1
|
Chougule M, Kollipara S, Mondal S, Ahmed T. A critical review on approaches to generate and validate virtual population for physiologically based pharmacokinetic models: Methodologies, case studies and way forward. Eur J Clin Pharmacol 2024; 80:1903-1922. [PMID: 39377787 DOI: 10.1007/s00228-024-03763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE In silico modeling and simulation techniques such as physiologically based pharmacokinetic (PBPK) and physiologically based biopharmaceutics modeling (PBBM) have demonstrated various applications in drug discovery and development. Virtual bioequivalence leverages these computation tools to predict bioequivalence between reference and test formulations thereby demonstrating possibilities to reduce human studies. A pre-requisite for virtual bioequivalence is development of validated virtual population that depicts the same variability as that of observed in clinic. This development, validation and optimization of virtual population is a key attribute of virtual bioequivalence based on which conclusion of bioequivalence is made. METHODS Various strategies for optimization of virtual population based on appropriate considerations of physicochemical, physiological and disposition aspects are demonstrated with the help of six diverse case studies of immediate and modified release formulations. Once the virtual population is optimized to match in vivo variability, it can be used for various applications such as biowaivers, dissolution specification justification, f2 mismatch, establishing dissolution safe space, etc. In this review article, we attempted to describe various methodologies and approaches for optimization of virtual population using Gastroplus. RESULTS Strategies based on optimization of virtual population with emphasis on specific and sensitive parameters were portrayed. We have further elucidated considerations related to study design, in vivo variability, sample size for optimization of virtual population from Gastroplus perspective. CONCLUSION We believe that this review article provides a step-by-step process for virtual population optimization for interest of biopharmaceutics modeling scientists in order to ensure reliable and credible physiological models.
Collapse
Affiliation(s)
- Mahendra Chougule
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Smritilekha Mondal
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India.
| |
Collapse
|
2
|
Romański M, Staniszewska M, Dobosz J, Myslitska D, Paszkowska J, Kołodziej B, Romanova S, Banach G, Garbacz G, Sarcevica I, Huh Y, Purohit V, McAllister M, Wong SM, Danielak D. More Than a Gut Feeling─A Combination of Physiologically Driven Dissolution and Pharmacokinetic Modeling as a Tool for Understanding Human Gastric Motility. Mol Pharm 2024; 21:3824-3837. [PMID: 38958668 PMCID: PMC11345944 DOI: 10.1021/acs.molpharmaceut.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
In vivo studies of formulation performance with in vitro and/or in silico simulations are often limited by significant gaps in our knowledge of the interaction between administered dosage forms and the human gastrointestinal tract. This work presents a novel approach for the investigation of gastric motility influence on dosage form performance, by combining biopredictive dissolution tests in an innovative PhysioCell apparatus with mechanistic physiology-based pharmacokinetic modeling. The methodology was based on the pharmacokinetic data from a large (n = 118) cohort of healthy volunteers who ingested a capsule containing a highly soluble and rapidly absorbed drug under fasted conditions. The developed dissolution tests included biorelevant media, varied fluid flows, and mechanical stress events of physiological timing and intensity. The dissolution results were used as inputs for pharmacokinetic modeling that led to the deduction of five patterns of gastric motility and their prevalence in the studied population. As these patterns significantly influenced the observed pharmacokinetic profiles, the proposed methodology is potentially useful to other in vitro-in vivo predictions involving immediate-release oral dosage forms.
