1
|
Köse S, Varan C, Önen S, Nemutlu E, Bilensoy E, Korkusuz P. 2-AG-loaded and bone marrow-targeted PCL nanoparticles as nanoplatforms for hematopoietic cell line mobilization. Stem Cell Res Ther 2024; 15:341. [PMID: 39354544 PMCID: PMC11446023 DOI: 10.1186/s13287-024-03902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The use of mobilizing agents for hematopoietic stem cell (HSC) transplantation is insufficient for an increasing number of patients. We previously reported lipid made endocannabinoid (eCB) ligands act on the human bone marrow (hBM) HSC migration in vitro, lacking long term stability to be therapeutic candidate. In this study, we hypothesized if a novel 2-AG-loaded polycaprolactone (PCL)-based nanoparticle delivery system that actively targets BM via phosphatidylserine (Ps) can be generated and validated. METHODS PCL nanoparticles were prepared by using the emulsion evaporation method and characterized by Zetasizer and scanning electron microscopy (SEM). The encapsulation efficiency and release profile of 2-AG were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of cannabinoid receptors (CBRs) in HSCs and monocytes was detected by flow cytometry. Cell morphology and viability were assessed using transmission electron microscopy (TEM), SEM, and the WST-1 viability assay. The migration efficacy of the 2-AG and 2-AG-loaded nanoparticle delivery system on HSCs and HPSCs (TF-1a and TF-1) and monocytes (THP-1) was evaluated using a transwell migration assay. RESULTS The 140-225 nm PCL nanoparticles exhibited an increasing polydispersity index (PDI) after the addition of Ps and 2-AG, with a surface charge ranging from - 25 to -50 mV. The nanoparticles released up to 36% of 2-AG within the first 8 h. The 2-AG-Ps-PCL did not affect cellular viability compared to control on days 5 and 10. The HSCs and monocytes expressed CB1R and CB2R and revealed increased migration to media containing 1 µM 2-AG-Ps-PCL compared to control. The migration rate of the HSCs toward monocytes incubated with 1 µM 2-AG-Ps-PCL was higher than that of the monocytes of control. The 2-AG-Ps-PCL formulation provided a real time mobilization efficacy at 1 µM dose and 8 h time window via a specific CBR agonism. CONCLUSION The newly generated and validated 2-AG-loaded PCL nanoparticle delivery system can serve as a stable, long lasting, targeted mobilization agent for HSCs and as a candidate therapeutic to be included in HSC transplantation (HSCT) protocols following scale-up in vivo preclinical and subsequent clinical trials.
Collapse
Affiliation(s)
- Sevil Köse
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Akdeniz University, Antalya, 07070, Turkey.
- Faculty of Medicine, Department of Medical Biology, Atilim University, Ankara, 06830, Turkey.
| | - Cem Varan
- Graduate School of Science and Engineering, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, 06532, Turkey
| | | | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, 06100, Turkey
| | - Erem Bilensoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, 06100, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, 06530, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, 06100, Turkey
| |
Collapse
|
2
|
Yadav R, Bhawale R, Srivastava V, Pardhi E, Bhalerao HA, Sonti R, Mehra NK. Innovative Nanoparticulate Strategies in Colon Cancer Treatment: A Paradigm Shift. AAPS PharmSciTech 2024; 25:52. [PMID: 38429601 DOI: 10.1208/s12249-024-02759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.
