1
|
Speigel I, Patel K, Osman V, Hemmings HC. Volatile anesthetics inhibit presynaptic cGMP signaling to depress presynaptic excitability in rat hippocampal neurons. Neuropharmacology 2023; 240:109705. [PMID: 37683886 PMCID: PMC10772825 DOI: 10.1016/j.neuropharm.2023.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Volatile anesthetics alter presynaptic function through effects on Ca2+ influx and neurotransmitter release. These actions are proposed to play important roles in their pleiotropic neurophysiological effects including immobility, unconsciousness and amnesia. Nitric oxide and cyclic guanosine monophosphate (NO/cGMP) signaling has been implicated in presynaptic mechanisms, and disruption of NO/cGMP signaling has been shown to alter sensitivity to volatile anesthetics in vivo. We investigated volatile anesthetic actions NO/cGMP signaling in relation to presynaptic function in cultured rat hippocampal neurons using pharmacological tools and genetically encoded biosensors and sequestering probes of cGMP levels. Using the fluorescent cGMP biosensor cGull, we found that electrical stimulation-evoked NMDA-type glutamate receptor-independent presynaptic cGMP transients were inhibited 33.2% by isoflurane (0.51 mM) and 26.4% by sevoflurane (0.57 mM) (p < 0.0001) compared to control stimulation without anesthetic. Stimulation-evoked cGMP transients were blocked by the nonselective inhibitor of nitric oxide synthase N-ω-nitro-l-arginine, but not by the selective neuronal nitric oxide synthase inhibitor N5-(1-imino-3-butenyl)-l-ornithine. Isoflurane and sevoflurane inhibition of stimulation-evoked increases in presynaptic Ca2+ concentration, measured with synaptophysin-GCaMP6f, and of synaptic vesicle exocytosis, measured with synaptophysin-pHlourin, was attenuated in neurons expressing the cGMP scavenger protein sponge (inhibition of exocytosis reduced by 54% for isoflurane and by 53% for sevoflurane). The anesthetic-induced reduction in presynaptic excitability was partially occluded by inhibition of HCN channels, a cGMP-modulated excitatory ion channel that can facilitate glutamate release. We propose that volatile anesthetics depress presynaptic cGMP signaling and downstream effectors like HCN channels that are essential to presynaptic function and excitability. These findings identify novel mechanisms by which volatile anesthetics depress synaptic transmission via second messenger signaling involving the NO/cGMP pathway in hippocampal neurons.
Collapse
Affiliation(s)
- Iris Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kishan Patel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Vanessa Osman
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Weaver J, Liu KJ. A Review of Low-Frequency EPR Technology for the Measurement of Brain pO2 and Oxidative Stress. APPLIED MAGNETIC RESONANCE 2021; 52:1379-1394. [PMID: 35340811 PMCID: PMC8945541 DOI: 10.1007/s00723-021-01384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
EPR can uniquely measure paramagnetic species. Although commercial EPR was introduced in 1950s, the early studies were mostly restricted to chemicals in solution or cellular experiments using X-band EPR equipment. Due to its limited penetration (<1 mm), experiments with living animals were almost impossible. To overcome these difficulties, Swartz group, along with several other leaders in field, pioneered the technology of low frequency EPR (e.g., L-band, 1-2 GHz). The development of low frequency EPR and the associated probes have dramatically expanded the application of EPR technology into the biomedical research field, providing answers to important scientific questions by measuring specific parameters that are impossible or very difficult to obtain by other approaches. In this review, which is aimed at highlighting the seminal contribution from Swartz group over the last several decades, we will focus on the development of EPR technology that was designed to deal with the potential challenges arising from conducting EPR spectroscopy in living animals. The second half of the review will be concentrated on the application of low frequency EPR in measuring cerebral tissue pO2 changes and oxidative stress in various physiological and pathophysiological conditions in the brain of animal disease models.
Collapse
Affiliation(s)
- John Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
3
|
Kaya-Ugur B, Erkutlu I, Saracaloglu A, Geyik AM, Demiryürek S, Demiryürek AT. Comparison of serum dynamic thiol/disulphide homeostasis and nitric oxide levels of total intravenous vs inhaled anaesthesia in endoscopic transsphenoidal pituitary surgery. Int J Clin Pract 2021; 75:e14485. [PMID: 34107152 DOI: 10.1111/ijcp.14485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Transsphenoidal pituitary surgery (TPS) is traditionally performed under general anaesthesia. This study aimed to compare the effects of total intravenous anaesthesia (TIVA) or sevoflurane, an inhalation anaesthetic, on thiol-disulphide homeostasis in patients undergoing endoscopic endonasal TPS. METHODS In this study, 84 patients scheduled for TPS were randomly categorised into two groups: propofol (n = 42, the TIVA group) or sevoflurane (n = 42, the SEVO group). Blood samples were taken before induction of general anaesthesia and at the 30 minutes of postoperation. Serum native thiol and total thiol levels were detected, and the number of dynamic disulphide bonds and related ratios were calculated from these values. Serum nitric oxide (NO) levels were measured using a chemiluminescence method. RESULTS Although native thiol levels in TIVA postoperation group were markedly increased (P < .05), total thiol levels in SEVO postoperation group were significantly decreased (P < .01). Disulphide levels were declined in both groups (P < .05 for TIVA and P = .001 for SEVO groups). Disulphide/native thiol (P < .05 for both groups) and disulphide/total thiol ratios (P < .05 for TIVA and P < .01 for SEVO groups) were depressed in postoperation groups. We found a marked elevation in native thiol/total thiol ratio in both groups (P < .05 for TIVA and P < .01 for SEVO groups). There was significant augmentation in serum NO levels in the SEVO postoperation group (P < .05). CONCLUSION These results are the first to show that both TIVA and sevoflurane showed similar antioxidant effect with reduced disulphide levels, but sevoflurane may offer more robust oxidative stress protection and augmented NO production than TIVA during TPS. However, the clinical effect is needed to further investigate.
Collapse
Affiliation(s)
- Berna Kaya-Ugur
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Erkutlu
- Department of Neurosurgery, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ahmet Saracaloglu
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Abidin M Geyik
- Department of Neurosurgery, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Seniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Abdullah T Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
- Vocational School of Health Services, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
4
|
Nichols IS, Jones MI, Okere C, Ananaba G, Bush B, Gray C, Brager A, Ehlen JC, Paul K. Nitrergic neurons of the dorsal raphe nucleus encode information about stress duration. PLoS One 2017; 12:e0187071. [PMID: 29125838 PMCID: PMC5681257 DOI: 10.1371/journal.pone.0187071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022] Open
Abstract
Nitrergic neurons of the dorsal raphe nucleus (DRN) may play a role in physiological stress responses. The caudal lateral wings (CLW) are unique compared to other rostral-caudal DRN sub-regions because they contain distinct nitric oxide (NO) synthase (NOS) populations that are independent of tryptophan hydroxylase (TPH). NOS neurons in the CLW are also highly activated during acute restraint stress. However, the effects of acute stress duration on NOS activation in the CLW are unclear. Here NADPH-d, an index of NOS activity, is used to show that sub-regions of the DRN have differential NOS activation in response to 6 hours of restraint stress in rats. We report increased NOS activity through 6 hours of restraint in the caudal lateral wings and ventromedial sub-regions. These data suggest that, NOS neurons may play a dynamic role in the response to stress duration.