Collapse
Affiliation(s)
- Michał Romański
- Department
of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| | | | - Justyna Dobosz
- Physiolution
Polska, 74 Piłsudskiego
St., 50-020 Wrocław, Poland
| | - Daria Myslitska
- Physiolution
Polska, 74 Piłsudskiego
St., 50-020 Wrocław, Poland
| | | | | | | | - Grzegorz Banach
- Physiolution
Polska, 74 Piłsudskiego
St., 50-020 Wrocław, Poland
| | - Grzegorz Garbacz
- Physiolution
Polska, 74 Piłsudskiego
St., 50-020 Wrocław, Poland
| | - Inese Sarcevica
- Worldwide
Research and Development, Pfizer R&D
UK Ltd., Sandwich, CT13 9NJ, U.K.
| | - Yeamin Huh
- Worldwide
Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Vivek Purohit
- Worldwide
Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Mark McAllister
- Worldwide
Research and Development, Pfizer R&D
UK Ltd., Sandwich, CT13 9NJ, U.K.
| | - Suet M. Wong
- Worldwide
Research and Development, Pfizer R&D
UK Ltd., Sandwich, CT13 9NJ, U.K.
| | - Dorota Danielak
- Department
of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| |
Collapse
|
3
|
Bello A, Mochel JP, Jajor P, Bobrek K, Świtała M, Poźniak B. Population Pharmacokinetics and Absolute Oral Bioavailability of Lasalocid after Single Intravenous and Intracrop Administration in Laying Hens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13348-13359. [PMID: 38829852 DOI: 10.1021/acs.jafc.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Lasalocid sodium is a polyether carboxylic ionophore agent authorized by the EU for use as a coccidiostat in broilers, turkeys, and pullets up to 16 weeks of age, except for laying hens. However, laying hens are the most common nontarget species exposed to lasalocid sodium, mainly due to cross-contamination from feed mills. This exposure may result in potential drug residue deposition in eggs, which could potentially expose consumers to the drug. The breeds commonly used for commercial egg production in Poland are Isa Brown and Green-legged Partridge hens, which have been found to significantly differ in egg-laying performance. This variability may also affect the pharmacokinetics of lasalocid. Data on lasalocid plasma pharmacokinetics in laying hens are lacking. In this study, we aimed to determine typical population pharmacokinetic parameters, absolute oral bioavailability, and how breed may influence the pharmacokinetics of lasalocid. Twenty-layer hens of the two breeds were used in this study. Lasalocid was administered orally at a single dose of either 1 mg or 5 mg/kg body weight or intravenously at a dose of 1 mg/kg body weight, in a crossover design with a three-week washout period between study periods. Blood samples were collected for 72 h, and lasalocid concentrations were measured using high-performance liquid chromatography with fluorescence detection. A population pharmacokinetic analysis was conducted using nonlinear mixed effects modeling. Standard numerical and graphical criteria were used to select the best model, and a stepwise covariate modeling approach was used to determine any influencing factors. The best model was a three-compartment mammillary model with first-order absorption, transit compartments, and linear elimination. The estimated absolute oral bioavailability was low (36%). It was found that breed significantly influenced not only absorption but also the elimination of lasalocid. This study revealed that lasalocid absorption and elimination varied between the two breeds. This variability in pharmacokinetics may result in breed-related differences in drug residue accumulation in eggs, and ultimately, the risk associated with consumer exposure to drug residues may also vary.
Collapse
Affiliation(s)
- A Bello
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - J P Mochel
- Department of Pathology, Precision One Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - P Jajor
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - K Bobrek
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Wroclaw University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - M Świtała
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - B Poźniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
4
|
Shuklinova O, Wyszogrodzka-Gaweł G, Baran E, Lisowski B, Wiśniowska B, Dorożyński P, Kulinowski P, Polak S. Can 3D Printed Tablets Be Bioequivalent and How to Test It: A PBPK Model Based Virtual Bioequivalence Study for Ropinirole Modified Release Tablets. Pharmaceutics 2024; 16:259. [PMID: 38399313 PMCID: PMC10893163 DOI: 10.3390/pharmaceutics16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
As the field of personalized dosing develops, the pharmaceutical manufacturing industry needs to offer flexibility in terms of tailoring the drug release and strength to the individual patient's needs. One of the promising tools which have such capacity is 3D printing technology. However, manufacturing small batches of drugs for each patient might lead to huge test burden, including the need to conduct bioequivalence trials of formulations to support the change of equipment or strength. In this paper we demonstrate how to use 3D printing in conjunction with virtual bioequivalence trials based on physiologically based pharmacokinetic (PBPK) modeling. For this purpose, we developed 3D printed ropinirole formulations and tested their bioequivalence with the reference product Polpix. The Simcyp simulator and previously developed ropinirole PBPK model were used for the clinical trial simulations. The Weibull-fitted dissolution profiles of test and reference formulations were used as inputs for the model. The virtual bioequivalence trials were run using parallel design. The study power of 80% was reached using 125 individuals. The study demonstrated how to use PBPK modeling in conjunction with 3D printing to test the virtual bioequivalence of newly developed formulations. This virtual experiment demonstrated the bioequivalence of one of the newly developed formulations with a reference product available on a market.
