1
|
Ma Y, Cao J, Li S, Wang L, Meng Y, Chen Y. Nature-Inspired Wet Drug Delivery Platforms. SMALL METHODS 2024; 8:e2301726. [PMID: 38284322 DOI: 10.1002/smtd.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jian Cao
- School of Software and Microelectronics, Peking University, Beijing, 100871, China
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Yufei Meng
- Research Institute of Ornamental Plants and Landscapes, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Li Z, Song P, Li G, Han Y, Ren X, Bai L, Su J. AI energized hydrogel design, optimization and application in biomedicine. Mater Today Bio 2024; 25:101014. [PMID: 38464497 PMCID: PMC10924066 DOI: 10.1016/j.mtbio.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Traditional hydrogel design and optimization methods usually rely on repeated experiments, which is time-consuming and expensive, resulting in a slow-moving of advanced hydrogel development. With the rapid development of artificial intelligence (AI) technology and increasing material data, AI-energized design and optimization of hydrogels for biomedical applications has emerged as a revolutionary breakthrough in materials science. This review begins by outlining the history of AI and the potential advantages of using AI in the design and optimization of hydrogels, such as prediction and optimization of properties, multi-attribute optimization, high-throughput screening, automated material discovery, optimizing experimental design, and etc. Then, we focus on the various applications of hydrogels supported by AI technology in biomedicine, including drug delivery, bio-inks for advanced manufacturing, tissue repair, and biosensors, so as to provide a clear and comprehensive understanding of researchers in this field. Finally, we discuss the future directions and prospects, and provide a new perspective for the research and development of novel hydrogel materials for biomedical applications.
Collapse
Affiliation(s)
- Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiaoxiang Ren
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Dong J, Wu Z, Xu H, Ouyang D. FormulationAI: a novel web-based platform for drug formulation design driven by artificial intelligence. Brief Bioinform 2023; 25:bbad419. [PMID: 37991246 PMCID: PMC10783856 DOI: 10.1093/bib/bbad419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
Today, pharmaceutical industry faces great pressure to employ more efficient and systematic ways in drug discovery and development process. However, conventional formulation studies still strongly rely on personal experiences by trial-and-error experiments, resulting in a labor-consuming, tedious and costly pipeline. Thus, it is highly required to develop intelligent and efficient methods for formulation development to keep pace with the progress of the pharmaceutical industry. Here, we developed a comprehensive web-based platform (FormulationAI) for in silico formulation design. First, the most comprehensive datasets of six widely used drug formulation systems in the pharmaceutical industry were collected over 10 years, including cyclodextrin formulation, solid dispersion, phospholipid complex, nanocrystals, self-emulsifying and liposome systems. Then, intelligent prediction and evaluation of 16 important properties from the six systems were investigated and implemented by systematic study and comparison of different AI algorithms and molecular representations. Finally, an efficient prediction platform was established and validated, which enables the formulation design just by inputting basic information of drugs and excipients. FormulationAI is the first freely available comprehensive web-based platform, which provides a powerful solution to assist the formulation design in pharmaceutical industry. It is available at https://formulationai.computpharm.org/.
Collapse
Affiliation(s)
- Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Zheng Wu
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Huanle Xu
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| |
Collapse
|
4
|
Fernandes AS, de Souza Ferreira SB, Bruschi ML. Design as strategy for evaluation of the mechanical properties of binary mixtures composed of poly(methyl vinyl ether-alt-maleic anhydride) and Pluronic F127 for biomedical applications. J Mech Behav Biomed Mater 2023; 138:105608. [PMID: 36516545 DOI: 10.1016/j.jmbbm.2022.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The synergism between thermoresponsive and bioadhesive polymers can lead to the optimization of materials with enhanced mechanical and bioadhesive properties. Quality by Design can assure the understanding and control of formulation variables. In this approach, Design of Experiment has been widely utilized as an important strategy. Poly(methyl vinyl ether-alt-maleic anhydride) (PVMMA) is a bioadhesive polymer and Pluronic F127 (PF127) shows thermoresponsiveness. The association of these two polymers has been poorly investigated. The aim of this work was to study the mechanical, bioadhesive and rheological properties of polymer mixtures composed of PVMMA and PF127, in order to select the best conditions and formulations for biomedical applications. Textural properties (hardness, compressibility, adhesiveness, cohesiveness and elasticity), softness index, bioadhesion and rheological characteristics (flow and viscoelasticity) showed that 17.5-20% (w/w) PF127-polymer mixtures displayed improved values of the parameters. However, the rheological interaction parameter showed low synergism, due to the polymers' characteristics and system organization. The formulations displayed gelation temperatures suitable for administration, with improved bioadhesive properties mainly at 34 °C and suggests the formulations can be used for biomedical applications. DoE constituted an important tool to investigate these systems showing the main effects that significantly influence the binary mixtures.
