1
|
Silva DNPB, Adriana F, Martins DTDO, Borges QI, Lindote MVN, Zoratti MTR, Oliveira RGD, Torquato HFV, Gazoni VF, Costa LAMAD, Souza ECAD, Silva FMAD, Arunachalam K, Damazo AS. Methanolic extract of Cariniana rubra Gardner ex Miers stem bark negatively regulate the leukocyte migration and TNF-α and up-regulate the annexin-A1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113778. [PMID: 33421601 DOI: 10.1016/j.jep.2021.113778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cariniana rubra Gardner ex Miers (Lecythidaceae), is a native and endemic tree in Brazil, whose inner stem bark decoction preparation is used in folk medicine to treat various inflammatory disorders. Previous scientific reports confirmed its popular use as an anti-inflammatory, without, however, evaluating its action mechanisms. AIM The objective of this study was to determine the cytotoxicity and anti-inflammatory mechanism of action of the methanolic extract of Cariniana rubra (MECr), using experimental models in vivo and in vitro, as well as to identify secondary metabolites present in the extract. MATERIAL AND METHODS The MECr was prepared by maceration of inner stem bark powder in methanol (1:10 w/v). The in vitro cytotoxicity effect was evaluated in CHO-k1 cells. The Hippocratic screening test was conducted to evaluate the acute toxicity of MECr in mice. The actions of MECr on leukocyte migration, cytokine levels (IL-1β and TNF-α) and annexin-A1 (AnxA1) expression, were carried out on lambda-type carrageenan air pouch inflammation model in Swiss mice. Additionally, the phytochemical analysis of MECr was carried out by thin-layer chromatography (TLC) and spectrometric mass analysis with electrospray ionization ESI(-)/MS and gas chromatography-mass spectrometry (GC-MS). RESULTS Treatment of CHO-k1 cells for 24 h with MECr did not cause cytotoxicity (IC50 > 200 μg/mL), however, the MECr was shown to be cytotoxic after 72 h of cell exposure (IC50 = 19.90 ± 3.51 μg/mL). In the Hippocratic test, oral treatment of mice with 750, 1500, or 3000 mg/kg of MECr did not show any histopathological changes and mortality during the 14 days of observation. In the carrageenan air pouch inflammation model, MECr reduced (p < 0.001) polymorphonuclear migration (57.7% and 57.8%), leukocyte monocyte migration (74.5% and 61.8%) in the air pouch cavity and in the skin tissue, respectively. MECr also inhibited TNF-α concentration in the air cavity wash (3.2%, p < 0.01) and increased expression of the AnxA1 protein (26.9%, p < 0.01) in the skin tissue, particularly in neutrophils. β-sitosterol (1.95%), gallic acid (1.24%), β-amyrin (0.87%) and stigmasterol (0.66%) were identified as the major constituents in methanolic extract. CONCLUSION MECr exhibits significant anti-inflammatory action at least by increasing AnxA1 expression and by inhibiting the release of TNF-α pro-inflammatory cytokine and leukocyte migration, which is probably linked to the presence of identified biologically active compounds, especially gallic acid and terpenes. We believe that the results of this study provide a pharmacological basis for the MECr to be considered as a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Donata Norman Paulino Brandão Silva
- Post-Graduate Course in Health Science, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil; Department of Pharmacy, University Center of Várzea Grande (UNIVAG), Cuiabá, Brazil
| | - Flach Adriana
- Department of Chemistry, Federal University of Roraima (UFRR), Boa Vista, Brazil
| | | | - Quessi Irias Borges
- Post-Graduate Course in Health Science, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Marcus Vitor Nunes Lindote
- Graduate Course in Medicine, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | | | - Ruberlei Godinho de Oliveira
- Area of Pharmacology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Heron Fernandes Vieira Torquato
- Area of Pharmacology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Vanessa Fátima Gazoni
- Post-Graduate Course in Health Science, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil; Area of Pharmacology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | | | | | | | - Karuppusamy Arunachalam
- Area of Pharmacology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil; Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PRChina
| | - Amilcar Sabino Damazo
- Area of Histology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil.
