1
|
Abstract
The Pd-catalyzed carbon-carbon bond formation pioneered by Heck in 1969 has dominated medicinal chemistry development for the ensuing fifty years. As the demand for more complex three-dimensional active pharmaceuticals continues to increase, preparative enzyme-mediated assembly, by virtue of its exquisite selectivity and sustainable nature, is poised to provide a practical and affordable alternative for accessing such compounds. In this minireview, we summarize recent state-of-the-art developments in practical enzyme-mediated assembly of carbocycles. When appropriate, background information on the enzymatic transformation is provided and challenges and/or limitations are also highlighted.
Collapse
Affiliation(s)
- Weijin Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Douglass F Taber
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Hans Renata
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2
|
Žigon-Branc S, Markovic M, Van Hoorick J, Van Vlierberghe S, Dubruel P, Zerobin E, Baudis S, Ovsianikov A. Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Tissue Eng Part A 2019; 25:1369-1380. [PMID: 30632465 PMCID: PMC6784494 DOI: 10.1089/ten.tea.2018.0237] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Hydrogels represent an attractive material platform for realization of three-dimensional (3D) tissue-engineered constructs, as they have tunable mechanical properties, are compatible with different types of cells, and resemble elements found in natural extracellular matrices. So far, numerous hydrogel-cartilage/bone tissue engineering (TE)-related studies were performed by utilizing a single cell encapsulation approach. Although multicellular spheroid cultures exhibit advantageous properties for cartilage or bone TE, the chondrogenic or osteogenic differentiation potential of stem cell microspheroids within hydrogels has not been investigated much. This study explores, for the first time, how stiffness of gelatin-based hydrogels (having a storage modulus of 538, 3584, or 7263 Pa) affects proliferation and differentiation of microspheroids formed from telomerase-immortalized human adipose-derived stem cells (hASC/hTERT). Confocal microscopy indicates that all tested hydrogels supported cell viability during their 3- to 5-week culture period in the control, chondrogenic, or osteogenic medium. Although in the softer hydrogels cells from neighboring microspheroids started outgrowing and interconnecting within a few days, their protrusion was slower or limited in stiffer hydrogels or those cultured in chondrogenic medium, respectively. High expressions of chondrogenic markers (SOX9, ACAN, COL2A1), detected in all tested hydrogels, proved that the chondrogenic differentiation of hASC/hTERT microspheroids was very successful, especially in the two softer hydrogels, where superior cartilage-specific properties were confirmed by Alcian blue staining. These chondrogenically induced samples also expressed COL10A1, a marker of chondrocyte hypertrophy. Interestingly, the hydrogel itself (with no differentiation medium) showed a slight chondrogenic induction. Regardless of the hydrogel stiffness, in the samples stimulated with osteogenic medium, the expression of selected markers RUNX2, BGLAP, ALPL, and COL1A1 was not conclusive. Nevertheless, the von Kossa staining confirmed the presence of calcium deposits in osteogenically stimulated samples in the two softer hydrogels, suggesting that these also favor osteogenesis. This observation was also confirmed by Alizarin red quantification assay, with which higher amounts of calcium were detected in the osteogenically induced hydrogels than in their controls. The presented data indicate that the encapsulation of adipose-derived stem cell microspheroids in gelatin-based hydrogels show promising potential for future applications in cartilage or bone TE. Impact Statement Osteochondral defects represent one of the leading causes of disability in the world. Although numerous tissue engineering (TE) approaches have shown success in cartilage and bone tissue regeneration, achieving native-like characteristics of these tissues remains challenging. This study demonstrates that in the presence of a corresponding differentiation medium, gelatin-based hydrogels support moderate osteogenic and excellent chondrogenic differentiation of photo-encapsulated human adipose-derived stem cell microspheroids, the extent of which depends on hydrogel stiffness. Because photosensitive hydrogels are a convenient material platform for creating stiffness gradients in three dimensions, the presented microspheroid-hydrogel encapsulation strategy holds promise for future strategies of cartilage or bone TE.