Collapse
Affiliation(s)
- India S. Nichols
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Mary I. Jones
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Chuma Okere
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Godwin Ananaba
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Brittany Bush
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Cloe Gray
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Allison Brager
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - J. Christopher Ehlen
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ketema Paul
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Nagasaka Y, Wepler M, Thoonen R, Sips PY, Allen K, Graw JA, Yao V, Burns SM, Muenster S, Brouckaert P, Miller K, Solt K, Buys ES, Ichinose F, Zapol WM. Sensitivity to Sevoflurane anesthesia is decreased in mice with a congenital deletion of Guanylyl Cyclase-1 alpha. BMC Anesthesiol 2017; 17:76. [PMID: 28615047 PMCID: PMC5471676 DOI: 10.1186/s12871-017-0368-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Volatile anesthetics increase levels of the neurotransmitter nitric oxide (NO) and the secondary messenger molecule cyclic guanosine monophosphate (cGMP) in the brain. NO activates the enzyme guanylyl cyclase (GC) to produce cGMP. We hypothesized that the NO-GC-cGMP pathway contributes to anesthesia-induced unconsciousness. METHODS Sevoflurane-induced loss and return of righting reflex (LORR and RORR, respectively) were studied in wild-type mice (WT) and in mice congenitally deficient in the GC-1α subunit (GC-1-/- mice). Spatial distributions of GC-1α and the GC-2α subunit in the brain were visualized by in situ hybridization. Brain cGMP levels were measured in WT and GC-1-/- mice after inhaling oxygen with or without 1.2% sevoflurane for 20 min. RESULTS Higher concentrations of sevoflurane were required to induce LORR in GC-1-/- mice than in WT mice (1.5 ± 0.1 vs. 1.1 ± 0.2%, respectively, n = 14 and 14, P < 0.0001). Similarly, RORR occurred at higher concentrations of sevoflurane in GC-1-/- mice than in WT mice (1.0 ± 0.1 vs. 0.8 ± 0.1%, respectively, n = 14 and 14, P < 0.0001). Abundant GC-1α and GC-2α mRNA expression was detected in the cerebral cortex, medial habenula, hippocampus, and cerebellum. Inhaling 1.2% sevoflurane for 20 min increased cGMP levels in the brains of WT mice from 2.6 ± 2.0 to 5.5 ± 3.7 pmol/mg protein (n = 13 and 10, respectively, P = 0.0355) but not in GC-1-/- mice. CONCLUSION Congenital deficiency of GC-1α abolished the ability of sevoflurane anesthesia to increase cGMP levels in the whole brain, and increased the concentration of sevoflurane required to induce LORR. Impaired NO-cGMP signaling raises the threshold for producing sevoflurane-induced unconsciousness in mice.
Collapse
Affiliation(s)
- Yasuko Nagasaka
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Wepler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robrecht Thoonen
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Patrick Y Sips
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Kaitlin Allen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jan A Graw
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent Yao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara M Burns
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium and Inflammation Research Center, VIB, Ghent, Belgium
| | - Stefan Muenster
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Brouckaert
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Warren M Zapol
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Villéga F, Delpech JC, Griton M, André C, Franconi JM, Miraux S, Konsman JP. Circulating bacterial lipopolysaccharide-induced inflammation reduces flow in brain-irrigating arteries independently from cerebrovascular prostaglandin production. Neuroscience 2017; 346:160-172. [DOI: 10.1016/j.neuroscience.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
|
7
|
Molecular studies of the immunological effects of the sevoflurane preconditioning in the liver and lung in a rat model of liver ischemia/reperfusion injury. Mol Immunol 2016; 72:1-8. [DOI: 10.1016/j.molimm.2016.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 12/20/2022]
|
8
|
Regulatory effects of anesthetics on nitric oxide. Life Sci 2016; 151:76-85. [DOI: 10.1016/j.lfs.2016.02.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022]
|
9
|
Cognitive deficits after systemic induction of inducible nitric oxide synthase. Eur J Anaesthesiol 2011; 28:655-63. [DOI: 10.1097/eja.0b013e3283497ce1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Changes in nitric oxide content following injury to the neonatal rat brain. Brain Res 2011; 1367:319-29. [DOI: 10.1016/j.brainres.2010.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 01/05/2023]
