitumor drugs in the NCI DTP library, we used a Drosophila model of colorectal cancer and identified two drugs that are especially hydrophobic and were not identified in previous screenings. Our data demonstrated that gum Arabic facilitates drug delivery in animal models and the system is suitable for long-term high-throughput drug screening in Drosophila This system would accelerate drug discovery for chronic and cognitive conditions.
Collapse
Affiliation(s)
- Qiying Liang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
- College of Animal Sciences and Technology, Guangxi University, Nanning, 530004, China
| | - Peng Ma
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Qi Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Youjie Yin
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Ping Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Saifei Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Yao Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Ruolei Han
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| |
Collapse
|
11
|
Kleynhans J, Elgar D, Ebenhan T, Zeevaart JR, Kotzé A, Grobler A. A toxicity profile of the Pheroid® technology in rodents. Toxicol Rep 2019; 6:940-950. [PMID: 31673495 PMCID: PMC6816226 DOI: 10.1016/j.toxrep.2019.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Acute administration of 2000 mg/kg of the Pheroid® delivery system was tolerated upon intravenous administration in BALB/c mice and Sprague-Dawley rats. Oral administration was tolerated in both acute toxicity evaluation (14-days post single dose administration) and during chronic administration (90-days dosing). No mutagenicity was present during the Ames assay. A statistically significant increase in creatinine levels in the sub-chronic female treatment group was observed, however no treatment related pathology was identified during histopathology. This evaluation did not identify any risk factors present for toxicity during oral or intravenous administration of the tested formulations during acute or repeated dosing.
The Pheroid® drug delivery system is now on the threshold of progressing into human clinical trials for various patented pharmaceutical applications and a systematic investigation of its toxicological properties in vitro and in vivo is thus a priority. Colloidal dispersions (nano- and microemulsions) demonstrate the ability to be adapted to accommodate either lipophilic, hydrophilic or amphiphilic drug molecules. The colloidal dispersions investigated during this evaluation has a general size of 200 nm - 2 μm, a zeta-potential of -25 mV and the main ingredient was ethyl esters of essential fatty acids. The Ames mutagenicity assay was performed on selected Salmonella thyphimurium strains TA98, TA100 and TA102. The Ames assay included S9 metabolic activation and no mutagenicity was present during the assay. The effect of acute and subchronic administration on a biological system was investigated in two species of rodent (BALB/c mice and Sprague-Dawley rats). Observations focused on the physical condition, blood biochemical analysis and the haematological profiles. Gross necropsy was performed on all the test animals. Organ weights followed by histopathology of selected organ tissues were recorded. During the acute evaluation animals showed tolerance of the maximum prescribed dose of 2000 mg/kg (according to OECD guidelines) in two rodent species after intravenous administration (absolute bioavaibility). The oral formulation was tolerated without incidents in both acute and subchronic studies. Although valuable baseline safety data was obtained regarding the Pheroid® system, future studies with the entrapped active pharmaceutical ingredients is necessary to provide a definitive safety profile.
Collapse
Affiliation(s)
- Janke Kleynhans
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| | - Dale Elgar
- Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
| | - Jan Rijn Zeevaart
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa.,Radiochemistry, The South African Nuclear Energy Corporation (Necsa), P.O. Box, 482, Pretoria, 0001, South Africa
| | - Awie Kotzé
- Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Anne Grobler
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
12
|
Antimalarial Activity of Kaempferol and Its Combination with Chloroquine in Plasmodium berghei Infection in Mice. J Pathog 2018; 2018:3912090. [PMID: 30631601 PMCID: PMC6304481 DOI: 10.1155/2018/3912090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022] Open
Abstract
The search for new antimalarial drugs has become an urgent requirement due to resistance to the available drugs and the lack of an effective vaccine. In this respect, the present study aimed to evaluate the antimalarial activity of kaempferol against Plasmodium berghei infection in mice as an in vivo model. Chronic toxicity and antimalarial activities of kaempferol alone and in combination with chloroquine were investigated in P. berghei ANKA infected ICR mice using standard procedures. The results showed that chronic administration of 2,000 mg/kg of kaempferol resulted in no overt signs of toxicity as well as no hepatotoxicity, nephrotoxicity, or hematotoxicity. Interestingly, kaempferol exerted significant (P < 0.05) chemosuppressive, chemoprophylactic, and curative activities in a dose-dependent manner. The highest antimalarial activity was found at a dose of 20 mg/kg which resulted in a significantly (P < 0.05) prolonged survival of infected mice. Moreover, combination treatment of chloroquine and kaempferol also presented significant (P < 0.05) antimalarial effects, although the effects were not significantly different from the chloroquine treated group. From the results of the present study, it can be concluded that kaempferol possesses acceptable antimalarial activities. However, further investigation should be undertaken on the mechanism responsible for the observed antimalarial activity.
