1
|
Hroudová J, Fišar Z. Alzheimer's disease approaches - Focusing on pathology, biomarkers and clinical trial candidates. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111069. [PMID: 38917881 DOI: 10.1016/j.pnpbp.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The strategy for the development of new drugs for Alzheimer's disease (AD) recognizes that an effective therapy requires early therapeutic intervention and a multifactorial approach that considers the individual initiators of AD development. Current knowledge of AD includes the understanding of pathophysiology, risk factors, biomarkers, and the evolving patterns of biomarker abnormalities. This knowledge is essential in identifying potential molecular targets for new drug development. This review summarizes promising AD drug candidates, many of which are currently in phase 2 or 3 clinical trials. New agents are classified according to the Common Alzheimer's Disease Research Ontology (CADRO). The main targets of new drugs for AD are processes related to amyloid beta and tau neurotoxicity, neurotransmission, inflammation, metabolism and bioenergetics, synaptic plasticity, and oxidative stress. These interventions are aimed at preventing disease onset and slowing or eliminating disease progression. The efficacy of pharmacotherapy may be enhanced by combining these drugs with other treatments, antioxidants, and dietary supplements. Ongoing research into AD pathophysiology, risk factors, biomarkers, and the dynamics of biomarker abnormalities may contribute to the understanding of AD and offer hope for effective therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| |
Collapse
|
2
|
Gan K, Li Z, Darli PM, Wong T, Modh H, Gottier P, Halbherr S, Wacker MG. Understanding the In Vitro-In Vivo Nexus: Advanced correlation models predict clinical performance of liposomal doxorubicin. Int J Pharm 2024; 654:123942. [PMID: 38403086 DOI: 10.1016/j.ijpharm.2024.123942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
In the century of precision medicine and predictive modeling, addressing quality-related issues in the medical supply chain is critical, with 62 % of the disruptions being attributable to quality challenges. This study centers on the development and safety of liposomal doxorubicin, where animal studies alone often do not adequately explain the complex interplay between critical quality attributes and in vivo performances. Anchored in our aim to elucidate this in vitro-in vivo nexus, we compared TLD-1, a novel liposomal doxorubicin delivery system, against the established formulations Doxil® and Lipodox®. Robust in vitro-in vivo correlations (IVIVCs) with excellent coefficients of determination (R2 > 0.98) were obtained in the presence of serum under dynamic high-shear conditions. They provided the foundation for an advanced characterization and benchmarking strategy. Despite the smaller vesicle size and reduced core crystallinity of TLD-1, its release behavior closely resembled that of Doxil®. Nevertheless, subtle differences between the dosage forms observed in the in vitro setting were reflected in the bioavailabilities observed in vivo. Data from a Phase-I clinical trial facilitated the development of patient-specific IVIVCs using the physiologically-based nanocarrier biopharmaceutics model, enabling a more accurate estimation of doxorubicin exposure. This advancement could impact clinical practice by allowing for more precise dose estimation and aiding in the assessment of the interchangeability of generic liposomal doxorubicin.
Collapse
Affiliation(s)
- Kennard Gan
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhuoxuan Li
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Phyo Maw Darli
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Teresa Wong
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Harshvardhan Modh
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | | | - Matthias G Wacker
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Pellesi L, Do TP, Hougaard A. Pharmacological management of migraine: current strategies and future directions. Expert Opin Pharmacother 2024; 25:673-683. [PMID: 38720629 DOI: 10.1080/14656566.2024.2349791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Migraine is a complex neurological disorder that affects a significant portion of the global population. As traditional pharmacological approaches often fall short in alleviating symptoms, the development of innovative therapies has garnered significant interest. This text aims to summarize the current pharmacological options for managing migraine and to explore the potential impact of novel therapies. AREAS COVERED We focused on conventional treatments, emerging therapies, and novel compounds in clinical development, including therapies targeting the trigeminovascular system, cannabis-based therapies, hormonal and metabolic therapies, and other options. English peer-reviewed articles were searched in PubMed, Scopus, and ClinicalTrials.gov electronic databases. EXPERT OPINION Several novel treatment options for migraine have become available in recent years. Emerging pharmacological therapies targeting the trigeminovascular system, cannabis-based therapies, hormonal and metabolic interventions, and other emerging treatment modalities, may prove to be valuable for the treatment of migraine. Further research, clinical trials, and substantiated evidence are necessary to validate the efficacy, safety, and long-term outcomes of these therapeutic options.
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Thien Phu Do
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Danish Knowledge Center on Headache Disorders, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Anders Hougaard
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
4
|
Li Z, Kovshova T, Malinovskaya J, Knoll J, Shanehsazzadeh S, Osipova N, Chernysheva A, Melnikov P, Gelperina S, Wacker MG. Blood-Nanoparticle Interactions Create a Brain Delivery Superhighway for Doxorubicin. Int J Nanomedicine 2024; 19:2039-2056. [PMID: 38476274 PMCID: PMC10928925 DOI: 10.2147/ijn.s440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose This study investigated the brain targeting mechanism of doxorubicin-loaded polybutyl cyanoacrylate (PBCA) nanoparticles, particularly their interactions with the blood-brain barrier (BBB). The BBB protects the brain from drugs in the bloodstream and represents a crucial obstacle in the treatment of brain cancer. Methods An advanced computer model analyzed the brain delivery of two distinct formulations, Doxil® and surfactant-coated PBCA nanoparticles. Computational learning was combined with in vitro release and cell interaction studies to comprehend the underlying brain delivery pathways. Results Our analysis yielded a surprising discovery regarding the brain delivery mechanism of PBCA nanoparticles. While Doxil® exhibited the expected behavior, accumulating in the brain through extravasation in tumor tissue, PBCA nanoparticles employed a unique and previously uncharacterized mechanism. They underwent cell hitchhiking, resulting in a remarkable more than 1000-fold increase in brain permeation rate compared to Doxil® (2.59 × 10-4 vs 0.32 h-1). Conclusion The nonspecific binding to blood cells facilitated and intensified interactions of surfactant-coated PBCA nanoparticles with the vascular endothelium, leading to enhanced transcytosis. Consequently, the significant increase in circulation time in the bloodstream, coupled with improved receptor interactions, contributes to this remarkable uptake of doxorubicin into the brain.