Collapse
Affiliation(s)
- Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
3
|
Marabada D, Li J, Wei S, Huang Q, Wang Z. Cyclodextrin based nanoparticles for smart drug delivery in colorectal cancer. Chem Biol Drug Des 2023; 102:1618-1631. [PMID: 37705133 DOI: 10.1111/cbdd.14344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The advancement of colorectal cancer (CRC) prevention, detection, and treatment is essential to ensure that survivors live longer and higher-quality lives. The field of cancer detection and therapy has undergone a revolution with the development of nanotechnology for targeted drug delivery. The significant problems with the delivery of cancer drugs are their solubility, stability, and nonspecific distribution. There is a challenge that the acidic and enzymatic environment in the digestive tract will modify or destroy the medication or the active pharmaceutical ingredient. To overcome the problems, nanoparticles have been widely employed during the past several years to increase the specificity, selectivity, and controlled release of drug delivery systems. The site-specific and targeted delivery leads to reduce toxicity and side effects. With respect to the capability and utilization of cyclodextrin-based nanoparticles in different aspects of the tumour microenvironment and gut microbiota, a survey of current research papers was conducted via looking through databases including GoogleScholar, PubMed, Web of Science, and Scopus. This review aims to summarize cutting-edge nanoparticulate-based technologies and therapies for CRC.
Collapse
Affiliation(s)
- Davies Marabada
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinlei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shijie Wei
- General Hospital, Ningxia Medical University, Yinchuan, China
| | - Qing Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
4
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Jain A, Bhattacharya S. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: a critical review. Front Oncol 2023; 13:1211603. [PMID: 37427139 PMCID: PMC10325729 DOI: 10.3389/fonc.2023.1211603] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy that affects a large percentage of the global population. The conventional treatments for CRC have a number of limitations. Nanoparticles have emerged as a promising cancer treatment method due to their ability to directly target cancer cells and regulate drug release, thereby enhancing therapeutic efficacy and minimizing side effects. This compilation examines the use of nanoparticles as drug delivery systems for CRC treatment. Different nanomaterials can be used to administer anticancer drugs, including polymeric nanoparticles, gold nanoparticles, liposomes, and solid lipid nanoparticles. In addition, we discuss recent developments in nanoparticle preparation techniques, such as solvent evaporation, salting-out, ion gelation, and nanoprecipitation. These methods have demonstrated high efficacy in penetrating epithelial cells, a prerequisite for effective drug delivery. This article focuses on the various targeting mechanisms utilized by CRC-targeted nanoparticles and their recent advancements in this field. In addition, the review offers descriptive information regarding numerous nano-preparative procedures for colorectal cancer treatments. We also discuss the outlook for innovative therapeutic techniques in the management of CRC, including the potential application of nanoparticles for targeted drug delivery. The review concludes with a discussion of current nanotechnology patents and clinical studies used to target and diagnose CRC. The results of this investigation suggest that nanoparticles have great potential as a method of drug delivery for the treatment of colorectal cancer.
Collapse
|
6
|
Ünal S, Varan G, Benito JM, Aktaş Y, Bilensoy E. Insight into oral amphiphilic cyclodextrin nanoparticles for colorectal cancer: comprehensive mathematical model of drug release kinetic studies and antitumoral efficacy in 3D spheroid colon tumors. Beilstein J Org Chem 2023; 19:139-157. [PMID: 36814451 PMCID: PMC9940600 DOI: 10.3762/bjoc.19.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer type globally and ranks second in cancer-related deaths. With the current treatment possibilities, a definitive, safe, and effective treatment approach for CRC has not been presented yet. However, new drug delivery systems show promise in this field. Amphiphilic cyclodextrin-based nanocarriers are innovative and interesting formulation approaches for targeting the colon through oral administration. In our previous studies, oral chemotherapy for colon tumors was aimed and promising results were obtained with formulation development studies, mucin interaction, mucus penetration, cytotoxicity, and permeability in 2D cell culture, and furthermore in vivo antitumoral and antimetastatic efficacy in early and late-stage colon cancer models and biodistribution