Collapse
|
13
|
Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 2018; 35:237. [PMID: 30324329 DOI: 10.1007/s11095-018-2517-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.
Collapse
Affiliation(s)
- Sindisiwe Mvango
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - William M R Matshe
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Abideen O Balogun
- Department of Medicine, Nottingham University Hospital, Nottingham, UK
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - Mohammed O Balogun
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.
| |
Collapse
|
14
|
Volpe Zanutto F, McAlister E, Marucci Pereira Tangerina M, Fonseca-Santos B, Costa Salles TH, Oliveira Souza IM, Brisibe A, Vilegas W, Chorilli M, Akira d'Ávila M, Donnelly RF, Foglio MA. Semisynthetic Derivative of Artemisia annua-Loaded Transdermal Bioadhesive for the Treatment of Uncomplicated Malaria Caused by Plasmodium falciparum in Children. J Pharm Sci 2018; 108:1177-1188. [PMID: 30336154 DOI: 10.1016/j.xphs.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
According to the most recent World Health Organization statistics, malaria infected approximately 219 million people in 2017, with an estimate of 435,000 deaths (World Health Organization, 2018). Communities isolated from cities are the most deprived of access to the necessary hospital facilities. Herein we report the development of a transdermal bioadhesive containing artemether (ART), an alternative, potentially lifesaving, treatment regimen for malaria in low-resource settings. Bioadhesives were prepared from an aqueous blend of hydroxyethylcellulose (4.5% w/w), ART, propoxylated-ethoxylated-cetyl-alcohol, polysorbate 80, propyleneglycol, glycerine, mineral oil, and oleic acid. In this study, the average pore size of bioadhesive 5.5b was 52.6 ± 15.31 μm. Differential scanning calorimetry and thermogravimetric analyses confirm the thermal stability of ART bioadhesives at room temperature. Tensile tests indicated good mechanical properties for bioadhesive 5.5b, when compared to 5.5a, where 5.5b showed elastic modulus 0.19 MPa, elongation at break 204%, tensile stress 0.31 MPa, tensile strength at break 0.23 MPa. Bioadhesion assays suggested that formulations containing surfactants had higher detachment forces. Permeation studies demonstrated that the best outcome was achieved with a bioadhesive containing 25 mg ART (5.5b) that after 24 h released 6971 ± 125 μg, which represents approximately 28% of drug permeation. Data reported presents a promising candidate for a new antimalarial transdermal formulation.
Collapse
Affiliation(s)
- Fabiana Volpe Zanutto
- Graduate School of Bioscience and Technology of Bioactive Products, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; School of Pharmacy, Queen's University Belfast, Belfast, UK; Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, São Paulo, Brazil
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Bruno Fonseca-Santos
- UNESP-Univ Estadual Paulista, Faculdade de Ciências Farmacêuticas, Araraquara, São Paulo, Brazil
| | | | | | | | - Wagner Vilegas
- UNESP-Univ Estadual Paulista, Instituto de Biociências, São Vicente, São Paulo, Brazil
| | - Marlus Chorilli
- UNESP-Univ Estadual Paulista, Faculdade de Ciências Farmacêuticas, Araraquara, São Paulo, Brazil
| | - Marcos Akira d'Ávila
- School of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Mary Ann Foglio
- Faculty of Pharmaceutical Science, University at Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
15
|
Hecht M, Veigure R, Couchman L, S Barker CI, Standing JF, Takkis K, Evard H, Johnston A, Herodes K, Leito I, Kipper K. Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate. Bioanalysis 2018; 10:1229-1248. [PMID: 30033744 DOI: 10.4155/bio-2018-0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the LOQ (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarizing the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability, BLQ data could be released and utilized appropriately for pharmacokinetic research.
