Anti-inflammatory activity of diterpenes from Croton stellatopilosus on LPS-induced RAW264.7 cells.
J Nat Med 2012;
67:174-81. [PMID:
22529050 DOI:
10.1007/s11418-012-0668-5]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
An acyclic diterpene (plaunotol; 1) and two furanoditerpenes (plaunolide, 2 and plaunol E, 3), were isolated from Croton stellatopilosus leaves, and assessed for their inhibitory activity on nitric oxide (NO) production by lipopolysaccharide (LPS)-induced RAW264.7 cells. Plaunotol, plaunolide and plaunol E exhibited inhibitory activity with IC(50) values of 3.41, 17.09 and 2.79 μM, respectively. Cytotoxic effects were observed at concentrations of ≥100 μM for plaunotol and ≥10 μM for plaunol E. In order to understand the mechanism of this anti-inflammatory activity, transcription profiles of the COX-1, COX-2 and iNOS genes were measured using a quantitative RT-PCR technique. The level of gene expression was expressed as a relative quantitation according to the comparative C (T) method. The results indicated that plaunotol stimulated the COX-1 and COX-2 genes, and suppressed expression of the iNOS gene. Treatment of cells with plaunolide caused a downregulation of the expressions of the COX-1, COX-2 and iNOS genes. In contrast, plaunol E inhibited the expression of the COX-2, stimulated COX-1 and iNOS expressions. In summary, the present study shows that different diterpenes from C. stellatopilosus leaves exhibit anti-inflammatory activity towards LPS-activated RAW264.7 cells by different mechanisms. Our results provide data to support further investigations into the possibility that these diterpenes could be alternatives to act as anti-inflammatory agents.
Collapse