1
|
Generation and identification of endothelial-specific Hrh2 knockout mice. Transgenic Res 2021; 30:251-261. [PMID: 33786748 DOI: 10.1007/s11248-021-00244-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Histamine H2 receptor (HRH2) is closely associated with the development of cardiovascular and cerebrovascular diseases. However, systematic Hrh2 knockout mice did not exactly reflect the HRH2 function in specific cell or tissue types. To better understand the physiological and pathophysiological functions of endothelial HRH2, this study constructed a targeting vector that contained loxp sites flanking the ATG start codon located in Hrh2 exon 2 upstream and a neomycin (Neo) resistance gene flanked by self-deletion anchor sites within the mouse Hrh2 allele. The targeting vector was then electroporated into C57BL/6J embryonic stem (ES) cells, and positively targeted ES cell clones were micoinjected into C57BL/6J blastocysts, which were implanted into pseudopregnant females to obtain chimeric mice. The F1 generation of Hrh2flox/+ mice was generated via crossing chimeric mice with wild-type mice to excise Neo. We also successfully generated endothelial cell-specific knockout (ECKO) mice by crossing Hrh2flox/+ mice with Cdh5-Cre mice that specifically express Cre in endothelial cells and identified that Hrh2 deletion was only observed in endothelial cells. Hrh2flox/+ and Hrh2ECKO mice were normal, healthy and fertile and did not display any obvious abnormalities. These novel animal models will create new prospects for exploring roles of HRH2 during the development and treatment of related diseases.
Collapse
|
2
|
Abstract
Gastrin 17 (G17) is a polypeptide hormone secreted by gastrointestinal G cells, and it binds to cholecystokinin receptor (CCKR) to exert its biological function through signal transduction, stimulating the secretion of gastric acid and the growth of gastrointestinal mucosa. In recent years some studies suggest that G17 promotes cell proliferation and inhibits apoptosis. Since serum G17 can provide some clues to the function of gastric mucosa and the presence of gastric cancer and precancerous disease, it is of great significance in the diagnosis of gastrointestinal diseases. However, serum G17 is affected not only by gastric factors such as the lesion, the degree of atrophy, and Helicobacter pylori (H. pylori) infection, but also by extragastric and drug factors. In this article, we discuss the biological characteristics of G17, factors influencing serum G17 and the relationship between serum G17 and gastrointestinal diseases.
Collapse
|
3
|
Kidd M, Gustafsson B, Modlin IM. Gastric carcinoids (neuroendocrine neoplasms). Gastroenterol Clin North Am 2013; 42:381-97. [PMID: 23639647 DOI: 10.1016/j.gtc.2013.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric neuroendocrine neoplasms of the stomach can be divided into the usually well-differentiated, hypergastrinemia-dependent type I and II lesions and the more aggressively behaving gastrin-independent type III lesions. Studying menin and its complex interrelationship with gastrin may provide insight into tumor biology at the clinical level and in terms of basic cell biology (eg, the role of the epigenome in neuroendocrine cell proliferation), and lead to potential consideration of other targets that are known candidates for molecular-based therapies in other adenocarcinomas.
Collapse
Affiliation(s)
- Mark Kidd
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | | | | |
Collapse
|
4
|
Luo T, Chen B, Zhao Z, He N, Zeng Z, Wu B, Fukushima Y, Dai M, Huang Q, Xu D, Bin J, Kitakaze M, Liao Y. Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function. Basic Res Cardiol 2013; 108:342. [PMID: 23467745 DOI: 10.1007/s00395-013-0342-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
There is evidence that H2R blockade improves ischemia/reperfusion (I/R) injury, but the underlying cellular mechanisms remain unclear. Histamine is known to increase vascular permeability and induce apoptosis, and these effects are closely associated with endothelial and mitochondrial dysfunction, respectively. Here, we investigated whether activation of the histamine H2 receptor (H2R) exacerbates myocardial I/R injury by increasing mitochondrial and endothelial permeability. Serum histamine levels were measured in patients with coronary heart disease, while the influence of H2R activation was assessed on mitochondrial and endothelial function in cultured cardiomyocytes or vascular endothelial cells, and myocardial I/R injury in mice. The serum histamine level was more than twofold higher in patients with acute myocardial infarction than in patients with angina or healthy controls. In neonatal rat cardiomyocytes, histamine dose-dependently reduced viability and induced apoptosis. Mitochondrial permeability and the levels of p-ERK1/2, Bax, p-DAPK2, and caspase 3 were increased by H2R agonists. In cultured human umbilical vein endothelial cells (HUVECs), H2R activation increased p-ERK1/2 and p-moesin levels and also enhanced permeability of HUVEC monolayer. All of these effects were abolished by the H2R blocker famotidine or the ERK inhibitor U0126. After I/R injury or permanent ischemia, the infarct size was reduced by famotidine and increased by an H2R agonist in wild-type mice. In H2R KO mice, the infarct size was smaller; myocardial p-ERK1/2, p-DAPK2, and mitochondrial Bax were downregulated. These findings indicate that H2R activation exaggerates myocardial I/R injury by promoting myocardial mitochondrial dysfunction and by increasing cardiac vascular endothelial permeability.
Collapse
Affiliation(s)
- Tao Luo
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Arisawa T, Tahara T, Ozaki K, Matsue Y, Minato T, Yamada H, Nomura T, Hayashi R, Matsunaga K, Fukumura A, Nakamura M, Toshikuni N, Shiroeda H, Shibata T. Association between common genetic variant of HRH2 and gastric cancer risk. Int J Oncol 2012; 41:497-503. [PMID: 22615049 DOI: 10.3892/ijo.2012.1482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/27/2012] [Indexed: 12/18/2022] Open
Abstract
Histamine plays important physiological roles in the upper gastrointestinal tract and acts via the H2 receptor. The -1018 G>A (rs2067474) in an enhancer element of the promoter and non-synonymous rs79385261 (Asn46Thr) were identified in HRH2. We attempted to clarify the associations of these polymorphisms with gastric carcinogenesis. The study was performed in 321 patients with gastric cancer and 599 subjects with no evidence of gastric malignancies on upper gastroduodenal endoscopy. The genotypes were determined using a one-tube multiplex PCR-SSCP method. The degree of gastritis was assessed in 496 subjects and serum pepsinogen (PG) I/II levels were measured in 124 subjects without gastric cancer. The minor allele of Asn46Thr could not be detected. The frequencies of the -1018 A allele in the non-GC and GC groups were 13.5% and 8.26%, respectively (p=0.00077). Overall, -1018 GG homozygotes had an increased risk for developing gastric cancer (OR 1.68; 95% CI 1.17-2.42; p=0.0052), especially intestinal type cancer (OR 1.94; 95% CI 1.23-3.08; p=0.0047). In subjects aged >60 years, the adjusted risk for gastric cancer among individuals who were -1018 GG homozygotes was 1.87 (range 1.19-2.93; p=0.0065) compared with A carriers. In the gastric cancer cases located in the antrum and at comparative advanced stage, -1018 GG homozygosity was a significantly increased risk factor. In subjects >60 years, the metaplasia score was significantly higher in -1018 GG homozygotes than A carriers. Both atrophy and metaplasia scores were significantly increased with age only in -1018 GG homozygotes. The PG I/II ratio was significantly decreased in H. pylori positive GG homozygotes than negative GG homozygotes and positive A carriers. Our results suggest that -1018 GG homozygosity of HRH2 may be associated with the severity of gastric mucosal atrophy. This genotype has an increased risk for the subsequent development of gastric cancer, especially intestinal type, at advanced age.
Collapse
Affiliation(s)
- Tomiyasu Arisawa
- Department of Gastroenterology, Kanazawa Medical University, Uchinada-machi, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Antiulcer Activity of Preparations Containing Ultralow Doses of Antibodies in Modeled Chronic Ulcer in Rats. Bull Exp Biol Med 2009; 148:540-2. [DOI: 10.1007/s10517-010-0759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Aikou S, Fukushima Y, Ogawa M, Nozaki K, Saito T, Matsui T, Goldenring JR, Kaminishi M, Nomura S. Alterations in gastric mucosal lineages before or after acute oxyntic atrophy in gastrin receptor and H2 histamine receptor-deficient mice. Dig Dis Sci 2009; 54:1625-35. [PMID: 19507031 DOI: 10.1007/s10620-009-0832-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/30/2009] [Indexed: 12/22/2022]
Abstract
Spasmolytic polypeptide (SP/TFF2)-expressing metaplasia (SPEM) is induced by oxyntic atrophy and is known as a precancerous or paracancerous lesion. We seek to determine whether the gastrin receptor or H(2) histamine receptor influence the development of SPEM. DMP-777 was administered to gastrin receptor and/or H(2) receptor-deficient mice and wild-type mice. Gastric mucosal lineage changes were analyzed. The mucosa from double knockout mice and H(2) receptor knockout mice contained elevated numbers of dual TFF2 and intrinsic factor immunoreactive cells even before DMP-777 treatment. All genotypes of mice showed SPEM after 7-day treatment. In all types of knockout mice, the number of TFF2 immunoreactive cells remained elevated after cessation of treatment. The H(2) receptor and gastrin receptor do not affect emergence of SPEM. However, it is suggested that the absence of H(2) receptor signaling causes a delay in the maturation of chief cells from mucous neck cells.
Collapse
Affiliation(s)
- Susumu Aikou
- Department of Gastrointestinal Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jain RN, Al-Menhali AA, Keeley TM, Ren J, El-Zaatari M, Chen X, Merchant JL, Ross TS, Chew CS, Samuelson LC. Hip1r is expressed in gastric parietal cells and is required for tubulovesicle formation and cell survival in mice. J Clin Invest 2008; 118:2459-70. [PMID: 18535670 DOI: 10.1172/jci33569] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 04/30/2008] [Indexed: 11/17/2022] Open
Abstract
Huntingtin interacting protein 1 related (Hip1r) is an F-actin- and clathrin-binding protein involved in vesicular trafficking. In this study, we demonstrate that Hip1r is abundantly expressed in the gastric parietal cell, predominantly localizing with F-actin to canalicular membranes. Hip1r may provide a critical function in vivo, as demonstrated by extensive changes to parietal cells and the gastric epithelium in Hip1r-deficient mice. Electron microscopy revealed abnormal apical canalicular membranes and loss of tubulovesicles in mutant parietal cells, suggesting that Hip1r is necessary for the normal trafficking of these secretory membranes. Accordingly, acid secretory dynamics were altered in mutant parietal cells, with enhanced activation and acid trapping, as measured in isolated gastric glands. At the whole-organ level, gastric acidity was reduced in Hip1r-deficient mice, and the gastric mucosa was grossly transformed, with fewer parietal cells due to enhanced apoptotic cell death and glandular hypertrophy associated with cellular transformation. Hip1r-deficient mice had increased expression of the gastric growth factor gastrin, and mice mutant for both gastrin and Hip1r exhibited normalization of both proliferation and gland height. Taken together, these studies demonstrate that Hip1r plays a significant role in gastric physiology, mucosal architecture, and secretory membrane dynamics in parietal cells.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To summarize key aspects from recent research as well as review articles on the topic of genetic mouse models, particularly in knockout mice, that have considerably contributed to understanding the pathways and mechanisms underlying gastric physiology. RECENT FINDINGS A series of knockout mouse models has proven to be invaluable in elucidating the mechanism and validating the current model of acid secretion. The interaction between the gastrin-histamine and cholecystokinin-somatostatin pathways was identified using the genetic approach as being critical in regulating acid secretion. Curiously, neither ghrelin nor ghrelin receptor knockout mice displayed the expected lean phenotype. Importantly, the study of obestatin in GPR39 knockout mice could be misleading, as zinc rather than obestatin is the endogenous ligand for GPR39. The physiological roles of ghrelin and obestatin have yet to be confirmed using knockout mouse models. SUMMARY The knockout mouse continues to serve as an excellent model to dissect the complexity of the mechanism of gastric acid secretion and to study the physiological importance of gastric ghrelin.
