1
|
Vanluchene H, Gillon O, Peynshaert K, De Smedt SC, Sanders N, Raemdonck K, Remaut K. Less is more: Self-amplifying mRNA becomes self-killing upon dose escalation in immune-competent retinal cells. Eur J Pharm Biopharm 2024; 196:114204. [PMID: 38302048 DOI: 10.1016/j.ejpb.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
In the last few years, mRNA therapeutics experienced a new wave of interest as therapy for retinal diseases. Nevertheless, despite the widespread use of mRNA vaccines in the COVID-19 pandemic, mRNA delivery to the eye is still in its infancy. Recently, our research group has demonstrated that after subretinal and intravitreal delivery of modified mRNA, the number of transfected retinal cells and protein expression per cell remains limited. In this study, we aimed to tackle this limitation by using self-amplifying mRNA (saRNA), which in theory will increase the duration and level of protein expression when only a few mRNA molecules reach their target cells. A one-on-one comparison between modified mRNA and saRNA in two immune-competent human retinal cell types, including Müller cells and retinal pigment epithelial cells, and in immune-deficient BHK-21 cells revealed that saRNA delivery induced an innate immune response blocking its own translation above a certain dose threshold. Removal of double-stranded (ds)RNA byproducts by cellulose-based purification and addition of the innate immune inhibitor B18R remarkably improved translation from saRNA through a reduction in innate immune response. Taken together, when saRNA is applied for retinal disease, the dose should be controlled and measures should be taken to limit immunogenicity.
Collapse
Affiliation(s)
- Helena Vanluchene
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Oriane Gillon
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
2
|
Jiao W, Li W, Li T, Feng T, Wu C, Zhao D. Induced pluripotent stem cell-derived extracellular vesicles overexpressing SFPQ protect retinal Müller cells against hypoxia-induced injury. Cell Biol Toxicol 2023; 39:2647-2663. [PMID: 36790503 DOI: 10.1007/s10565-023-09793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
Splicing factor proline/glutamine-rich (SFPQ) is expressed in induced pluripotent stem cells (iPSCs), which are reported to orchestrate hypoxic injury responses and release extracellular vesicles (EVs). Therefore, this study sought to explore the role of iPSC-derived EVs carrying SFPQ in hypoxia-induced injury to retinal Müller cells. We induced oxygen-glucose deprivation/reoxygenation (OGD/R) in Müller cells. SFPQ was overexpressed or knocked down in iPSCs, from which EVs were extracted. Müller cells were co-cultured with EVs, and the results indicated that SFPQ protein was transferred into retinal Müller cells by iPSC-derived EVs. We identified an interaction of SFPQ with HDAC1 in retinal Müller cells. Specifically, SFPQ recruited HDAC1 to downregulate HIF-2α by regulating its acetylation. The in vitro studies suggested that iPSC-derived EVs, SFPQ or HDAC1 overexpression, or HIF-2α silencing diminished cell injury and apoptosis but elevated proliferation in retinal Müller cells. The in vivo studies indicated that iPSC-derived EVs containing SFPQ curtailed apoptosis of retinal Müller cells, thus alleviating retinal ischemia/reperfusion (I/R) injury of rat model. Taken together, iPSC-derived EVs containing SFPQ upregulated HDAC1 to attenuate OGD/R-induced Müller cell injury via downregulation of HIF-2α.
Collapse
Affiliation(s)
- Wenjun Jiao
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Weifang Li
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Tianyi Li
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Tao Feng
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Cong Wu
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Di Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
3
|
Peynshaert K, Devoldere J, De Smedt S, Remaut K. Every nano-step counts: a critical reflection on do's and don'ts in researching nanomedicines for retinal gene therapy. Expert Opin Drug Deliv 2023; 20:259-271. [PMID: 36630275 DOI: 10.1080/17425247.2023.2167979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Retinal disease affects millions of people worldwide, generating a massive social and economic burden. Current clinical trials for retinal diseases are dominated by gene augmentation therapies delivered with recombinant viruses as key players. As an alternative, nanoparticles hold great promise for the delivery of nucleic acid therapeutics as well. Nevertheless, despite numerous attempts, 'nano' is in practice not as successful as aspired and major breakthroughs in retinal gene therapy applying nanomaterials are yet to be seen. AREAS COVERED In this review, we summarize the advantages of nanomaterials and give an overview of nanoparticles designed for retinal nucleic acid delivery up to now. We furthermore critically reflect on the predominant issues that currently limit nano to progress to the clinic, where faulty study design and the absence of representative models play key roles. EXPERT OPINION Since the current approach of in vitro - in vivo experimentation is highly inefficient and creates misinformation, we advocate for a more prominent role for ex vivo testing early on in nanoparticle research. In addition, we elaborate on several concepts, including systematic studies and open science, which could aid in pushing the field of nanomedicine beyond the preclinical stage.
Collapse
Affiliation(s)
- Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Joke Devoldere
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Stefaan De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| |
Collapse
|
4
|
Peynshaert K, Vanluchene H, De Clerck K, Minnaert AK, Verhoeven M, Gouspillou N, Bostan N, Hisatomi T, Accou G, Sauvage F, Braeckmans K, De Smedt S, Remaut K. ICG-mediated photodisruption of the inner limiting membrane enhances retinal drug delivery. J Control Release 2022; 349:315-326. [PMID: 35803327 DOI: 10.1016/j.jconrel.2022.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/16/2022]
Abstract
Many groundbreaking therapies for the treatment of blindness require delivery of biologics or cells to the inner retina by intravitreal injection. Unfortunately, the advancement of these therapies is greatly hampered by delivery difficulties where obstruction of the therapeutics at the inner limiting membrane (ILM) represents the dominant bottleneck. In this proof-of-principle study, we explore an innovative light-based approach to locally ablate the ILM in a minimally invasive and highly controlled manner, thus making the ILM more permeable for therapeutics. More specifically, we demonstrate that pulsed laser irradiation of ILM-bound indocyanine green (ICG), a clinically applied ILM dye, results in the formation of vapor nanobubbles which can disrupt the bovine ILM as well as the extraordinary thick human ILM. We have observed that this photodisruption allows for highly successful retinal delivery of model nanoparticles which are otherwise blocked by the intact ILM. Strikingly, this treatment is furthermore able of enhancing the efficacy of mRNA-loaded lipid nanoparticles within the bovine retina by a factor of 5. In conclusion, this study provides evidence for a light-based approach to overcome the ILM which has the potential to improve the efficacy of all retinal therapies hampered by this delivery barrier.
Collapse
Affiliation(s)
- Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Helena Vanluchene
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kaat De Clerck
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - An-Katrien Minnaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Morgane Verhoeven
- Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Noémie Gouspillou
- University of Lille, Departement of Physics, Building P5, Avenue Jean Perrin, 59655 Villeneuve d'Ascq, France
| | - Nezahat Bostan
- Biobank Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Toshio Hisatomi
- Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Geraldine Accou
- Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Félix Sauvage
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|