Collapse
Affiliation(s)
- Zhuoxuan Li
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Tatyana Kovshova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julia Malinovskaya
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julian Knoll
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Saeed Shanehsazzadeh
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Nadezhda Osipova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Anastasia Chernysheva
- V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Melnikov
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Svetlana Gelperina
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| |
Collapse
|
5
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
6
|
Smith B, Ownby RL. Disease-Modifying Treatments and Their Future in Alzheimer's Disease Management. Cureus 2024; 16:e56105. [PMID: 38618323 PMCID: PMC11014642 DOI: 10.7759/cureus.56105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory impairment, a loss of cholinergic neurons, and cognitive decline that insidiously progresses to dementia. The pathoetiology of AD is complex, as genetic predisposition, age, inflammation, oxidative stress, and dysregulated proteostasis all contribute to its development and progression. The histological hallmarks of AD are the formation and accumulation of amyloid-β plaques and interfibrillar tau tangles within the central nervous system. These histological hallmarks trigger neuroinflammation and disrupt the physiological structure and functioning of neurons, leading to cognitive dysfunction. Most treatments currently available for AD focus only on symptomatic relief. Disease-modifying treatments (DMTs) that target the biology of the disease in hopes of slowing or reversing disease progression are desperately needed. This narrative review investigates novel DMTs and their therapeutic targets that are either in phase three of development or have been recently approved by the U.S. Food and Drug Administration (FDA). The target areas of some of these novel DMTs consist of combatting amyloid or tau accumulation, oxidative stress, neuroinflammation, and dysregulated proteostasis, metabolism, or circadian rhythm. Neuroprotection and neuroplasticity promotion were also key target areas. DMT therapeutic target diversity may permit improved therapeutic responses in certain subpopulations of AD, particularly if the therapeutic target of the DMT being administered aligns with the subpopulation's most prominent pathological findings. Clinicians should be cognizant of how these novel drugs differ in therapeutic targets, as this knowledge may potentially enhance the level of care they can provide to AD patients in the future.
Collapse
Affiliation(s)
- Blake Smith
- Psychiatry and Behavioral Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Raymond L Ownby
- Psychiatry and Behavioral Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| |
Collapse
|
7
|
Huang LK, Kuan YC, Lin HW, Hu CJ. Clinical trials of new drugs for Alzheimer disease: a 2020-2023 update. J Biomed Sci 2023; 30:83. [PMID: 37784171 PMCID: PMC10544555 DOI: 10.1186/s12929-023-00976-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, presenting a significant unmet medical need worldwide. The pathogenesis of AD involves various pathophysiological events, including the accumulation of amyloid and tau, neuro-inflammation, and neuronal injury. Clinical trials focusing on new drugs for AD were documented in 2020, but subsequent developments have emerged since then. Notably, the US-FDA has approved Aducanumab and Lecanemab, both antibodies targeting amyloid, marking the end of a nearly two-decade period without new AD drugs. In this comprehensive report, we review all trials listed in clinicaltrials.gov, elucidating their underlying mechanisms and study designs. Ongoing clinical trials are investigating numerous promising new drugs for AD. The main trends in these trials involve pathophysiology-based, disease-modifying therapies and the recruitment of participants in earlier stages of the disease. These trends underscore the significance of conducting fundamental research on pathophysiology, prevention, and intervention prior to the occurrence of brain damage caused by AD.
Collapse
Affiliation(s)
- Li-Kai Huang
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhong Zheng Road, Zhonghe District, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ho-Wei Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhong Zheng Road, Zhonghe District, New Taipei City, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan.
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Plascencia-Villa G, Perry G. Exploring Molecular Targets for Mitochondrial Therapies in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:12486. [PMID: 37569861 PMCID: PMC10419704 DOI: 10.3390/ijms241512486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The progressive deterioration of function and structure of brain cells in neurodegenerative diseases is accompanied by mitochondrial dysfunction, affecting cellular metabolism, intracellular signaling, cell differentiation, morphogenesis, and the activation of programmed cell death. However, most of the efforts to develop therapies for Alzheimer's and Parkinson's disease have focused on restoring or maintaining the neurotransmitters in affected neurons, removing abnormal protein aggregates through immunotherapies, or simply treating symptomatology. However, none of these approaches to treating neurodegeneration can stop or reverse the disease other than by helping to maintain mental function and manage behavioral symptoms. Here, we discuss alternative molecular targets for neurodegeneration treatments that focus on mitochondrial functions, including regulation of calcium ion (Ca2+) transport, protein modification, regulation of glucose metabolism, antioxidants, metal chelators, vitamin supplementation, and mitochondrial transference to compromised neurons. After pre-clinical evaluation and studies in animal models, some of these therapeutic compounds have advanced to clinical trials and are expected to have positive outcomes in subjects with neurodegeneration. These mitochondria-targeted therapeutic agents are an alternative to established or conventional molecular targets that have shown limited effectiveness in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA;
| | | |
Collapse
|