1
|
Lodge JM, Huang L, Lian Z, Qian J, Tian Y. Native Digestion and Shotgun Proteomics for Host Cell Protein Profiling of Adeno-Associated Viruses. Anal Chem 2024; 96:16510-16513. [PMID: 39376079 DOI: 10.1021/acs.analchem.4c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Host cell proteins (HCPs) are contaminants of biotherapeutics produced from engineered living systems; they can influence the product's quality, efficacy, and toxicity. Liquid chromatography coupled to mass spectrometry can detect HCPs thereby mitigating their risks. However, highly abundant biotherapeutics hamper the detection of low-level HCPs. Sample preparation termed native digestion has proven effective to preferentially digest and draw out HCPs from intact antibodies. Here, we adapted native digestion to adeno-associated viruses (AAV), which is a vector gaining popularity for gene therapy. We leveraged quantitative proteomics using capillary-flow liquid chromatography-mass spectrometry (LC-MS) and demonstrated that native digestion was more effective than applying denaturing conditions to extract the HCPs associated with different AAV serotypes.
Collapse
Affiliation(s)
- Jean M Lodge
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lihua Huang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Zhirui Lian
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jun Qian
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Yuwei Tian
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
2
|
Huo S, Nie S, Cong Y, Wang S, Li N. In-Depth Host Cell Protein Analysis and Viral Protein Impurity Monitoring in Adeno-Associated Virus-Based Gene Therapy Products Using Optimized Wide Window Data-Dependent Acquisition Method. Anal Chem 2024. [PMID: 39263887 DOI: 10.1021/acs.analchem.4c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Compared to other protein therapeutics, there is currently limited knowledge about the residual host cell proteins (HCPs) in adeno-associated virus (AAV)-based gene therapy products. This is primarily due to the lack of a robust and sensitive mass spectrometry-based method for HCP analysis in AAV samples. Existing liquid chromatography-mass spectrometry methods used for analyzing HCPs in therapeutic monoclonal antibodies (mAbs) often cannot be directly applied to AAVs, due to some unique characteristics of AAV samples encountered during their development such as limited sample availability/protein concentration and the presence of surfactants. In this study, we have developed a novel workflow for robust and in-depth HCP analysis of AAV samples by combining wide-window data-dependent acquisition for improved low-abundance HCP detection with single-pot, solid-phase-enhanced sample preparation (SP3) for low-input sample preparation. Using this newly developed method, we were able to detect more than 650 HCPs in a commercial AAV1 sample with a high quantitative reproducibility. This represents a greater than 5-fold increase in HCP protein identification compared to an in-solution digestion method followed by traditional data-dependent acquisition. Similar benefits can also be achieved for other AAV serotypes that were produced internally and purified through different processes. The detection limit of this method is as low as 0.06 ng/mL, enabling more comprehensive HCP coverage in AAV samples. Moreover, for the first time, we have identified several process-related viral proteins, such as Rep 78 and E4. These proteins need to be closely monitored during AAV process development as they may present a greater risk for immunogenicity compared to HCPs that are derived from human HEK293 cells.
Collapse
Affiliation(s)
- Shihan Huo
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Song Nie
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Yongzheng Cong
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
3
|
Hu Y, Hu M, Ye X, Wu Z, Kang J, Wong C, Palackal N, Qiu H, Li N. A simple and sensitive differential digestion method to analyze adeno-associated virus residual host cell proteins by LC-MS. J Pharm Biomed Anal 2024; 242:116009. [PMID: 38354541 DOI: 10.1016/j.jpba.2024.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Many methods using liquid chromatography-mass spectrometry (LC-MS) have been established for identifying residual host cell proteins (HCPs) to aid in the process development and quality control of therapeutic proteins. However, the use of MS-based techniques for adeno-associated virus (AAV) is still in its infancy, with few methods reported and minimal information available on potentially problematic HCPs. In this study, we developed a highly sensitive and effective differential digestion method to profile residual HCPs in AAV. Unlike direct digestion, which completely digests both AAV and HCPs, our differential digestion method takes advantage of AAV's unique characteristics to maintain the integrity of AAV while preferentially digesting HCPs under denaturing and reducing conditions. This differential digestion method requires only several micrograms of sample and significantly enhances the identification of HCPs. Furthermore, this method can be applied to all five different AAV serotypes for comprehensive HCP profiling. Our work fills a gap in AAV HCP analysis by providing a sensitive and robust strategy for detecting, monitoring, and measuring HCPs.