Collapse
Affiliation(s)
- Sara Žigon-Branc
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Marica Markovic
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Jasper Van Hoorick
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Elsene, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Elsene, Belgium
| | - Peter Dubruel
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Elise Zerobin
- Austrian Cluster for Tissue Regeneration, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Vienna, Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue Regeneration, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Vienna, Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
3
|
Bellum S, Bawa B, Thuett KA, Stoica G, Abbott LC. Changes in Biochemical Processes in Cerebellar Granule Cells of Mice Exposed To Methylmercury. Int J Toxicol 2017; 26:261-9. [PMID: 17564908 DOI: 10.1080/10915810701369758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H2DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca2+]i) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.
Collapse
Affiliation(s)
- Sairam Bellum
- Department of Safety Assessment, Merck Research Laboratories, West Point, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
4
|
Biochemical Characterization of a Caspase-3 Far-red Fluorescent Probe for Non-invasive Optical Imaging of Neuronal Apoptosis. J Mol Neurosci 2014; 54:451-62. [DOI: 10.1007/s12031-014-0325-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/05/2014] [Indexed: 11/26/2022]
|
5
|
Ioroi T, Akao M, Iguchi M, Kato M, Kimura T, Izumi Y, Akaike A, Kume T. Serofendic Acid Protects Against Myocardial Ischemia–Reperfusion Injury in Rats. J Pharmacol Sci 2014; 126:274-80. [DOI: 10.1254/jphs.14139fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
6
|
Protective effect of serofendic acid, administered intravenously, on cerebral ischemia-reperfusion injury in rats. Brain Res 2013; 1532:99-105. [DOI: 10.1016/j.brainres.2013.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023]
|
7
|
Thirumala S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther 2013; 13:673-91. [PMID: 23339745 DOI: 10.1517/14712598.2013.763925] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSC) and MSC-like cells hold great promise and offer many advantages for developing effective cellular therapeutics. Current trends indicate that the clinical application of MSC will continue to increase markedly. For clinical applications, large numbers of MSC are usually required, ideally in an off-the-shelf format, thus requiring extensive MSC expansion ex vivo and subsequent cryopreservation and banking. AREAS COVERED To exploit the full potential of MSC for cell-based therapies requires overcoming significant cell-manufacturing, banking and regulatory challenges. The current review will focus on the identification of optimal cell source for MSC, the techniques for production scale-up, cryopreservation and banking and the regulatory challenges involved. EXPERT OPINION There has been considerable success manufacturing and cryopreserving MSC at laboratory scale. Surprisingly little attention, however, has been given to translate these technologies to an industrial scale. The development of cost-effective advanced technologies for producing and cryopreserving commercial-scale MSC is important for successful clinical cell therapy.
Collapse
|
8
|
Bellum S, Thuett KA, Bawa B, Abbott LC. The effect of methylmercury exposure on behavior and cerebellar granule cell physiology in aged mice. J Appl Toxicol 2012; 33:959-69. [DOI: 10.1002/jat.2786] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Sairam Bellum
- Safety Assessment, Merck Research Laboratories; West Point; PA; 19486; USA
| | - Kerry A. Thuett
- ChemRisk; 101 2nd Street, Suite 700; San Francisco; CA; 94105; USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathology; Kansas State University, College of Veterinary Medicine; 101 Trotter Hall; Manhattan; KS; 66506-5601; USA
| | - Louise C. Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, 4458 TAMU; Texas A&M University; College Station; TX; 77843-4458; USA
| |
Collapse
|
9
|
Mesenchymal Stromal Cell Phenotype is not Influenced by Confluence during Culture Expansion. Stem Cell Rev Rep 2012; 9:44-58. [DOI: 10.1007/s12015-012-9386-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Tekkatte C, Gunasingh GP, Cherian KM, Sankaranarayanan K. "Humanized" stem cell culture techniques: the animal serum controversy. Stem Cells Int 2011; 2011:504723. [PMID: 21603148 PMCID: PMC3096451 DOI: 10.4061/2011/504723] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/18/2011] [Accepted: 02/05/2011] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy is reaching a pinnacle with an understanding of the potential of human mesenchymal stem cells (hMSCs) to regenerate damaged tissue in the body. The limited numbers of these hMSCs in currently identified sources, like bone marrow, adipose tissue, and so forth, bring forth the need for their
in vitro culture/expansion. However, the extensive usage of supplements containing xenogeneic components in the expansion-media might pose a risk to the post-transplantation safety of patients. This warrants the necessity to identify and develop chemically defined or “humanized” supplements which would make
in vitro cultured/processed cells relatively safer for transplantation in regenerative medicine. In this paper, we outline the various caveats associated with conventionally used supplements of xenogenic origin and also portray the possible alternatives/additives which could one day herald the dawn of a new era in the translation of
in vitro cultured cells to therapeutic interventions.