after single dose oral administration. This study was carried out to further elucidate oral camptothecin (CPT)-loaded amphiphilic cyclodextrin nanoparticles for the local treatment of colorectal tumors in terms of their drug release behavior and efficacy in 3-dimensional tumor models to predict the in vivo efficacy of different nanocarriers. The main objective was to build a bridge between formulation development and in vitro phase and animal studies. In this context, CPT-loaded polycationic-β-cyclodextrin nanoparticles caused reduced cell viability in CT26 and HT29 colon carcinoma spheroid tumors of mice and human origin, respectively. In addition, the release profile, which is one of the critical quality parameters in new drug delivery systems, was investigated mathematically by release kinetic modeling for the first time. The overall findings indicated that the strategy of orally targeting anticancer drugs such as CPT with positively charged poly-β-CD-C6 nanoparticles to colon tumors for local and/or systemic efficacy is a promising approach.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100, Ankara, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Americo Vespucio 49, 41092, Sevilla, Spain
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
7
|
Akkın S, Varan G, Işık A, Gökşen S, Karakoç E, Malanga M, Esendağlı G, Korkusuz P, Bilensoy E. Synergistic Antitumor Potency of a Self-Assembling Cyclodextrin Nanoplex for the Co-Delivery of 5-Fluorouracil and Interleukin-2 in the Treatment of Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15020314. [PMID: 36839637 PMCID: PMC9963231 DOI: 10.3390/pharmaceutics15020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Chemotherapy is the most used method after surgery in the treatment of colon cancer. Cancer cells escape the recognition mechanism of immune system cells to survive and develop chemoresistance. Therefore, the use of immunotherapy in combination with chemotherapy can increase the effectiveness of the treatment. Nanoparticles have been used clinically to increase the accumulation of therapeutics in target tissues and reduce toxicity. In this paper, nanoplexes were formed via cationic cyclodextrin polymer, 5-Fluorouracil, and Interleukin-2 based on the opposite charge interaction of macromolecules without undergoing any structural changes or losing the biological activity of Interleukin-2. Anticancer activities of nanoplexes were determined in two-dimensional and three-dimensional cell culture setups. The dual drug-loaded cyclodextrin nanoplexes diffused deeper into the spheroids and accelerated apoptosis when compared with 5-FU solutions. In the colorectal tumor-bearing animal model, survival rate, antitumor activity, metastasis, and immune response parameters were assessed using a cyclodextrin derivative, which was found to be safe based on the ALT/AST levels in healthy mice. Histomorphometric analysis showed that the groups treated with the nanoplex formulation had significantly fewer initial tumors and lung foci when compared with the control. The dual drug-loaded nanoplex could be a promising drug delivery technique in the immunochemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Anıl Işık
- Department of Basic Oncology, Cancer Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Sibel Gökşen
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Elif Karakoç
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Milo Malanga
- CycloLab-Cyclodextrin Research & Development Laboratory, Organic Synthesis Laboratory, 1097 Budapest, Hungary
| | - Güneş Esendağlı
- Department of Basic Oncology, Cancer Institute, Hacettepe University, 06100 Ankara, Turkey
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
- Correspondence:
| |
Collapse
|
8
|
Oral docetaxel delivery with cationic polymeric core-shell nanocapsules: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Ünal S, Doğan O, Aktaş Y. Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1393-1407. [PMID: 36483636 PMCID: PMC9704015 DOI: 10.3762/bjnano.13.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Intestinal cancers are the third most lethal cancers globally, beginning as polyps in the intestine and spreading with a severe metastatic tendency. Chemotherapeutic drugs used in the treatment of intestinal tumors are usually formulated for parenteral administration due to poor solubility and bioavailability problems. Pharmaceutically, clinical failure due to a drug's wide biodistribution and non-selective toxicity is one of the major challenges of chemotherapy. In addition, parenteral drug administration in chronic diseases that require long-term drug use, such as intestinal tumors, is challenging in terms of patient compliance and poses a burden in terms of health economy. Especially in the field of chemotherapy research, oral chemotherapy is a subject that has been intensively researched in recent years, and developments in this field