• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4613486)   Today's Articles (1008)   Subscriber (49387)
For: Scutellà B, Trelea IC, Bourlès E, Fonseca F, Passot S. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying. Eur J Pharm Biopharm 2018;128:379-388. [PMID: 29746910 DOI: 10.1016/j.ejpb.2018.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
Number Cited by Other Article(s)
1
Fontana L, Nakach M, Koumurian B, Urban C, Authelin JR, Vandenbroucke M. Importance of Kv Distribution in Freeze Drying: Part II: Use in Lyo Simulation Modeling. J Pharm Sci 2024:S0022-3549(24)00251-X. [PMID: 39033976 DOI: 10.1016/j.xphs.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
2
Vanbillemont B, Greiner AL, Ehrl V, Menzen T, Friess W, Hawe A. A model-based optimization strategy to achieve fast and robust freeze-drying cycles. Int J Pharm X 2023;5:100180. [PMID: 37125084 PMCID: PMC10133743 DOI: 10.1016/j.ijpx.2023.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023]  Open
3
Carfagna M, Rosa M, Hawe A, Frieß W. Lyophilization cycle design for highly concentrated protein formulations supported by micro freeze-dryer and heat flux sensor. Int J Pharm 2023;643:123285. [PMID: 37532010 DOI: 10.1016/j.ijpharm.2023.123285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
4
Chia A, Poulin É, Bouchard J, Lapointe-Garant PP, Van Meervenne B, Taveirne F. Experimental validation of multi-vial control for primary drying in a pilot-scale unit. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
5
Juckers A, Knerr P, Harms F, Strube J. Model-Based Product Temperature and Endpoint Determination in Primary Drying of Lyophilization Processes. Pharmaceutics 2022;14:pharmaceutics14040809. [PMID: 35456643 PMCID: PMC9031979 DOI: 10.3390/pharmaceutics14040809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]  Open
6
Deck LT, Ochsenbein DR, Mazzotti M. A Stochastic Shelf-Scale Modeling Framework for the Freezing Stage in Freeze-Drying Processes. Int J Pharm 2021;613:121276. [PMID: 34767908 DOI: 10.1016/j.ijpharm.2021.121276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
7
Moino C, Bourlés E, Pisano R, Scutellà B. In-Line Monitoring of the Freeze-Drying Process by Means of Heat Flux Sensors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
8
Harguindeguy M, Fissore D. Micro Freeze-Dryer and Infrared-Based PAT: Novel Tools for Primary Drying Design Space Determination of Freeze-Drying Processes. Pharm Res 2021;38:707-719. [PMID: 33686561 PMCID: PMC8057969 DOI: 10.1007/s11095-021-03023-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
9
Strategies and formulations of freeze-dried tablets for controlled drug delivery. Int J Pharm 2021;597:120373. [PMID: 33577912 DOI: 10.1016/j.ijpharm.2021.120373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/24/2021] [Accepted: 02/05/2021] [Indexed: 11/21/2022]
10
Harguindeguy M, Fissore D. Temperature/end point monitoring and modelling of a batch freeze-drying process using an infrared camera. Eur J Pharm Biopharm 2020;158:113-122. [PMID: 33171203 DOI: 10.1016/j.ejpb.2020.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 11/15/2022]
11
De-Luca R, Bano G, Tomba E, Bezzo F, Barolo M. Accelerating the Development and Transfer of Freeze-Drying Operations for the Manufacturing of Biopharmaceuticals by Model-Based Design of Experiments. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
12
Scutellà B, Bourlès E. Development of freeze-drying cycle via design space approach: a case study on vaccines. Pharm Dev Technol 2020;25:1302-1313. [PMID: 32752908 DOI: 10.1080/10837450.2020.1806298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
13
Carfagna M, Rosa M, Lucke M, Hawe A, Frieß W. Heat flux sensor to create a design space for freeze-drying development. Eur J Pharm Biopharm 2020;153:84-94. [PMID: 32497769 DOI: 10.1016/j.ejpb.2020.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 11/27/2022]
14
Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020;93:1-58. [PMID: 32711860 DOI: 10.1016/bs.afnr.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
15
Jeeraruangrattana Y, Smith G, Polygalov E, Ermolina I. Determination of ice interface temperature, sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using through-vial impedance spectroscopy. Eur J Pharm Biopharm 2020;152:144-163. [PMID: 32353532 DOI: 10.1016/j.ejpb.2020.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
16
Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. Use of a temperature ramp approach (TRA) to design an optimum and robust freeze-drying process for pharmaceutical formulations. Int J Pharm 2020;578:119116. [PMID: 32027958 DOI: 10.1016/j.ijpharm.2020.119116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
17
Bano G, De-Luca R, Tomba E, Marcelli A, Bezzo F, Barolo M. Primary Drying Optimization in Pharmaceutical Freeze-Drying: A Multivial Stochastic Modeling Framework. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. An Experimental-Based Approach to Construct the Process Design Space of a Freeze-Drying Process: An Effective Tool to Design an Optimum and Robust Freeze-Drying Process for Pharmaceuticals. J Pharm Sci 2019;109:785-796. [PMID: 31288035 DOI: 10.1016/j.xphs.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/18/2022]
19
Scale-Up of Freeze-Drying Cycles, the Use of Process Analytical Technology (PAT), and Statistical Analysis. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2019. [DOI: 10.1007/978-1-4939-8928-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA