1
|
Shaked Y, Pham E, Hariharan S, Magidey K, Beyar-Katz O, Xu P, Man S, Wu FTH, Miller V, Andrews D, Kerbel RS. Evidence Implicating Immunological Host Effects in the Efficacy of Metronomic Low-Dose Chemotherapy. Cancer Res 2016; 76:5983-5993. [PMID: 27569209 DOI: 10.1158/0008-5472.can-16-0136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
Abstract
Conventional chemotherapy drugs administered at a maximum tolerated dose (MTD) remains the backbone for treating most cancers. Low-dose metronomic (LDM) chemotherapy, which utilizes lower, less toxic, doses given on a close regular basis over prolonged periods, is an alternative and better tolerated potential strategy to improve chemotherapy. LDM chemotherapy has been evaluated preclinically and clinically and has shown therapeutic benefit, in both early and advanced stage metastatic disease, especially when used as a maintenance therapy. However, knowledge about the antitumor mechanisms by which LDM chemotherapy acts remain limited. Here we characterized the effects of LDM and MTD capecitabine therapy on tumor and host cells using high-throughput systems approaches involving mass spectrometry flow cytometry and automated cell imaging followed by in vivo analyses of such therapies. An increase in myeloid and T regulatory cells and a decrease in NK and T cytotoxic cells were found in MTD-capecitabine-treated tumors compared with LDM-capecitbine-treated tumors. Plasma from MTD capecitabine-treated mice induced a more tumorigenic and metastatic profile in both breast and colon carcinoma cells than plasma from mice treated with LDM capecitabine. These results correlated, in part, with in vivo studies using models of human or mouse advanced metastatic disease, where the therapeutic advantage of MTD capecitabine was limited despite a substantial initial antitumor activity found in the primary tumor setting. Overall these results implicate a possible contribution of immunologic host effects in accounting for the therapeutic limitations of MTD compared with LDM capecitabine. Cancer Res; 76(20); 5983-93. ©2016 AACR.
Collapse
Affiliation(s)
- Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel. Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | - Elizabeth Pham
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Santosh Hariharan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ksenia Magidey
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ofrat Beyar-Katz
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Florence T H Wu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Valeria Miller
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - David Andrews
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Metronomic ceramide analogs inhibit angiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1. Neoplasia 2013; 14:833-45. [PMID: 23019415 DOI: 10.1593/neo.12772] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 02/07/2023] Open
Abstract
AIMS To evaluate the antitumor and antiangiogenic activity of metronomic ceramide analogs and their relevant molecular mechanisms. METHODS Human endothelial cells [human dermal microvascular endothelial cells and human umbilical vascular endothelial cell (HUVEC)] and pancreatic cancer cells (Capan-1 and MIA PaCa-2) were treated with the ceramide analogs (C2, AL6, C6, and C8), at low concentrations for 144 hours to evaluate any antiproliferative and proapoptotic effects and inhibition of migration and to measure the expression of caveolin-1 (CAV-1) and thrombospondin-1 (TSP-1) mRNAs by real-time reverse transcription-polymerase chain reaction. Assessment of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt phosphorylation and of CAV-1 and cyclin D1 protein expression was performed by ELISA. Maximum tolerated dose (MTD) gemcitabine was compared against metronomic doses of the ceramide analogs by evaluating the inhibition of MIA PaCa-2 subcutaneous tumor growth in nude mice. RESULTS Metronomic ceramide analogs preferentially inhibited cell proliferation and enhanced apoptosis in endothelial cells. Low concentrations of AL6 and C2 caused a significant inhibition of HUVEC migration. ERK1/2 and Akt phosphorylation were significantly decreased after metronomic ceramide analog treatment. Such treatment caused the overexpression of CAV-1 and TSP-1 mRNAs and proteins in endothelial cells, whereas cyclin D1 protein levels were reduced. The antiangiogenic and antitumor impact in vivo of metronomic C2 and AL6 regimens was similar to that caused by MTD gemcitabine. CONCLUSIONS Metronomic C2 and AL6 analogs have antitumor and antiangiogenic activity, determining the up-regulation of CAV-1 and TSP-1 and the suppression of cyclin D1.
Collapse
|
3
|
Bocci G, Culler MD, Fioravanti A, Orlandi P, Fasciani A, Colucci R, Taylor JE, Sadat D, Danesi R, Del Tacca M. In vitro antiangiogenic activity of selective somatostatin subtype-1 receptor agonists. Eur J Clin Invest 2007; 37:700-8. [PMID: 17696959 DOI: 10.1111/j.1365-2362.2007.01848.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Endothelial cells of human blood vessels (arteries and veins) show high levels of somatostatin subtype-1 receptor (sst(1)). The aim of the present study is to investigate the inhibitory effects of novel somatostatin analogs, highly selective for human sst(1), on in vitro angiogenesis and their modulation of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2) expression. MATERIALS AND METHODS Somatostatin analogs BIM-23745 and BIM-23926 were tested for their ability to prevent proliferation and migration of human endothelial HMEC-1 cells, to modulate VEGF and VEGFR-2 expression and to inhibit sprouting of microvessels from cultured human placental vessel explants in fibrin matrix for 28 days. RESULTS The somatostatin sst(1 )receptor-selective agonists, BIM-23745 and BIM-23926 showed a suppression of endothelial proliferation (e.g. 10(-6) M BIM-23475, 40.0 +/- 2.1% vs. 100% of controls; 10(-7) M BIM-23926, 55.3 +/- 3.3% vs. 100% of controls), migration (e.g. 10(-7) M BIM-23475, 35.0 +/- 1.56% vs. 100% of controls; 10(-7) M BIM-23926, 53.7 +/- 1.77% vs. 100% of controls) and microvessel sprouting (e.g. 10(-8) M BIM-23475, 42.8 +/- 5.6% vs. 100% of controls; 10(-7) M BIM-23926, 17.2 +/- 11.8% vs. 100% of controls). A small but significant percentage of cells exposed to BIM-23745 and BIM-23926 for 24 h and for 72 h presented typical apoptotic morphology. Moreover, both the analogs significantly inhibit VEGF and VEGFR-2 gene expression in endothelial cells grown for 144 h in a fibrin matrix and the VEGF secretion in conditioned media. CONCLUSIONS The inhibition of endothelial activities suggests potential therapeutic utility for administration of somatostatin sst(1 )receptor-selective agonists in the proliferative diseases involving angiogenesis.
Collapse
Affiliation(s)
- G Bocci
- University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|