|
11
|
Effects of Lycopene, Indole-3-Carbinol, and Luteolin on Nitric Oxide Production and iNOS Expression are Organ-Specific in Rats. Arh Hig Rada Toksikol 2010; 61:275-85. [DOI: 10.2478/10004-1254-61-2010-2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effects of Lycopene, Indole-3-Carbinol, and Luteolin on Nitric Oxide Production and iNOS Expression are Organ-Specific in RatsNatural compounds are known to modify NO content in tissues; however, the biological activity of polyphenol-rich food often does not correspond to the effects of individual polyphenols on NO synthase activity. The aim of this study was to see how natural compounds luteolin, indole-3-carbinol, and lycopene modify NO production in rat tissues and change the expression of the iNOS gene and protein. Indole-3-carbinol produced multiple effects on the NO level; it significantly decreased NO concentration in blood, lungs, and skeletal muscles and increased it in the liver. Indole-3-carbinol enhanced lipopolyssaccharide (LPS)-induced NO production in all rat organs. It decreased iNOS gene expression in the brain cortex of animals that did not receive LPS and up-regulated it in the LPS-treated animals. Lycopene increased the iNOS gene transcription rate in the brain cortex of LPS-treated animals. Luteolin did not modify NO production in any organ of LPS-untreated rats, nor did it affect gene expression in the liver. In the brain it slightly decreased iNOS gene expression. Luteolin decreased NO production in the blood of LPS-treated animals and the number of iNOS-positive cells in these animals. Our results suggest that changes in tissue NO levels caused by natural compounds cannot be predicted from their effect on NOS expression or activity obtained in model systems. This stresses the importance of direct measurements of NO and NOS expression in animal tissues.
Collapse
|
12
|
Motamedi R, Heravi MM, Nazari Z, Bamoharram FF. Regioselective Synthesis of 2-Substituted [1,2,4]Triazolo[5,1-b][1,3]thiazin-7-ones by Heteropolyacids. PHOSPHORUS SULFUR 2010. [DOI: 10.1080/10426500903213548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Radineh Motamedi
- a Department of Chemistry, School of Sciences , Payam Noor University , Tehran, Iran
| | - Majid M. Heravi
- b Department of Chemistry, School of Sciences , Azzahra University , Vanak, Tehran, Iran
| | - Zahra Nazari
- a Department of Chemistry, School of Sciences , Payam Noor University , Tehran, Iran
| | | |
Collapse
|
13
|
Sung YH, Lee SH, Sung JK, Han JH, Kim H, Kim CJ, Kang JM. Preconditioning of isoflurane on spinal cord ischemia can increase the number of inducible nitric oxide synthase-expressing motor neurons in rat. Korean J Anesthesiol 2010; 58:70-5. [PMID: 20498815 PMCID: PMC2872896 DOI: 10.4097/kjae.2010.58.1.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 10/29/2009] [Accepted: 11/28/2009] [Indexed: 11/11/2022] Open
Abstract
Background Spinal cord ischemia with resulting paraplegia remains one of the most common complications after repair of thoracoabdominal aortic aneurysms or dissection. Inducible nitric oxide synthase (iNOS) is known to have both neuroprotective and neurotoxic effects in the central nervous system. We investigated the possible relationship between the effect of pre-ischemic isoflurane exposure on mild spinal cord ischemia and the inducible nitric oxide synthase (iNOS) expression by using iNOS-specific antibody and pyrrolidinedithio carbamate (PDTC), NF-κB inhibitor, in the ventral horn of spinal cord in rats. Methods The animals were divided into five groups (n = 6 in each group): sham group, control group, PDTC-treated group, isoflurane-treated group, and PDTC/ isoflurane-treated group. In the PDTC-treated groups, 2% 100 mg/kg PDTC was administered intraperitoneally at 1 h before operation and at 24 h and 48 h after reperfusion. The rats in the isoflurane-treated groups received 30 min inhalation of 2.8% isoflurane at 24 h before spinal cord ischemia. Immunohistochemistry was performed to detect iNOS expression in the motor neuron of the ventral horn in spinal cord. Results Preconditioning with isoflurane increased the iNOS expression when compared to the control group (P < 0.05), whereas pre-treatment with both PDTC and isoflurane significantly decreased the iNOS expression compared to isoflurane-treated group (P < 0.05). Conclusions Pre-ischemic isoflurane exposure was related with increase of the iNOS expression via a pathway modulated by NF-κB. iNOS may act as an important mediator of delayed preconditioning with isoflurane for the protective effect against spinal cord ischemia.