| |
Collapse
|
2
|
Lonati C, Gatti S, Catania A. Activation of Melanocortin Receptors as a Potential Strategy to Reduce Local and Systemic Reactions Induced by Respiratory Viruses. Front Endocrinol (Lausanne) 2020; 11:569241. [PMID: 33362713 PMCID: PMC7758465 DOI: 10.3389/fendo.2020.569241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
The clinical hallmarks of infections caused by critical respiratory viruses consist of pneumonia, which can progress to acute lung injury (ALI), and systemic manifestations including hypercoagulopathy, vascular dysfunction, and endotheliitis. The disease outcome largely depends on the immune response produced by the host. The bio-molecular mechanisms underlying certain dire consequences of the infection partly arise from an aberrant production of inflammatory molecules, an event denoted as "cytokine storm". Therefore, in addition to antiviral therapies, molecules able to prevent the injury caused by cytokine excess are under investigation. In this perspective, taking advantage of melanocortin peptides and their receptors, components of an endogenous modulatory system that exerts marked anti-inflammatory and immunomodulatory influences, could be an effective therapeutic strategy to control disease evolution. Exploiting the melanocortin system using natural or synthetic ligands can form a realistic basis to counteract certain deleterious effects of respiratory virus infections. The central and peripheral protective actions exerted following melanocortin receptor activation could allow dampening the harmful events that trigger the cytokine storm and endothelial dysfunction while sustaining the beneficial signals required to elicit repair mechanisms. The long standing evidence for melanocortin safety encourages this approach.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | |
Collapse
|
3
|
Böhm M, Luger T. Are melanocortin peptides future therapeutics for cutaneous wound healing? Exp Dermatol 2019; 28:219-224. [PMID: 30661264 DOI: 10.1111/exd.13887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing is a complex process divided into different phases, that is an inflammatory, proliferative and remodelling phase. During these phases, a variety of resident skin cell types but also cells of the immune system orchestrate the healing process. In the last year, it has been shown that the majority of cutaneous cell types express the melanocortin 1 receptor (MC1R) that binds α-melanocyte-stimulating hormone (α-MSH) with high affinity and elicits pleiotropic biological effects, for example modulation of inflammation and immune responses, cytoprotection, antioxidative defense and collagen turnover. Truncated α-MSH peptides such as Lys-Pro-Val (KPV) as well as derivatives like Lys-d-Pro-Thr (KdPT), the latter containing the amino acid sequence 193-195 of interleukin-1β, have been found to possess anti-inflammatory effects but to lack the pigment-inducing activity of α-MSH. We propose here that such peptides are promising future candidates for the treatment of cutaneous wounds and skin ulcers. Experimental approaches in silico, in vitro, ex vivo and in animal models are outlined. This is followed by an unbiased discussion of the pro and contra arguments of such peptides as future candidates for the therapeutic management of cutaneous wounds and a review of the so-far available data on melanocortin peptides and derivatives in wound healing.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, University of Münster, Münster, Germany
| | - Thomas Luger
- Department of Dermatology, Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Szokol M, Priksz D, Bombicz M, Varga B, Kovacs A, Fulop GA, Csipo T, Posa A, Toth A, Papp Z, Szilvassy Z, Juhasz B. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats. Molecules 2017; 22:molecules22101702. [PMID: 29023410 PMCID: PMC6151765 DOI: 10.3390/molecules22101702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 01/20/2023] Open
Abstract
The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH), in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF) rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT). Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF), fractional shortening (FS), isovolumetric relaxation time (IVRT), mitral annular plane systolic excursion (MAPSE), and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.
Collapse
Affiliation(s)
- Miklos Szokol
- Department of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Arpad Kovacs
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gabor Aron Fulop
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Tamas Csipo
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary.