Collapse
Affiliation(s)
- Max Hecht
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Rūta Veigure
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Lewis Couchman
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, SW17 0RE, UK
| | - Joseph F Standing
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Kalev Takkis
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Hanno Evard
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Atholl Johnston
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Clinical Pharmacology, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Koit Herodes
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Ivo Leito
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Karin Kipper
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
16
|
|
17
|
Bioavailability of Lumefantrine Is Significantly Enhanced with a Novel Formulation Approach, an Outcome from a Randomized, Open-Label Pharmacokinetic Study in Healthy Volunteers. Antimicrob Agents Chemother 2017. [PMID: 28630183 PMCID: PMC5571342 DOI: 10.1128/aac.00868-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The artemether-lumefantrine combination requires food intake for the optimal absorption of lumefantrine. In an attempt to enhance the bioavailability of lumefantrine, new solid dispersion formulations (SDF) were developed, and the pharmacokinetics of two SDF variants were assessed in a randomized, open-label, sequential two-part study in healthy volunteers. In part 1, the relative bioavailability of the two SDF variants was compared with that of the conventional formulation after administration of a single dose of 480 mg under fasted conditions in three parallel cohorts. In part 2, the pharmacokinetics of lumefantrine from both SDF variants were evaluated after a single dose of 480 mg under fed conditions and a single dose of 960 mg under fasted conditions. The bioavailability of lumefantrine from SDF variant 1 and variant 2 increased up to ∼48-fold and ∼24-fold, respectively, relative to that of the conventional formulation. Both variants demonstrated a positive food effect and a less than proportional increase in exposure between the 480-mg and 960-mg doses. Most adverse events (AEs) were mild to moderate in severity and not suspected to be related to the study drug. All five drug-related AEs occurred in subjects taking SDF variant 2. No clinically significant treatment-emergent changes in vital signs, electrocardiograms, or laboratory blood assessments were noted. The solid dispersion formulation enhances the lumefantrine bioavailability to a significant extent, and SDF variant 1 is superior to SDF variant 2.
Collapse
|
18
|
Olafuyi O, Coleman M, Badhan RKS. Development of a paediatric physiologically based pharmacokinetic model to assess the impact of drug-drug interactions in tuberculosis co-infected malaria subjects: A case study with artemether-lumefantrine and the CYP3A4-inducer rifampicin. Eur J Pharm Sci 2017; 106:20-33. [PMID: 28546104 DOI: 10.1016/j.ejps.2017.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/27/2017] [Accepted: 05/20/2017] [Indexed: 12/13/2022]
Abstract
The fixed dosed combination of artemether and lumefantrine (AL) is widely used for the treatment of malaria in adults and children in sub-Sahara Africa, with lumefantrine day 7 concentrations being widely used as a marker for clinical efficacy. Both are substrates for CYP3A4 and susceptible to drug-drug interactions (DDIs); indeed, knowledge of the impact of these factors is currently sparse in paediatric population groups. Confounding malaria treatment is the co-infection of patients with tuberculosis. The concomitant treatment of AL with tuberculosis chemotherapy, which includes the CYP3A4 inducer rifampicin, increases the risk of parasite recrudescence and malaria treatment failure. This study developed a population-based PBPK model for AL in adults capable of predicting the pharmacokinetics of AL under non-DDI and DDI conditions, as well as predicting AL pharmacokinetics in paediatrics of 2-12years of age. The validated model was utilised to assess the concomitant treatment of rifampicin and lumefantrine under standard body-weight based treatment regimens for 2-5year olds, and demonstrated that no subjects attained the target day 7 concentration (Cd7) of 280ng/mL, highlighting the importance of this DDI and the potential risk of malaria-TB based DDIs. An adapted 7-day treatment regimen was simulated and resulted in 63% and 74.5% of subjects attaining the target Cd7 for 1-tablet and 2-tablet regimens respectively.
Collapse
Affiliation(s)
- Olusola Olafuyi
- Aston Healthy Research Group, Aston Pharmacy School, Aston University, Birmingham B4 7ET, United Kingdom
| | - Michael Coleman
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, United Kingdom
| | - Raj K S Badhan
- Aston Healthy Research Group, Aston Pharmacy School, Aston University, Birmingham B4 7ET, United Kingdom; Aston Pharmacy School, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|