Collapse
Affiliation(s)
- Chandana Tekkatte
- Frontier Lifeline Pvt. Ltd., TICEL Biopark, Taramani, Chennai 600113, India
| | | | | | | |
Collapse
|
11
|
Yang Y, Honaramooz A. Effects of medium and hypothermic temperatures on preservation of isolated porcine testis cells. Reprod Fertil Dev 2010; 22:523-32. [PMID: 20188025 DOI: 10.1071/rd09206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 09/14/2009] [Indexed: 12/30/2022] Open
Abstract
The effects of medium and hypothermic temperatures on testis cells were investigated to develop a strategy for their short-term preservation. Testes from 1-week-old piglets were enzymatically dissociated for cell isolation. In Experiment 1, testis cells were stored at either room (RT) or refrigeration (RG) temperature for 6 days in one of 13 different media. Live cell recovery was assayed daily using trypan blue exclusion. In Experiment 2, three media at RG were selected for immunocytochemical and in vitro culture studies. Live cell recovery was also assayed daily for 6 days using both trypan blue exclusion and a fluorochrome assay kit. For all media tested, significantly or numerically more live cells were maintained at RG than RT. On preservation Day 3 at RG (cell isolation day as Day 0), 20% FBS-Leibovitz resulted in the highest live cell recovery (89.5 + or - 1.7%) and DPBS in the lowest (60.3 + or - 1.9%). On Day 6 at RG, 20% FBS- Leibovitz also resulted in the best preservation efficiency with 80.9 + or - 1.8% of Day 0 live cells recovered. There was no difference in live cell recovery detected by the two viability assays. After preservation, the proportion of gonocytes did not change, whereas that of Sertoli and peritubular cells increased and decreased, respectively. After 6 days of hypothermic preservation, testis cells showed similar culture potential to fresh cells. These results show that testis cells can be preserved for 6 days under hypothermic conditions with a live cell recovery of more than 80% and after-storage viability of 88%.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | | |
Collapse
|
12
|
Kume T. [Discovery and neuroprotective mechanisms of serofendic acid derived from fetal tissues]. Nihon Yakurigaku Zasshi 2009; 133:257-60. [PMID: 19443961 DOI: 10.1254/fpj.133.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Kume T, Ito R, Taguchi R, Izumi Y, Katsuki H, Niidome T, Takada-Takatori Y, Sugimoto H, Akaike A. Serofendic acid promotes stellation induced by cAMP and cGMP analogs in cultured cortical astrocytes. J Pharmacol Sci 2009; 109:110-8. [PMID: 19122367 DOI: 10.1254/jphs.08254fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated the effect of serofendic acid, a neuroprotective substance derived from fetal calf serum, on the morphological changes in cultured cortical astrocytes. Cultured astrocytes developed a stellate morphology with several processes following exposure to dibutylyl cAMP (dbcAMP), a membrane-permeable cAMP analog; 8-Br-cGMP, a membrane-permeable cGMP analog; or phorbol-12-myristate-13-acetate (PMA), a protein kinase C activator. Serofendic acid significantly accelerated the stellation induced by dbcAMP- and 8-Br-cGMP. In contrast, the PMA-induced stellation was not affected by serofendic acid. Next, we attempted to elucidate the mechanism underlying the dbcAMP-induced stellation and explore the site of action of serofendic acid. Both the stellation induced by dbcAMP and the promotional effect of serofendic acid were partially inhibited by KT5720, a specific protein kinase A (PKA) inhibitor. Furthermore, serofendic acid failed to facilitate the stellation induced by Y-27632, an inhibitor of Rho-associated kinase (ROCK). These results indicate that serofendic acid promotes dbcAMP- and 8-Br-cGMP-induced stellation and the promotional effect on dbcAMP-induced stellation is mediated at least partly by the regulation of PKA activity and not by controlling ROCK activity.
