1
|
Xu Y, Gao H, Li R, Lou Y, Li B, Cheng G, Na G. Occurrence and distribution of antibiotics and antibiotic resistance genes from the land to ocean in Daliao River-Liaodong Bay, China. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106470. [PMID: 38574497 DOI: 10.1016/j.marenvres.2024.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
In this study, the pollution status of antibiotics and ARGs in sediments from the land-sea intersection of Liaodong Bay was analyzed. The results showed that the level of antibiotic pollution ranged from ND to 433.27 ng/kg, with quinolones and tetracycline as the dominant antibiotics. The relative abundance of ARGs ranged from 3.62 × 10-3 to 1.32 × 10-1 copies/16SrRNA copies, with aminoglycoside and MLSB resistance genes being dominant. Regarding spatial distribution, the land and estuary areas showed higher antibiotic pollution levels than the offshore areas. Similarly, the land and estuary areas exhibited higher antibiotic diversity than the offshore areas. The ARGs were widely distributed on land, and their abundance gradually decreased to the downstream estuary area. Land and coastal areas exhibited higher ARG diversity than estuary areas. Analysis of environmental factors revealed a significant correlation between ARGs and non-corresponding antibiotics, and some ARGs were affected by heavy metals Cu and Pb.
Collapse
Affiliation(s)
- Yunfeng Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China.
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yingbin Lou
- Dalian Ecological Environment Monitoring Center, Liaoning Province, Dalian, 116023, China
| | - Bing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Guanjie Cheng
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Guangshui Na
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; National Marine Environmental Monitoring Center, Dalian, 116023, China; Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/Yazhou Bay Innovation Institute/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
2
|
Adami R, Russo P, Amante C, De Soricellis C, Della Porta G, Reverchon E, Del Gaudio P. Supercritical Antisolvent Technique for the Production of Breathable Naringin Powder. Pharmaceutics 2022; 14:pharmaceutics14081623. [PMID: 36015250 PMCID: PMC9414961 DOI: 10.3390/pharmaceutics14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are polyphenolic compounds largely present in fruits and vegetables possessing antioxidant properties, anti-inflammatory and antibacterial activities. Their use in clinical practice is very poor due to their low bioavailability, susceptibility to oxidation and degradation. Moreover, their slight solubility in biological fluids and a consequent low dissolution rate leads to an irregular absorption from solid dosage forms, even though, anti-inflammatory formulations could be used as support for several disease treatment, i.e. the COVID-19 syndrome. To improve flavonoid bioavailability particle size of the powder can be reduced to make it breathable and to promote the absorption in the lung tissues. Supercritical fluid based antisolvent technique has been used to produce naringin particles, with size, shape and density as well as free flowing properties able to fit inhalation needs. The dried particles are produced with the removal of the solvent at lower temperatures compared to the most used traditional micronization processes, such as spray drying. The best breathable fraction for naringin particles is obtained for particles with a d50~7 µm manufactured at 35 °C-150 bar and at 60 °C-130 bar, corresponding to 32.6% and 36.7% respectively. The powder is produced using a high CO2 molar fraction (0.99) that assure a better removal of the solvent. NuLi-1 cell line of immortalised bronchial epithelial cells adopted to evaluate powder cytotoxicity indicated after 24 h absence of toxicity at concentration of 25 µM.
Collapse
Affiliation(s)
- Renata Adami
- Department of Physics E. Caianiello, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Correspondence: (R.A.); (P.D.G.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara De Soricellis
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Odontoiatry, Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 1, 84081 Baronissi, SA, Italy;
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
- Correspondence: (R.A.); (P.D.G.)
| |
Collapse
|
3
|
Ruggiero V, Aquino RP, Del Gaudio P, Campiglia P, Russo P. Post-COVID Syndrome: The Research Progress in the Treatment of Pulmonary sequelae after COVID-19 Infection. Pharmaceutics 2022; 14:pharmaceutics14061135. [PMID: 35745708 PMCID: PMC9229559 DOI: 10.3390/pharmaceutics14061135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Post-COVID syndrome or long COVID is defined as the persistence of symptoms after confirmed SARS-CoV-2 infection, the pathogen responsible for coronavirus disease. The content herein presented reviews the reported long-term consequences and aftereffects of COVID-19 infection and the potential strategies to adopt for their management. Recent studies have shown that severe forms of COVID-19 can progress into acute respiratory distress syndrome (ARDS), a predisposing factor of pulmonary fibrosis that can irreversibly compromise respiratory function. Considering that the most serious complications are observed in the airways, the inhalation delivery of drugs directly to the lungs should be preferred, since it allows to lower the dose and systemic side effects. Although further studies are needed to optimize these techniques, recent studies have also shown the importance of in vitro models to recreate the SARS-CoV-2 infection and study its sequelae. The information reported suggests the necessity to develop new inhalation therapies in order to improve the quality of life of patients who suffer from this condition.