Collapse
Affiliation(s)
- Duan Chen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
10
|
Zhang Z, Sun LP, Gong YH, Wang XG, Zhang M, Yuan Y. Factors affecting the serum gastrin 17 level: an evidence-based analysis of 3906 serum samples among Chinese. J Dig Dis 2007; 8:72-6. [PMID: 17532818 DOI: 10.1111/j.1443-9573.2007.00288.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the influence of gender, age, site of lesion, disease type and Helicobacter pylori (H. pylori) infection on the human serum gastrin-17 level and to study the diagnostic value of serum gastrin-17 in gastric precancerous lesions and gastric cancer. METHODS Serum gastrin-17 and serum H. pylori IgG antibody were detected by the ELISA method. The different gastric disease groups were confirmed by endoscopy and histopathology. RESULTS Among the 3906 serum samples according to the gender, age, site of lesion and the data of different gastric disease groups, the serum gastrin-17 level was markedly higher in people>or=60 years old than that in younger age groups. The serum gastrin-17 level increased progressively in the following order: healthy control group, nonatrophic gastritis group, gastric ulcer group, and the serum gastrin-17 level was higher in the atrophic gastritis with dysplasia group than that without it, the lowest level being in the gastric cancer group. Among the 2946 serum samples matched with the site of the lesion, the serum gastrin-17 level was higher in those with antral diseases than in those with gastric corpus diseases. Among the 3805 serum samples matched with the H. pylori infection data, the serum gastrin-17 level was higher in the H. pylori-positive group than in the H. pylori-negative group. CONCLUSIONS In people over 60 years of age, the serum gastrin-17 level tends to increase. In subjects with precancerous gastric lesions, it may increase significantly with the progression of gastric disease, and ultimately decrease in gastric cancer. Serum gastrin-17 is a good biomarker to differentiate benign from malignant gastric diseases. The site of the gastric lesions is an important factor affecting the serum gastrin-17 level, whereas H. pylori infection is usually associated with its increment.
Collapse
Affiliation(s)
- Zhong Zhang
- Cancer Institute of the First Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | |
Collapse
|
11
|
Jain RN, Samuelson LC. Differentiation of the gastric mucosa. II. Role of gastrin in gastric epithelial cell proliferation and maturation. Am J Physiol Gastrointest Liver Physiol 2006; 291:G762-5. [PMID: 17030897 DOI: 10.1152/ajpgi.00172.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrin is the principal hormonal inducer of gastric acid secretion. The cellular targets for gastrin in the stomach are the acid-secreting parietal cell and histamine-producing enterochromaffin-like (ECL) cell. Gastrin is also a growth factor, with hypergastrinemia resulting in increased proliferation of gastric progenitor cells and a thickened mucosa. This review presents insights into gastrin function revealed by genetically engineered mouse models, demonstrating a new role for gastrin in the maturation of parietal and ECL cells. Thus, gastrin regulates many aspects of gastric physiology, with tight regulation of gastrin levels required to maintain balanced growth and function of gastric epithelial cells.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | |
Collapse
|
12
|
Cui G, Takaishi S, Ai W, Betz KS, Florholmen J, Koh TJ, Houghton J, Pritchard DM, Wang TC. Gastrin-induced apoptosis contributes to carcinogenesis in the stomach. J Transl Med 2006; 86:1037-51. [PMID: 16894354 DOI: 10.1038/labinvest.3700462] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hypergastrinemia in INS-GAS mice leads to accelerated carcinogenesis of the stomach, but the mechanisms have not been well defined. We investigated the possible role of gastrin-induced gastric cell apoptosis in the development of gastric cancer. We examined apoptosis and the expression of Bcl-2 family proteins in INS-GAS mice of different ages, as well as in gastrin-deficient (GAS-KO) mice after gastrin-17 (G-17) infusion. In addition, we studied the effects of the gastrin/cholecystokinin-2 (CCK-2) receptor antagonist YF476 and/or histamine H2 (H-2) receptor antagonist loxtidine on apoptosis and atrophy in INS-GAS mice with or without Helicobacter felis (H. felis) infection. INS-GAS mice had age-associated increases in Bax protein expression and decreases in Bcl-2 protein expression, along with increased glandular and epithelial cell apoptosis. At 8-week gastrin infusions in GAS-KO mice resulted in a similar pattern of altered Bax and Bcl-2 expression, followed by gastric cell apoptosis. H. felis infection of INS-GAS mice led to increased apoptosis and the development of atrophy, whereas treatment with either YF476 and/or loxtidine strongly inhibited both apoptosis and atrophy. In vitro studies with Fas-expressing RGM1 cells showed that gastrin stimulation alone directly induced apoptosis via gastrin/CCK-2 receptor and synergized with FasL stimulation. These results indicate that gastrin can induce apoptosis in gastric epithelial cells and contribute to the development of gastric carcinogenesis.