Collapse
Affiliation(s)
- Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Serofendic acid protects from iodinated contrast medium and high glucose probably against superoxide production in LLC-PK1 cells. Clin Exp Nephrol 2008; 13:15-24. [PMID: 18827965 DOI: 10.1007/s10157-008-0081-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND It is well known that patients with chronic kidney disease, including diabetic nephropathy, often develop cardiovascular diseases. In case of radiographic procedures, reduced renal function may be deteriorated by the use of iodinated contrast medium (CM). This is known as CM-induced nephropathy. In this study, we have focused on the mechanisms of this type of injury in diabetic nephropathy and the preventive effects of serofendic acid. METHODS We evaluated the cytotoxicity of CM and high glucose on tubular epithelial cells using an LLC-PK1 cell line, and measured cell viability with an alamarBlue assay. We further evaluated superoxide production levels measured by dihydroethidium. We also examined the protective effects of serofendic acid on cytotoxicity with superoxide production of CM and high glucose. RESULTS CM reduced cell numbers in a dose-dependent and time-dependent manner in LLC-PK1 cells. Furthermore, cytotoxicity of CM in diluted concentration was additively influenced by high glucose. CM and high glucose increased superoxide production, which was evaluated by the response to dihydroethidium, and was suppressed by serofendic acid. Cytotoxicity of CM, high glucose, and H(2)O(2) was suppressed by serofendic acid, as well as the suppression by N-acetylcysteine on CM toxicity. Interestingly, the recovery by serofendic acid in H(2)O(2)- and high glucose-induced cellular injury was to the basal level, in contrast with the partial recovery from CM-induced injury. Finally, serofendic acid suppressed CM-induced injury and high glucose-induced apoptosis. CONCLUSIONS These results suggest that CM and high glucose induce cytotoxicity and oxidative stress in LLC-PK1 cells and that serofendic acid protects the injury probably from superoxide generation.
Collapse
|
15
|
Bawa B, Abbott LC. Analysis of calcium ion homeostasis and mitochondrial function in cerebellar granule cells of adult CaV 2.1 calcium ion channel mutant mice. Neurotox Res 2008; 13:1-18. [PMID: 18367436 DOI: 10.1007/bf03033363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CaV 2.1 voltage-gated calcium channels (VGCC) are highly expressed by cerebellar neurons, and their dysfunction is linked to human disorders including familial hemiplegic migraine, episodic ataxia type 2 and spinocerebellar ataxia type 6. Altered calcium homeostasis, due to dysfunctional Ca(V 2.1 VGCC can severely affect mitochondrial function, eventually leading to neuronal cell death. We study leaner and tottering mice, which carry autosomal recessive mutations in the gene coding for the alpha 1A pore-forming subunit of CaV 2.1 VGCC. Both leaner and tottering mice exhibit cerebellar ataxia and epilepsy. Excessive leaner cerebellar granule cell (CGC) death starts soon after postnatal day 10, but it is not known whether the degree of CGC cell death observed in adult leaner mice is significantly different from wild type mice. We used Fluoro-Jade and TUNEL staining to quantify apoptotic cell death in leaner and wild type CGC. We investigated calcium homeostasis, mitochondrial function and generation of reactive oxygen species (ROS) in isolated CGC, using indicator dyes Fura-2AM, TMRM and CMH2DCFDA, respectively. We observed a small but significant increase in number of apoptotic adult leaner CGC. Calcium homeostasis and mitochondrial function also were altered in leaner CGC. However, no significant differences in ROS levels were observed. It is possible that CGC death in leaner mice may be related to mitochondrial dysfunction but may not be directly related to decreased basal intracellular calcium.
Collapse
Affiliation(s)
- Bhupinder Bawa
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | | |
Collapse
|
16
|
Protective effect of serofendic acid on ischemic injury induced by occlusion of the middle cerebral artery in rats. Eur J Pharmacol 2008; 586:151-5. [DOI: 10.1016/j.ejphar.2008.02.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 01/22/2008] [Accepted: 02/25/2008] [Indexed: 01/13/2023]
|
17
|
Akao M, Takeda T, Kita T, Kume T, Akaike A. Serofendic Acid, a Substance Extracted from Fetal Calf Serum, as a Novel Drug for Cardioprotection. ACTA ACUST UNITED AC 2007; 25:333-41. [DOI: 10.1111/j.1527-3466.2007.00026.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Terauchi T, Asai N, Doko T, Taguchi R, Takenaka O, Sakurai H, Yonaga M, Kimura T, Kajiwara A, Niidome T, Kume T, Akaike A, Sugimoto H. Synthesis and pharmacological profile of serofendic acids A and B. Bioorg Med Chem 2007; 15:7098-107. [PMID: 17804246 DOI: 10.1016/j.bmc.2007.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 07/11/2007] [Accepted: 07/13/2007] [Indexed: 11/18/2022]
Abstract
We present efficient syntheses of serofendic acids A and B (SA-A and SA-B), novel neuroprotective substances isolated from fetal calf serum. Biological and pharmacological evaluation showed that SA-A and SA-B have potent protective action against glutamate-induced neurotoxicity, but do not interact directly with glutamate receptors. A pharmacokinetic study showed that they have good oral bioavailability in rats. The results indicate that SA-A and SA-B are potential lead compounds for candidate drugs to treat various neurological disorders.