Collapse
Affiliation(s)
- Valentina Ruggiero
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | - Rita P. Aquino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
- Correspondence:
| |
Collapse
|
4
|
Fu C, Xu B, Chen H, Zhao X, Li G, Zheng Y, Qiu W, Zheng C, Duan L, Wang W. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151011. [PMID: 34715223 DOI: 10.1016/j.scitotenv.2021.151011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The emergence and pollution of antibiotics in surface water in various regions have drawn widespread concern because of the harm to aquatic ecosystems and human health. In this study, we aim to first investigate contamination and ecological risks of 39 antibiotics in Xiong'an New Area (XANA), China, and then illuminate relative abundances of antibiotic resistance genes (ARGs) and their correlations with antibiotics. The sum of antibiotic concentrations in the water circulation system, including surface water, groundwater, and sediment was 12.71-260.56 ng/L, ND-196.12 ng/L, and 38.03-406.31 ng/g, respectively. In surface water and sediment, cephalosporins and quinolones were the primary antibiotics, accounting for 45% and 16% of the total antibiotic concentrations in surface water and for 62% and 32% of the total antibiotic concentrations in sediment; this suggests a significant interaction between the two media. The antibiotic concentration was the highest in shallow groundwater at depths of <50 m (mean concentration of 79.22 ± 56.46 ng/L), indicating that surface water was a possible source of antibiotic contamination in groundwater. AMX presented the highest risk in both surface and groundwater and should be controlled as a priority. Moreover, the selection pressure of antibiotics on ARGs was discovered in the sediment in XANA, because the enrichment of sulA was significantly correlated with spiramycin and lincomycin and the enrichment of blaOXA-1 was significantly correlated with roxithromycin, ciprofloxacin, ofloxacin, and sulfapyridine. Thus, our investigation revealed potential antibiotic contamination in multiple environmental media in XANA, which should be addressed to prevent more serious pollution.
Collapse
Affiliation(s)
- Caixia Fu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - He Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanrong Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Lei Duan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, Xi'an 710064, China
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, Xi'an 710064, China
| |
Collapse
|
5
|
Guarnizo-Herrero V, Torrado-Salmerón C, Torres Pabón NS, Torrado Durán G, Morales J, Torrado-Santiago S. Study of Different Chitosan/Sodium Carboxymethyl Cellulose Proportions in the Development of Polyelectrolyte Complexes for the Sustained Release of Clarithromycin from Matrix Tablets. Polymers (Basel) 2021; 13:polym13162813. [PMID: 34451351 PMCID: PMC8400629 DOI: 10.3390/polym13162813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
This study investigated the combination of different proportions of cationic chitosan and anionic carboxymethyl cellulose (CMC) for the development of polyelectrolyte complexes to be used as a carrier in a sustained-release system. Analysis via scanning electron microscopy (SEM) Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) confirmed ionic interactions occur between the chitosan and carboxymethyl cellulose chains, which increases drug entrapment. The results of the dissolution study in acetate buffer (pH 4.2) showed significant increases in the kinetic profiles of clarithromycin for low proportions of chitosan/carboxymethyl cellulose tablets, while the tablets containing only chitosan had high relaxation of chitosan chains and disintegrated rapidly. The Korsmeyer–Peppas kinetic model for the different interpolymer complexes demonstrated that the clarithromycin transport mechanism was controlled by Fickian diffusion. These results suggest that the matrix tablets with different proportions of chitosan/carboxymethyl cellulose enhanced the ionic interaction and enabled the prolonged release of clarithromycin.
Collapse
Affiliation(s)
- Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
| | - Norma Sofía Torres Pabón
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain; (N.S.T.P.); (G.T.D.)
| | - Guillermo Torrado Durán
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain; (N.S.T.P.); (G.T.D.)
| | - Javier Morales
- Department of Science and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile;
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-091-394-1620
| |
Collapse
|
6
|
Anversa Dimer F, de Souza Carvalho-Wodarz C, Goes A, Cirnski K, Herrmann J, Schmitt V, Pätzold L, Abed N, De Rossi C, Bischoff M, Couvreur P, Müller R, Lehr CM. PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102125. [PMID: 31751769 DOI: 10.1016/j.nano.2019.102125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 09/16/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022]
Abstract
Drug delivery systems are promising for targeting antibiotics directly to infected tissues. To reach intracellular Staphylococcus aureus and Mycobacterium abscessus, we encapsulated clarithromycin in PLGA nanocapsules, suitable for aerosol delivery by nebulization of an aqueous dispersion. Compared to the same dose of free clarithromycin, nanoencapsulation reduced 1000 times the number of intracellular S. aureus in vitro. In RAW cells, while untreated S. aureus was located in acidic compartments, the treated ones were mostly situated in non-acidic compartments. Clarithromycin-nanocapsules were also effective against M. abscessus (70-80% killing efficacy). The activity of clarithromycin-nanocapsules against S. aureus was also confirmed in vivo, using a murine wound model as well as in zebrafish. The permeability of clarithromycin-nanocapsules across Calu-3 monolayers increased in comparison to the free drug, suggesting an improved delivery to sub-epithelial tissues. Thus, clarithromycin-nanocapsules are a promising strategy to target intracellular S. aureus and M. abscessus.