Collapse
Affiliation(s)
- Guanglin Cui
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen D, Aihara T, Zhao CM, Håkanson R, Okabe S. Differentiation of the gastric mucosa. I. Role of histamine in control of function and integrity of oxyntic mucosa: understanding gastric physiology through disruption of targeted genes. Am J Physiol Gastrointest Liver Physiol 2006; 291:G539-44. [PMID: 16959953 DOI: 10.1152/ajpgi.00178.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many physiological functions of the stomach depend on an intact mucosal integrity; function reflects structure and vice versa. Histamine in the stomach is synthesized by histidine decarboxylase (HDC), stored in enterochromaffin-like (ECL) cells, and released in response to gastrin, acting on CCK(2) receptors on the ECL cells. Mobilized ECL cell histamine stimulates histamine H(2) receptors on the parietal cells, resulting in acid secretion. The parietal cells express H(2), M(3), and CCK(2) receptors and somatostatin sst(2) receptors. This review discusses the consequences of disrupting genes that are important for ECL cell histamine release and synthesis (HDC, gastrin, and CCK(2) receptor genes) and genes that are important for "cross-talk" between H(2) receptors and other receptors on the parietal cell (CCK(2), M(3), and sst(2) receptors). Such analysis may provide insight into the functional significance of gastric histamine.
Collapse
Affiliation(s)
- Duan Chen
- Dept. of Cancer Research and Molecular Medicine, Norwegian Univ. of Science and Technology, Laboratory Centre, Erling Skjalgssons Gate 1, NO-7006 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
14
|
Ye X, Shi L, Cheng Y, Peng Q, Huang S, Liu J, Huang M, Peng B, Bian Z. A novel locus for autosomal dominant hereditary gingival fibromatosis, GINGF3, maps to chromosome 2p22.3-p23.3. Clin Genet 2005; 68:239-44. [PMID: 16098013 DOI: 10.1111/j.1399-0004.2005.00488.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hereditary gingival fibromatosis (HGF) is a rare, benign disorder characterized by slowly progressive fibrous overgrowth of the gingiva. To date, two loci have been mapped in familial cases with autosomal dominant non-syndromic HGF: GINGF (MIM 135300) on chromosome 2p21-p22 and GINGF2 (MIM 605544) on chromosome 5q13-q22. Of the two loci, only SOS1 (son of sevenless one, MIM 182530) gene underlying GINGF locus has been identified. Ascertainment of a large Chinese family has allowed the mapping of a novel locus to 2p22.3-p23.3, GINGF3. Haplotype construction and analysis localized the new locus to an 11.4-cM interval between markers D2S2221 (telomeric) and D2S1788 (centromeric). The maximum two-point limit of detection (LOD) score of 3.45 (theta=0) and multipoint LOD score of 5.00 for marker D2S390 strongly supported linkage to this region. Thus, this genetic interval is distal to and does not overlap with the previously described locus, GINGF, on 2p21-p22.
Collapse
Affiliation(s)
- X Ye
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, Hospital and School of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|