Collapse
Affiliation(s)
- Yun-Hee Sung
- Department of Physiology, Kyung Hee University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Rostoka E, Baumane L, Isajevs S, Line A, Dzintare M, Svirina D, Sharipova J, Silina K, Kalvinsh I, Sjakste N. Effects of kaempferol and myricetin on inducible nitric oxide synthase expression and nitric oxide production in rats. Basic Clin Pharmacol Toxicol 2010; 106:461-6. [PMID: 20088846 DOI: 10.1111/j.1742-7843.2009.00526.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When administered as drugs or consumed as food components, polyphenolic compounds synthesized in plants interfere with intracellular signal transduction pathways, including pathways of nitric oxide synthase expression. However, effects of these compounds in vivo do not always correlate with nitric oxide synthase-inhibiting activities revealed in experiments with cultured cells. The initial goal of this work was to compare effects of flavonoids kaempferol and myricetin on inducible nitric oxide synthase mRNA and protein expression monitored by real-time RT-PCR and immunohistochemistry and to evaluate the impact of these effects on nitric oxide production in rat organs measured by means of electron paramagnetic resonance spectroscopy. Kaempferol and myricetin attenuated the lipopolysaccharide-induced outburst of inducible nitric oxide synthase gene expression; kaempferol also significantly decreased the lipopolysaccharide-induced outburst of inducible nitric oxide synthase protein expression in the liver. Myricetin decreased nitric oxide production in intact rat liver. Kaempferol did not decrease nitric oxide production neither in intact rats nor in the lipopolysaccharide-treated animals. Kaempferol even enhanced the lipopolysaccharide-induced increase of nitric oxide production in blood. Myricetin did not interfere with lipopolysaccharide effects. As both kaempferol and myricetin are known as inhibitors of inducible nitric oxide synthase expression, our results suggest that modifications of nitric oxide level in tissues by these compounds cannot be predicted from data about its effects on nitric oxide synthase expression or activity.
Collapse
Affiliation(s)
- Evita Rostoka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sjakste N, Baumane L, Salna E, Kalvinsh I. O32. Importance of direct NO measurements in pharmacological research. Nitric Oxide 2008. [DOI: 10.1016/j.niox.2008.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Sjakste N, Andrianov VG, Boucher JL, Shestakova I, Baumane L, Dzintare M, Meirena D, Kalvinsh I. Paradoxical effects of two oximes on nitric oxide production by purified NO synthases, in cell culture and in animals. Nitric Oxide 2007; 17:107-14. [PMID: 17702619 DOI: 10.1016/j.niox.2007.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
We have studied the impact of two novel compounds TO-85 (2,6-di-(alpha-aziridino-alpha-hydroxyiminomethyl)pyridine and TO-133 (bis-(diaziridinoglyoximato)copper), designed as NO donors, on nitrite production by cell cultures, NO production in rat tissues and their ability to inhibit purified NO synthases (NOS). Both substances induced considerable increase of nitrite production in cell cultures. When NO production was assayed in rat organs by means of ESR using Fe(DETC) as a spin trap the anticipated NO-increasing activity of TO-85 was observed only in kidneys; the NO level increasing almost 10-fold. Treatment of rats with TO-133, decreased the NO concentration in brain cortex, cerebellum and liver. When the drugs were administered to animals with high level of iNOS expression induced by LPS, TO-85 did not significantly modify the LPS-induced NO production; administration of TO-133 caused a significant decrease of NO production in blood, brain cortex and cerebellum. Only high concentrations of TO-85 were capable of inhibiting iNOS (IC50=7 mM), the substance inhibited eNOS at lower concentrations (IC50=250 microM). Inhibitory activities of TO-85 on nNOS were dependent on BH4 concentrations, suggesting eventual competition of TO-85 with BH4 when the substance interacts with nNOS. TO-133 reduced eNOS activity with IC50=200 microM, nNOS activity with IC50=200 microM, iNOS activity was not much affected by this substance. Thus, the two tested compounds manifest opposite effects on NO production by purified enzymes and in cell culture. The pattern of the NO synthesis modification in a living animal appears to be even more complex. Our results stress the importance of direct measurements of NO in the tissues using the ESR method.