Collapse
Affiliation(s)
- Frantiescoli Anversa Dimer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Cristiane de Souza Carvalho-Wodarz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany.
| | - Adriely Goes
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Katarina Cirnski
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Viktoria Schmitt
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Linda Pätzold
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Nadia Abed
- Institut Galien Paris-Sud, UMR8612, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR8612, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
7
|
Tiozzo Fasiolo L, Manniello MD, Bortolotti F, Buttini F, Rossi A, Sonvico F, Colombo P, Valsami G, Colombo G, Russo P. Anti-inflammatory flurbiprofen nasal powders for nose-to-brain delivery in Alzheimer's disease. J Drug Target 2019; 27:984-994. [PMID: 30691325 DOI: 10.1080/1061186x.2019.1574300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neuroinflammation occurs in the early stages of Alzheimer's disease (AD). Thus, anti-inflammatory drugs in this asymptomatic initial phase could slow down AD progression, provided they enter the brain. Direct nose-to-brain drug transport occurs along olfactory or trigeminal nerves, bypassing the blood-brain barrier. Nasal administration may enable the drug to access the brain. Here, flurbiprofen powders for nose-to-brain drug transport in early AD-related neuroinflammation were studied. Their target product profile contemplates drug powder deposition in the nasal cavity, prompt dissolution in the mucosal fluid and attainment of saturation concentration to maximise diffusion in the tissue. Aiming to increase drug disposition into brain, poorly soluble flurbiprofen requires the construction of nasal powder microparticles actively deposited in nose for prompt drug release. Two groups of powders were formulated, composed of flurbiprofen acid or flurbiprofen sodium salt. Two spray dryer apparatuses, differing for spray and drying mechanisms, and particle collection, were applied to impact on the characteristics of the microparticulate powders. Flurbiprofen sodium nasal powders disclosed prompt dissolution and fast ex vivo transport across rabbit nasal mucosa, superior to the acid form, in particular when the powder was prepared using the Nano B-90 spray dryer at the lowest drying air temperature.
Collapse
Affiliation(s)
- Laura Tiozzo Fasiolo
- a Department of Food and Drug, University of Parma , Parma , Italy.,b Department of Life Sciences and Biotechnology, University of Ferrara , Ferrara , Italy
| | | | - Fabrizio Bortolotti
- b Department of Life Sciences and Biotechnology, University of Ferrara , Ferrara , Italy
| | | | - Alessandra Rossi
- a Department of Food and Drug, University of Parma , Parma , Italy
| | - Fabio Sonvico
- a Department of Food and Drug, University of Parma , Parma , Italy
| | - Paolo Colombo
- a Department of Food and Drug, University of Parma , Parma , Italy.,d PlumeStars Srl , Parma , Italy
| | - Georgia Valsami
- e Department of Pharmacy, National and Kapodistrian University of Athens , Athens , Greece
| | - Gaia Colombo
- b Department of Life Sciences and Biotechnology, University of Ferrara , Ferrara , Italy
| | - Paola Russo
- c Department of Pharmacy, University of Salerno , Fisciano (SA) , Italy
| |
Collapse
|
8
|
Auriemma G, Cerciello A, Sansone F, Pinto A, Morello S, Aquino RP. Polysaccharides based gastroretentive system to sustain piroxicam release: Development and in vivo prolonged anti-inflammatory effect. Int J Biol Macromol 2018; 120:2303-2312. [DOI: 10.1016/j.ijbiomac.2018.08.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/12/2018] [Accepted: 08/26/2018] [Indexed: 11/25/2022]
|
9
|
Clarithromycin and N -acetylcysteine co-spray-dried powders for pulmonary drug delivery: A focus on drug solubility. Int J Pharm 2017; 533:463-469. [DOI: 10.1016/j.ijpharm.2017.03.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 01/05/2023]
|
10
|
Del Gaudio P, Russo P, Rodriguez Dorado R, Sansone F, Mencherini T, Gasparri F, Aquino RP. Submicrometric hypromellose acetate succinate particles as carrier for soy isoflavones extract with improved skin penetration performance. Carbohydr Polym 2017; 165:22-29. [PMID: 28363543 DOI: 10.1016/j.carbpol.2017.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/29/2022]
Abstract
In this study, hypromellose acetate succinate (HPMCAS) stable submicronic particles loaded with a soy isoflavones extract have been obtained by nano spray drying technology. HPMCAS has been used as excipient able to increase both stability and supersaturation levels of the active ingredients hence able to enhance skin penetration performance of genistein and daidzein. The influence of polymer/extract ratio as other process variables, on particle size, morphology and permeation performance, have been investigated. Particles in submicronic range (mean size around 550nm) and narrow size distribution with high encapsulation efficiency (up to 86%) were obtained. HPMCAS was able to improve amorphization of genistein during the atomization process and avoid recrystallization during storage, even in harsh environmental condition. Moreover, the enhanced affinity of the optimized formulations with aqueous media, strongly increased isoflavones penetration through membrane with diffusive properties well-correlated to human skin, up to 10-fold higher than pure soy isoflavones extract raw material.
Collapse
Affiliation(s)
- Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Paola Russo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Rosalia Rodriguez Dorado
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, SA, Italy
| | - Francesca Sansone
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Franco Gasparri
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|