| | - Attila Toth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Zoltan Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
5
|
NDP-α-MSH attenuates heart and liver responses to myocardial reperfusion via the vagus nerve and JAK/ERK/STAT signaling. Eur J Pharmacol 2015; 769:22-32. [PMID: 26477637 DOI: 10.1016/j.ejphar.2015.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Melanocortin peptides afford cardioprotection during myocardial ischemia/reperfusion via janus kinases (JAK), extracellular signal-regulated kinases (ERK) and signal transducers/activators of transcription (STAT) pathways. Here we investigated whether melanocortin-induced modulation of the JAK/ERK/STAT signaling occurs via the cholinergic anti-inflammatory pathway, focusing our study on cardiac and hepatic responses to prolonged myocardial ischemia/reperfusion. Ischemia was produced in rats by ligature of the left anterior descending coronary artery for 30min; effects of ischemia/reperfusion were evaluated using Western blot of heart and liver proteins. Intravenous treatment, during coronary artery occlusion, with the melanocortin analog (Nle(4), D-Phe(7))α-melanocyte-stimulating hormone (NDP-α-MSH) induced a left ventricle up-regulation of the cardioprotective transcription factors pJAK2, pERK1/2 and pTyr-STAT3 (JAK-dependent), and a reduction in the levels of the inflammatory mediators tumor necrosis factor-α (TNF-α) and pJNK (a transcription factor also involved in apoptosis), as assessed at the end of the 2-h reperfusion period. Further, these beneficial effects of NDP-α-MSH were associated with heart over-expression of the pro-survival proteins heme oxygenase-1 (HO-1) and Bcl-XL, and decrease of ventricular arrhythmias and infarct size. In the liver NDP-α-MSH induced a decrease in the pJAK2 and pTyr-STAT3 levels, and strongly reduced pERK1/2 expression. In the liver of ischemic rats NDP-α-MSH also blunted pJNK activity and TNF-α expression, and up-regulated Bcl-XL. Bilateral cervical vagotomy prevented all effects of NDP-α-MSH, both in the heart and liver. These results indicate that melanocortins inhibit heart and liver damage triggered by prolonged myocardial ischemia/reperfusion likely, as main mechanism, via the vagus nerve-mediated modulation of the JAK/STAT/ERK signaling pathways.
Collapse
|
6
|
Ottani A, Neri L, Canalini F, Calevro A, Rossi R, Cappelli G, Ballestri M, Giuliani D, Guarini S. Protective effects of the melanocortin analog NDP-α-MSH in rats undergoing cardiac arrest. Eur J Pharmacol 2014; 745:108-16. [PMID: 25446929 DOI: 10.1016/j.ejphar.2014.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/29/2022]
Abstract
We previously reported that melanocortins afford cardioprotection in conditions of experimental myocardial ischemia/reperfusion, with involvement of the janus kinases (JAK), extracellular signal-regulated kinases (ERK) and signal transducers and activators of transcription (STAT) signalings. We investigated the influence of the melanocortin analog [Nle(4), D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) on short-term detrimental responses to cardiac arrest (CA) induced in rats by intravenous (i.v.) administration of potassium chloride, followed by cardiopulmonary resuscitation (CPR) plus epinephrine treatment. In CA/CPR rats i.v. treated with epinephrine (0.1 mg/kg) and returned to spontaneous circulation (48%) we recorded low values of mean arterial pressure (MAP) and heart rate (HR), alteration of hemogasanalysis parameters, left ventricle low expression of the cardioprotective transcription factors pJAK2 and pTyr-STAT3 (JAK-dependent), increased oxidative stress, up-regulation of the inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and down-regulation of the anti-inflammatory cytokine IL-10, as assessed at 1h and 3h after CPR. On the other hand, i.v. treatment during CPR with epinephrine plus NDP-α-MSH (340 μg/kg) almost completely restored the basal conditions of MAP and HR, reversed metabolic acidosis, induced left ventricle up-regulation of pJAK2, pTyr-STAT3 and IL-10, attenuated oxidative stress, down-regulated TNF-α and IL-6 levels, and improved survival rate by 81%. CA/CPR plus epinephrine alone or in combination with NDP-α-MSH did not affect left ventricle pSer-STAT3 (ERK1/2-dependent) and pERK1/2 levels. These results indicate that melanocortins improve return to spontaneous circulation, reverse metabolic acidosis, and inhibit heart oxidative stress and inflammatory cascade triggered by CA/CPR, likely via activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Alessandra Ottani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Neri
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Canalini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Calevro
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rosario Rossi
- Division of Cardiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianni Cappelli
- Division of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Ballestri
- Division of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - Salvatore Guarini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
7
|
Cash JL, Norling LV, Perretti M. Resolution of inflammation: targeting GPCRs that interact with lipids and peptides. Drug Discov Today 2014; 19:1186-92. [PMID: 24993159 PMCID: PMC4154450 DOI: 10.1016/j.drudis.2014.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
Abstract