Collapse
Affiliation(s)
- N Sjakste
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV1006, Latvia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Brasil LJ, San-Miguel B, Kretzmann NA, Amaral JLGD, Zettler CG, Marroni N, González-Gallego J, Tuñón MJ. Halothane induces oxidative stress and NF-kappaB activation in rat liver: protective effect of propofol. Toxicology 2006; 227:53-61. [PMID: 16965849 DOI: 10.1016/j.tox.2006.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 01/13/2023]
Abstract
We investigated the effects of propofol on markers of oxidative stress, nuclear factor kappa B (NF-kappaB) activation and inducible nitric oxide synthase (iNOS) expression in liver of rats treated with halothane under hypoxic conditions. Male Wistar rats received halothane 1%/oxygen 14%, oxygen 14%/propofol 60 mg kg(-1) i.p., or halothane 1%/oxygen 14%/propofol 60 mg kg(-1) i.p. Morphological examination showed complete loss of architecture with massive necrosis of parenchyma in the halothane group, while only minor histological abnormalities were observed in rats receiving halothane plus propofol. The cytosolic concentration of TBARS and the hydroperoxide-initiated chemiluminescence increased significantly in the liver of animals from the halothane group (+62% and +40% versus controls, respectively), and this increase was abolished by propofol administration. Halothane induced a marked activation of NF-kappaB (+180%), and resulted in a significant decrease of the nonphosphorylated form of the inhibitor IkappaBalpha (-53%), while phosphorylated IkappaBalpha protein level was markedly increased (+146%). Propofol administration lowered these effects to +30% (NF-kappaB), -26% (nonphosphorylated IkappaBalpha), and +56% (phosphorylated IkappaBalpha). The increase of iNOS protein level (+59%) induced by halothane was significantly reduced to +22% by additional administration of propofol. Results obtained show that administration of propofol inhibits oxidative stress, NF-kappaB nuclear traslocation and iNOS overexpression in liver of rats receiving halothane. Propofol treatment, by inhibiting the NF-kappaB signal transduction pathway, might block the production of noxious mediators involved in the development of halothane-induced injury.
Collapse
Affiliation(s)
- Luis J Brasil
- Irmandade Santa Casa de Misericordia, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Boullerne AI, Benjamins JA. Nitric oxide synthase expression and nitric oxide toxicity in oligodendrocytes. Antioxid Redox Signal 2006; 8:967-80. [PMID: 16771686 DOI: 10.1089/ars.2006.8.967] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oligodendrocytes (OLG) have more complex interactions with nitric oxide (NO) than initially suspected. Historically, OLG were seen only as targets of high NO levels released from other cells. Expression of nitric oxide synthase type II (NOS-2) in primary cultures of OLGs stimulated by cytokines led to controversy due to the presence of small numbers of microglia, cells also inducible for NOS-2 expression. The present review summarizes the findings that immature OLG express NOS-2, but that they do not in their most mature stage in culture as membrane sheet-bearing cells. This raises questions about the regulation of NOS-2 expression in OLG. Additionally, novel data are presented on NOS-3 expression in cultured OLG. If confirmed in vivo, this finding suggests that constitutive NOS-3 expression may play a key role in OLG injury due to its activation by calcium, in interaction with pathways mediating glutamate toxicity. The authors discuss in vivo NO levels to place in vitro findings in context, and compare OLG sensitivity to NO with that of other brain cells. Lastly, the multiple interactions of NO are considered with regard to glutamate cytotoxicity, the antioxidant glutathione, mitochondrial function, and myelin architecture.
Collapse
Affiliation(s)
- Anne I Boullerne
- Department of Anesthesiology, University of Illinois at Chicago, 60612, USA.
| | | |
Collapse
|