will provide serious breakthroughs both scientifically and socially. Development of orally applicable nanodrug formulations that can act against diseases seen in the distant region of the gastrointestinal tract (GIT), such as intestinal tumor, brings with it a series of difficulties depending on the drug and/or GIT physiology. The aim of this study is to develop an oral nanoparticle drug delivery system loaded with docetaxel (DCX) as an anticancer drug, using poly(lactic-co-glycolic acid) (PLGA) as nanoparticle material, and modified with chitosan (CS) to gain mucoadhesive properties. In this context, an innovative nanoparticle formulation that can protect orally administered DCX from GIT conditions and deliver the drug to the intestinal tumoral region by accumulating in mucus has been designed. For this purpose, DCX-PLGA nanoparticles (NPs) and CS/DCX-PLGA NPs were prepared, and their in vitro characteristics were elucidated. Nanoparticles around 250-300 nm were obtained. DCX-PLGA NPs had positive surface charge with CS coating. The formulations have the potential to deliver the encapsulated drug to the bowel according to the in vitro release studies in three different simulated GIT fluids for approximately 72 h. Mucin interaction and penetration into the artificial mucus layer were also investigated in detail, and the mucoadhesive and mucus-penetration characteristics of the formulations were examined. Furthermore, in vitro release kinetic studies of the NPs were elucidated. DCX-PLGA NPs were found to be compatible with the Weibull model, and CS/DCX-PLGA NPs were found to be compatible with the Peppas-Sahlin model. Within the scope of in vitro cytotoxicity studies, the drug-loaded NPs showed significantly higher cytotoxicity than a DCX solution on the HT-29 colon cell line, and CS/DCX-PLGA showed the highest cytotoxicity (p < 0.05). According to the permeability studies on the Caco-2 cell line, the CS/DCX-PLGA formulation increased permeability by 383% compared to free DCX (p < 0.05). In the light of all results, CS/DCX-PLGA NPs can offer a promising and innovative approach as an oral anticancer drug-loaded nanoformulation for intestinal tumors.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Erciyes University Faculty of Pharmacy, Kayseri, Turkey
| | - Osman Doğan
- Department of Bioengineering, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Erciyes University Faculty of Pharmacy, Kayseri, Turkey
| |
Collapse
|
10
|
Karthic A, Roy A, Lakkakula J, Alghamdi S, Shakoori A, Babalghith AO, Emran TB, Sharma R, Lima CMG, Kim B, Park MN, Safi SZ, de Almeida RS, Coutinho HDM. Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. Front Cell Dev Biol 2022; 10:984311. [PMID: 36158215 PMCID: PMC9494816 DOI: 10.3389/fcell.2022.984311] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is still one of the world’s deadliest health concerns. As per latest statistics, lung, breast, liver, prostate, and cervical cancers are reported topmost worldwide. Although chemotherapy is most widely used methodology to treat cancer, poor pharmacokinetic parameters of anticancer drugs render them less effective. Novel nano-drug delivery systems have the caliber to improve the solubility and biocompatibility of various such chemical compounds. In this regard, cyclodextrins (CD), a group of natural nano-oligosaccharide possessing unique physicochemical characteristics has been highly exploited for drug delivery and other pharmaceutical purposes. Their cup-like structure and amphiphilic nature allows better accumulation of drugs, improved solubility, and stability, whereas CDs supramolecular chemical compatibility renders it to be highly receptive to various kinds of functionalization. Therefore combining physical, chemical, and bio-engineering approaches at nanoscale to specifically target the tumor cells can help in maximizing the tumor damage without harming non-malignant cells. Numerous combinations of CD nanocomposites were developed over the years, which employed photodynamic, photothermal therapy, chemotherapy, and hyperthermia methods, particularly targeting cancer cells. In this review, we discuss the vivid roles of cyclodextrin nanocomposites developed for the treatment and theranostics of most important cancers to highlight its clinical significance and potential as a medical tool.
Collapse
Affiliation(s)
- Anandakrishnan Karthic
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- Centre for Computational Biology and Translational Research, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore, Pakistan
| | - Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri –URCA, Crato, Brazil
| | | |
Collapse
|
11
|
Sahin A, Ozturk SC. Intraperitoneal administration of PLGA nanoparticles could deliver the cargo to tumor-associated macrophages with less spreading peritoneal macrophages in the treatment of peritoneal carcinomatosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|