Collapse
Affiliation(s)
- Taro Terauchi
- Tsukuba Research Laboratories, Eisai Co., Ltd, Tsukuba-shi 300-2635, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mannello F, Tonti GA. Concise Review: No Breakthroughs for Human Mesenchymal and Embryonic Stem Cell Culture: Conditioned Medium, Feeder Layer, or Feeder-Free; Medium with Fetal Calf Serum, Human Serum, or Enriched Plasma; Serum-Free, Serum Replacement Nonconditioned Medium, or Ad Hoc Formula? All That Glitters Is Not Gold! Stem Cells 2007; 25:1603-9. [PMID: 17395775 DOI: 10.1634/stemcells.2007-0127] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The choice of an optimal strategy of stem cell culture is at the moment an impossible task, and the elaboration of a culture medium adapted to the production of embryonic and adult mesenchymal stem cells for the clinical application of cell therapy remains a crucial matter. To make an informed choice, it is crucial to not underestimate the theoretical health risk of using xenogenic compounds, to limit the immunological reactions once stem cells are transplanted, to not overestimate the controversial results obtained with human serum, plasma, and blood derivatives, as well as to carefully examine the pros and cons of serum-free and ad hoc formulation strategies; besides that, to also maintain multipotentiality, self-renewal, and transplantability. The extent to which we are able to achieve effective cell therapies will depend on assimilating a rapidly developing base of scientific knowledge with the practical considerations of design, delivery, and host response. Although clinical studies have already started, many questions remain unsolved, and concomitantly even more evidence on suitable and safe off-the-shelf products (mainly xeno-free) for embryonic and mesenchymal stem cells is cropping up, even though there should be no rush to enter the clinical stage while the underlying basic research is still not so solid; this solely will lead to high-quality translational research, without making blunders stemming from the assumption that all that glitters is not gold. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Institute of Histology and Laboratory Analysis, Faculty of Sciences and Technologies, University of Urbino Carlo Bo, Via O. Ubaldini 7, 61029 Urbino (PU), Italy.
| | | |
Collapse
|
20
|
Abstract
Neurotoxins represent unique chemical tools, providing a means to 1) gain insight into cellular mechanisms of apopotosis and necrosis, 2) achieve a morphological template for studies otherwise unattainable, 3) specifically produce a singular phenotype of denervation, and 4) provide the starting point to delve into processes and mechanisms of nerve regeneration and sprouting. There are many other notable uses of neurotoxins in neuroscience research, and ever more being discovered each year. The objective of this review paper is to highlight the broad areas of neuroscience in which neurotoxins and neurotoxicity mechanism come into play. This shifts the focus away from neurotoxins per se, and onto the major problems under study today. Neurotoxins broadly defined are used to explore neurodegenerative disorders, psychiatric disorders and substance use disorders. Neurotoxic mechanisms relating to protein aggregates are indigenous to Alzheimer disease, Parkinson's disease. NeuroAIDS is a disorder in which microglia and macrophages have enormous import. The gap between the immune system and nervous system has been bridged, as neuroinflammation is now considered to be part of the neurodegenerative process. Related mechanisms now arise in the process of neurogenesis. Accordingly, the entire spectrum of neuroscience is within the purview of neurotoxins and neurotoxicity mechanisms. Highlights on discoveries in the areas noted, and on selective neurotoxins, are included, mainly from the past 2 to 3 years.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Casilla 70000, Santiago, Chile.
| | | |
Collapse
|