Collapse
Affiliation(s)
- Ariane Stephanie Fernandes
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Sabrina Barbosa de Souza Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil.
| |
Collapse
|
5
|
Müller L, Rosenbaum C, Krause J, Weitschies W. Characterization of an In Vitro/Ex Vivo Mucoadhesiveness Measurement Method of PVA Films. Polymers (Basel) 2022; 14:polym14235146. [PMID: 36501540 PMCID: PMC9741245 DOI: 10.3390/polym14235146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Transmucosal drug delivery systems can be an attractive alternative to conventional oral dosage forms such as tablets. There are numerous in vitro methods to estimate the behavior of mucoadhesive dosage forms in vivo. In this work, a tensile test system was used to measure the mucoadhesion of polyvinyl alcohol films. An in vitro screening of potential influencing variables was performed on biomimetic agar/mucin gels. Among the test device-specific factors, contact time and withdrawal speed were identified as influencing parameters. In addition, influencing factors such as the sample area, which showed a linear relationship in relation to the resulting work, and the liquid addition, which led to an abrupt decrease in adhesion, could be identified. The influence of tissue preparation was investigated in ex vivo experiments on porcine small intestinal tissue. It was found that lower values of Fmax and Wad were obtained on processed and fresh tissue than on processed and thawed tissue. Film adhesion on fresh, unprocessed tissue was lowest in most of the animals tested. Comparison of ex vivo measurements on porcine small intestinal tissue with in vitro measurements on agar/mucin gels illustrates the inter- and intra-individual variability of biological tissue.
Collapse
|
6
|
Garcia‐del Rio L, Diaz‐Rodriguez P, Pedersen GK, Christensen D, Landin M. Sublingual Boosting with a Novel Mucoadhesive Thermogelling Hydrogel Following Parenteral CAF01 Priming as a Strategy Against Chlamydia trachomatis. Adv Healthc Mater 2022; 11:e2102508. [PMID: 35124896 PMCID: PMC11468966 DOI: 10.1002/adhm.202102508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Indexed: 01/13/2023]
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted disease of bacterial origin. The high number of asymptomatic cases makes it difficult to stop the transmission, requiring vaccine development. Herein, a strategy is proposed to obtain local genital tract immunity against C. trachomatis through parenteral prime and sublingual boost. Subcutaneous administration of chlamydia CTH522 subunit vaccine loaded in the adjuvant CAF01 is combined with sublingual administration of CTH522 loaded in a novel thermosensitive and mucoadhesive hydrogel. Briefly, a ternary optimized hydrogel (OGEL) with desirable biological and physicochemical properties is obtained using artificial intelligence techniques. This formulation exhibits a high gel strength and a strong mucoadhesive, adhesive and cohesive nature. The thermosensitive properties of the hydrogel facilitate application under the tongue. Meanwhile the fast gelation at body temperature together with rapid antigen release should avoid CTH522 leakage by swallowing and increase the contact with sublingual tissue, thus promoting absorption. In vivo studies demonstrate that parenteral-sublingual prime-boost immunization, using CAF01 and OGEL as CTH522 vaccine carriers, shows a tendency to increase cellular (Th1/Th17) immune responses when compared to mucosal or parenteral vaccination alone. Furthermore, parenteral prime with CAF01/CTH522 followed by sublingual boosting with OGEL/CTH522 elicits a local IgA response in the genital tract.
Collapse
Affiliation(s)
- Lorena Garcia‐del Rio
- Departamento de FarmacologíaFarmacia y Tecnología FarmacéuticaGrupo I+D Farma (GI‐1645)Agrupación Estratégica de Materiales (AeMat)Facultad de FarmaciaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)IDIS Research InstituteSantiago de Compostela15706Spain
| | - Patricia Diaz‐Rodriguez
- Departamento de FarmacologíaFarmacia y Tecnología FarmacéuticaGrupo I+D Farma (GI‐1645)Agrupación Estratégica de Materiales (AeMat)Facultad de FarmaciaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)IDIS Research InstituteSantiago de Compostela15706Spain
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease ImmunologyStatens Serum InstitutArtillerivej 5Copenhagen S2300Denmark
| | - Dennis Christensen
- Department of Infectious Disease ImmunologyStatens Serum InstitutArtillerivej 5Copenhagen S2300Denmark
| | - Mariana Landin
- Departamento de FarmacologíaFarmacia y Tecnología FarmacéuticaGrupo I+D Farma (GI‐1645)Agrupación Estratégica de Materiales (AeMat)Facultad de FarmaciaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)IDIS Research InstituteSantiago de Compostela15706Spain
| |
Collapse
|
7
|
Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 179:114000. [PMID: 34637846 PMCID: PMC8502079 DOI: 10.1016/j.addr.2021.114000] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
mRNA vaccines have received major attention in the fight against COVID-19. Formulations from companies such as Moderna and BioNTech/Pfizer have allowed us to slowly ease the social distancing measures, mask requirements, and lockdowns that have been prevalent since early 2020. This past year's focused work on mRNA vaccines has catapulted this technology to the forefront of public awareness and additional research pursuits, thus leading to new potential for bionanotechnology principles to help drive further innovation using mRNA. In addition to alleviating the burden of COVID-19, mRNA vaccines could potentially provide long-term solutions all over the world for diseases ranging from influenza to AIDS. Herein, we provide a brief commentary based on the history and development of mRNA vaccines in the context of the COVID-19 pandemic. Furthermore, we address current research using the technology and future directions of mRNA vaccine research.
Collapse
Affiliation(s)
- Samagra Jain
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Abhijeet Venkataraman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Marissa E. Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA,Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA,Corresponding author
| |
Collapse
|