Collapse
Affiliation(s)
- Yunli Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA.
| | - Mengqi Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Xiang Ye
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Zhijie Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Jianming Kang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Christina Wong
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Nisha Palackal
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA.
| | - Ning Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| |
Collapse
|
4
|
Yuen BPN, Wong KS, So YM, Kwok WH, Cheung HW, Wan TSM, Ho ENM, Wong WT. Gene Doping Control Analysis of Human Erythropoietin Transgene in Equine Plasma by PCR-Liquid Chromatography High-Resolution Tandem Mass Spectrometry. Anal Chem 2024; 96:5307-5314. [PMID: 38504497 DOI: 10.1021/acs.analchem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Gene doping involves the misuse of genetic materials to alter an athlete's performance, which is banned at all times in both human and equine sports. Quantitative polymerase chain reaction (qPCR) assays have been used to control the misuse of transgenes in equine sports. Our laboratory recently developed and implemented duplex as well as multiplex qPCR assays for transgenes detection. To further advance gene doping control, we have developed for the first time a sensitive and definitive PCR-liquid chromatography high-resolution tandem mass spectrometry (PCR-LC-HRMS/MS) method for transgene detection with an estimated limit of detection of below 100 copies/mL for the human erythropoietin (hEPO) transgene in equine plasma. The method involved magnetic-glass-particle-based extraction of DNA from equine plasma prior to PCR amplification with 2'-deoxyuridine 5'-triphosphate (dUTP) followed by treatments with uracil DNA glycosylase and hot piperidine for selective cleavage to give small oligonucleotide fragments. The resulting DNA fragments were then analyzed by LC-HRMS/MS. The applicability of this method has been demonstrated by the successful detection of hEPO transgene in a blood sample collected from a gelding (castrated male horse) that had been administered the transgene. This novel approach not only serves as a complementary method for transgene detection but also paves the way for developing a generic PCR-LC-HRMS/MS method for the detection of multiple transgenes.
Collapse
Affiliation(s)
- Bruce Pui-Nam Yuen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Kin-Sing Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Wai Him Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Hiu Wing Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Terence See Ming Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Emmie Ngai-Man Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Zhang S, Xiao H, Li N. Analysis of Host Cell Proteins in AAV Products with ProteoMiner Protein Enrichment Technology. Anal Chem 2024; 96:1890-1897. [PMID: 38262068 DOI: 10.1021/acs.analchem.3c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Despite substantial efforts to detect host cell proteins (HCPs) in antibody drugs, information regarding HCPs in gene therapy products remains limited and has not been widely integrated into the host cell engineering or purification processes. Most methods that have successfully detected HCPs in antibody drugs are not applicable to gene therapy products, except for the ProteoMiner enrichment method. Here, we demonstrate that ProteoMiner beads effectively enrich HCPs in adeno-associated virus (AAV) products and simultaneously remove the detergent Pluronic F-68 without a loss of low-abundance HCPs. Following optimization of this technique, there was up to a 34-fold increase in the enrichment of HCPs compared to direct digestion. Moreover, the detection limit was significantly lowered with the ability to detect HCPs at levels as low as 0.1 ng/mL after ProteoMiner treatment. This approach holds promise in AAV HCP analysis and may be adaptable to other gene therapy products. The findings from this study provide valuable insights into HCPs in AAV products and may facilitate process development and host cell line optimization. The high sensitivity of this approach also facilitates detection of critical low-abundance HCPs, thereby contributing to risk assessment of their impact on the safety and quality of the AAV-based gene therapy products.
Collapse
Affiliation(s)
- Sisi Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Hui Xiao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| |
Collapse
|