There is a growing appreciation of the important role of resolution mediators in the successful termination of the inflammatory response. Here, we discuss the potential importance of the lipid and peptide proresolving mediators, in particular the resolvins and chemerin-derived peptides, which mediate their effects through specific G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Jenna L Cash
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
8
|
Modulation of the JAK/ERK/STAT signaling in melanocortin-induced inhibition of local and systemic responses to myocardial ischemia/reperfusion. Pharmacol Res 2013; 72:1-8. [DOI: 10.1016/j.phrs.2013.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 01/04/2023]
|
9
|
Curbing Inflammation through Endogenous Pathways: Focus on Melanocortin Peptides. Int J Inflam 2013; 2013:985815. [PMID: 23738228 PMCID: PMC3664505 DOI: 10.1155/2013/985815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 12/26/2022] Open
Abstract
The resolution of inflammation is now known to be an active process, armed with a multitude of mediators both lipid and protein in nature. Melanocortins are peptides endowed with considerable promise with their proresolution and anti-inflammatory effects in preclinical models of inflammatory disease, with tissue protective effects. These peptides and their targets are appealing because they can be seen as a natural way of inducing these effects as they harness endogenous pathways of control. Whereas most of the information generated about these mediators derives from several acute models of inflammation (such as zymosan induced peritonitis), there is some indication that these mediators may inhibit chronic inflammation by modulating cytokines, chemokines, and leukocyte apoptosis. In addition, proresolving mediators and their mimics have often been tested alongside therapeutic protocols, hence have been tested in settings more relevant to real life clinical scenarios. We provide here an overview on some of these mediators with a focus on melanocortin peptides and receptors, proposing that they may unveil new opportunities for innovative treatments of inflammatory arthritis.
Collapse
|
10
|
Melanocortins and the cholinergic anti-inflammatory pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 681:71-87. [PMID: 21222261 DOI: 10.1007/978-1-4419-6354-3_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Experimental evidence indicates that small concentrations of inflammatory molecules produced by damaged tissues activate afferent signals through ascending vagus nerve fibers, that act as the sensory arm of an "inflammatory reflex". The subsequent activation of vagal efferent fibers, which represent the motor arm of the inflammatory reflex, rapidly leads to acetylcholine release in organs of the reticuloendothelial system. Acetylcholine interacts with α7 subunit-containing nicotinic receptors in tissue macrophages and other immune cells and rapidly inhibits the synthesis/release of tumor necrosis factor-α and other inflammatory cytokines. This neural anti-inflammatory response called "cholinergic anti-inflammatory pathway" is fast and integrated through the central nervous system. Preclinical studies are in progress, with the aim to develop therapeutic agents able to activate the cholinergic anti-inflammatory pathway. Melanocortin peptides bearing the adrenocorticotropin/α-melanocyte-stimulating hormone sequences exert a protective and life-saving effect in animals and humans in conditions of circulatory shock. These neuropeptides are likewise protective in other severe hypoxic conditions, such as prolonged respiratory arrest, myocardial ischemia, renal ischemia and ischemic stroke, as well as in experimental heart transplantation. Moreover, experimental evidence indicates that melanocortins reverse circulatory shock, prevent myocardial ischemia/reperfusion damage and exert neuroprotection against ischemic stroke through activation of the cholinergic anti-inflammatory pathway. This action occurs via stimulation of brain melanocortin MC3/MC4 receptors. Investigations that determine the molecular mechanisms of the cholinergic anti-inflammatory pathway activation could help design of superselective activators of this pathway.
Collapse
|
11
|
Giuliani D, Minutoli L, Ottani A, Spaccapelo L, Bitto A, Galantucci M, Altavilla D, Squadrito F, Guarini S. Melanocortins as potential therapeutic agents in severe hypoxic conditions. Front Neuroendocrinol 2012; 33:179-93. [PMID: 22531139 DOI: 10.1016/j.yfrne.2012.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 01/14/2023]
Abstract
Melanocortin peptides with the adrenocorticotropin/melanocyte-stimulating hormone (ACTH/MSH) sequences and synthetic analogs have protective and life-saving effects in experimental conditions of circulatory shock, myocardial ischemia, ischemic stroke, traumatic brain injury, respiratory arrest, renal ischemia, intestinal ischemia and testicular ischemia, as well as in experimental heart transplantation. Moreover, melanocortins improve functional recovery and stimulate neurogenesis in experimental models of cerebral ischemia. These beneficial effects of ACTH/MSH-like peptides are mostly mediated by brain melanocortin MC(3)/MC(4) receptors, whose activation triggers protective pathways that counteract the main ischemia/reperfusion-related mechanisms of damage. Induction of signaling pathways and other molecular regulators of neural stem/progenitor cell proliferation, differentiation and integration seems to be the key mechanism of neurogenesis stimulation. Synthesis of stable and highly selective agonists at MC(3) and MC(4) receptors could provide the potential for development of a new class of drugs for a novel approach to management of severe ischemic diseases.