Collapse
Affiliation(s)
- Olha Shuklinova
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
| | - Gabriela Wyszogrodzka-Gaweł
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Ewelina Baran
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Bartosz Lisowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Przemysław Dorożyński
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Sebastian Polak
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| |
Collapse
|
5
|
Romański M, Giebułtowicz J, Gniazdowska E, Piotrowski R, Żuk A, Kułakowski P, Paszkowska J, Myslitska D, Sczodrok J, Garbacz G, Danielak D. An extension of biorelevant fed-state dissolution tests to clinical pharmacokinetics - A study on gastrointestinal factors influencing rivaroxaban exposure and efficacy in atrial fibrillation patients. Int J Pharm 2024; 649:123626. [PMID: 38000647 DOI: 10.1016/j.ijpharm.2023.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
A direct oral anticoagulant rivaroxaban fails to prevent stroke and systemic embolism in one-to-several percent of patients with nonvalvular atrial fibrillation (NVAF), but the reasons are unknown. The study used semi-mechanistic in vitro-in vivo prediction (IVIVP) modeling to explore the reasons for ineffective thrombosis prevention in NVAF patients. Steady-state drug concentrations in plasma were measured at 0 h (Ctrough), 3 h (C3h), and 12 h post-dosing in thirty-four patients treated with 20 mg rivaroxaban daily. The clinical data were compared against "virtual twins" generated with a novel IVIVP model that combined drug dissolution modeling, mechanistic description of gastric drug transit, and population pharmacokinetics defining the variability of drug disposition. The nonresponders had significantly lower C3h and Ctrough than the responders (p < 0.001) and the covariates included in the population pharmacokinetic submodel did not fully explain this difference. Simulations involving varied gastrointestinal parameters in the "virtual twins" revealed that lower small intestinal effective permeability (Peff), rather than a slower stomach emptying rate, could explain low rivaroxaban exposure in the nonresponders. IVIVP modeling was effectively used for exploring pharmacotherapy failure. Low Peff, found as a major determinant of ineffective rivaroxaban treatment, encourages further research to find (pato)physiological factors influencing suboptimal absorption.
Collapse
Affiliation(s)
- Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| | - Joanna Giebułtowicz
- Department of Drugs Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland.
| | - Elżbieta Gniazdowska
- Department of Drugs Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; Łukasiewicz Research Network, Industrial Chemistry Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Roman Piotrowski
- Postgraduate Medical School, Department of Cardiology, Grochowski Hospital, 51/59 Grenadierów St., 04-073 Warsaw, Poland
| | - Anna Żuk
- Postgraduate Medical School, Department of Cardiology, Grochowski Hospital, 51/59 Grenadierów St., 04-073 Warsaw, Poland
| | - Piotr Kułakowski
- Postgraduate Medical School, Department of Cardiology, Grochowski Hospital, 51/59 Grenadierów St., 04-073 Warsaw, Poland
| | | | - Daria Myslitska
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | - Jaroslaw Sczodrok
- Physiolution GmbH, 49a Walther-Rathenau-Straße, 17489 Greifswald, Germany
| | - Grzegorz Garbacz
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland; Physiolution GmbH, 49a Walther-Rathenau-Straße, 17489 Greifswald, Germany
| | - Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| |
Collapse
|