Collapse
Affiliation(s)
- Daniela Giuliani
- Department of Biomedical Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Melanocortins counteract inflammatory and apoptotic responses to prolonged myocardial ischemia/reperfusion through a vagus nerve-mediated mechanism. Eur J Pharmacol 2010; 637:124-30. [PMID: 20385118 DOI: 10.1016/j.ejphar.2010.03.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/23/2010] [Accepted: 03/24/2010] [Indexed: 11/23/2022]
Abstract
Recently we reported that an efferent vagal fibre-mediated cholinergic protective pathway, activated by melanocortins acting at brain melanocortin MC(3) receptors, is operative in a condition of short-term myocardial ischemia/reperfusion associated with a high incidence of severe arrhythmias and death. Here we investigated melanocortin effects, and the role of the vagus nerve-mediated cholinergic protective pathway, in a rat model of prolonged myocardial ischemia/reperfusion associated with marked inflammatory and apoptotic reactions, and a large infarct size. Ischemia was produced in rats by ligature of the left anterior descending coronary artery for 30 min. At the end of the 2-h reperfusion, western blot analysis of the inflammatory and apoptotic markers tumor necrosis factor-alpha (TNF-alpha), c-jun N-terminal kinases (JNK) and caspase-3, as well as of the anti-apoptotic extracellular signal-regulated kinases (ERK 1/2), was performed in the left ventricle. In saline-treated ischemic rats there was an increase in TNF-alpha levels and in the activity of JNK and caspase-3 accompanied, despite an appreciable ERK 1/2 activation, by a large infarct size. Intravenous treatment, during coronary artery occlusion, with the melanocortin analog [Nle(4), D-Phe(7)]alpha-melanocyte-stimulating hormone (NDP-alpha-MSH) produced a reduction in TNF-alpha levels and in the activity of JNK and caspase-3, associated with marked activation of the pro-survival kinases ERK 1/2, and consequent attenuation of infarct size. Bilateral cervical vagotomy blunted the protective effects of NDP-alpha-MSH. These results indicate that melanocortins modulate the inflammatory and apoptotic cascades triggered by prolonged myocardial ischemia/reperfusion, and reduce infarct size, seemingly by activation of the vagus nerve-mediated cholinergic protective pathway.
Collapse
|
14
|
Patel HB, Leoni G, Melendez TM, Sampaio ALF, Perretti M. Melanocortin Control of Cell Trafficking in Vascular Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:88-106. [DOI: 10.1007/978-1-4419-6354-3_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Targeting melanocortin receptors: an approach to treat weight disorders and sexual dysfunction. Nat Rev Drug Discov 2008; 7:307-23. [PMID: 18323849 DOI: 10.1038/nrd2331] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The melanocortin system has multifaceted roles in the control of body weight homeostasis, sexual behaviour and autonomic functions, and so targeting this pathway has immense promise for drug discovery across multiple therapeutic areas. In this Review, we first outline the physiological roles of the melanocortin system, then discuss the potential of targeting melanocortin receptors by using MC3 and MC4 agonists for treating weight disorders and sexual dysfunction, and MC4 antagonists to treat anorectic and cachectic conditions. Given the complexity of the melanocortin system, we also highlight the challenges and opportunities for future drug discovery in this area.
Collapse
|
16
|
Abstract
The melanocortin system is composed of the melanocortin peptides, adrenocorticotropic hormone and alpha-, beta-, and gamma-melanocyte-stimulating hormone, the melanocortin receptors (MCRs), and the endogenous antagonists agouti- and agouti-related protein. Melanocortin peptides exert multiple effects upon the host, including anti-inflammatory and immunomodulatory effects. Leukocytes are a source of melanocortins and a major target for these peptides. Because of reduced translocation of the nuclear factor NF-kappaB to the nucleus, MCR activation by their ligands causes a collective reduction of the most important molecules involved in the inflammatory process. This review examines how melanocortin peptides and their receptors participate in leukocyte biology.
Collapse
Affiliation(s)
- Anna Catania
- Center for Preclinical Investigation, Padiglione Granelli, Fondazione IRCCS Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Via F Sforza 35, Milano, Italy.
| |
Collapse
|