1
|
Pires DA, Brandão-Rangel MAR, Silva-Reis A, Olímpio FRS, Aimbire F, Oliveira CR, Mateus-Silva JR, Zamarioli LS, Bachi ALL, Bella YF, Santos JMB, Bincoletto C, Lancha AH, Vieira RP. Vitamin C Inhibits Lipopolysaccharide-Induced Hyperinflammatory State of Chronic Myeloid Leukemia Cells through Purinergic Signaling and Autophagy. Nutrients 2024; 16:383. [PMID: 38337668 PMCID: PMC10857061 DOI: 10.3390/nu16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.
Collapse
Affiliation(s)
- Daniela A. Pires
- Post-Graduation Program in Bioengineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo 08230-030, SP, Brazil;
| | - Maysa A. R. Brandão-Rangel
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Anamei Silva-Reis
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Fabiana R. S. Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 720, Vila Clementino, São Paulo 04039-002, SP, Brazil; (F.R.S.O.); (F.A.)
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 720, Vila Clementino, São Paulo 04039-002, SP, Brazil; (F.R.S.O.); (F.A.)
| | - Carlos R. Oliveira
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
| | - José R. Mateus-Silva
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
| | - Lucas S. Zamarioli
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Três de Maio 100, São Paulo 04044-020, SP, Brazil; (L.S.Z.); (C.B.)
| | - André L. L. Bachi
- Postgraduate Program in Health Science, Santo Amaro University, Rua Prof. Enéas de Siqueira Neto 340, São Paulo 04829-300, SP, Brazil;
| | - Yanesko F. Bella
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Juliana M. B. Santos
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Claudia Bincoletto
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Três de Maio 100, São Paulo 04044-020, SP, Brazil; (L.S.Z.); (C.B.)
| | - Antonio Herbert Lancha
- Experimental Surgery (LIM 26), Laboratory of Clinical Investigation, School of Medicine, University of Sao Paulo, Avenida Doutor Arnaldo 455, São Paulo 05508-030, SP, Brazil;
| | - Rodolfo P. Vieira
- Post-Graduation Program in Bioengineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo 08230-030, SP, Brazil;
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (Unievangélica), Avenida Universitária Km 3,5, Anápolis 75083-515, GO, Brazil
| |
Collapse
|
2
|
Pereira THR, de Moura TR, Santos MRM, Zamarioli LDS, Erustes AG, Smaili SS, Pereira GJS, Godoy Netto AVD, Bincoletto C. Palladium (II) compounds containing oximes as promising antitumor agents for the treatment of osteosarcoma: An in vitro and in vivo comparative study with cisplatin. Eur J Med Chem 2024; 264:116034. [PMID: 38103541 DOI: 10.1016/j.ejmech.2023.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.
Collapse
Affiliation(s)
- Thales Hebert Regiani Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Michele Rosana Maia Santos
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Lucas Dos Santos Zamarioli
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Adolfo G Erustes
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Soraya S Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Zanetti RD, da Cunha GA, Moreira MB, Farias RL, de Souza RF, de Godoy PR, Brassesco MS, Rocha FV, Lima MA, Mauro AE, Netto AV. Orthopalladated N,N-Dimethyl-1-Phenethylamine Compounds Containing 2,6-Lutidine: Synthesis, Dna Binding Studies and Cytotoxicity Evaluation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Albert J, Janabi BA, Granell J, Hashemi MS, Sainz D, Khosa MK, Calvis C, Messeguer R, Baldomà L, Badia J, Font-Bardia M. Synthesis and biological properties of palladium(II) cyclometallated compounds derived from (E)-2-((4-hydroxybenzylidene)amino)phenol. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Orthopalladated tetralone oxime compounds bearing tertiary phosphines: Synthesis, structure, biological and in silico studies. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Wu SH, Hsieh CC, Hsu SC, Yao M, Hsiao JK, Wang SW, Lin CP, Huang DM. RBC-derived vesicles as a systemic delivery system of doxorubicin for lysosomal-mitochondrial axis-improved cancer therapy. J Adv Res 2020; 30:185-196. [PMID: 34026295 PMCID: PMC8132207 DOI: 10.1016/j.jare.2020.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/07/2023] Open
Abstract
Introduction Chemotherapeutic drugs are the main intervention for cancer management, but many drawbacks impede their clinical applications. Nanoparticles as drug delivery systems (DDSs) offer much promise to solve these limitations. Objectives A novel nanocarrier composed of red blood cell (RBC)-derived vesicles (RDVs) surface-linked with doxorubicin (Dox) using glutaraldehyde (glu) to form Dox-gluRDVs was investigated for improved cancer therapy. Methods We investigated the in vivo antineoplastic performance of Dox-gluRDVs through intravenous (i.v.) administration in the mouse model bearing subcutaneous (s.c.) B16F10 tumor and examined the in vitro antitumor mechanism and efficacy in a panel of cancer cell lines. Results Dox-gluRDVs can exert superior anticancer activity than free Dox in vitro and in vivo. Distinct from free Dox that is mainly located in the nucleus, but instead Dox-gluRDVs release and efficiently deliver the majority of their conjugated Dox into lysosomes. In vitro mechanism study reveals the critical role of lysosomal Dox accumulation-mediated mitochondrial ROS overproduction followed by the mitochondrial membrane potential loss and the activation of apoptotic signaling for superior anticancer activity of Dox-gluRDVs. Conclusion This work demonstrates the great potential of RDVs to serve a biological DDS of Dox for systemic administration to improve conventional cancer chemotherapeutics.
Collapse
Affiliation(s)
- Shu-Hui Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chia-Chu Hsieh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Ming Yao
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan.,School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
| | - Chih-Peng Lin
- Department of Anesthesiology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
7
|
da Cunha GA, de Souza RFF, de Farias RL, Moreira MB, Silva DES, Zanetti RD, Garcia DM, Spindola DG, Michelin LFG, Bincoletto C, de Souza AA, Antunes AA, Judice WADS, Leitao RCF, Deflon VM, Mauro AE, Netto AVG. Cyclopalladated compounds containing 2,6-lutidine: Synthesis, spectral and biological studies. J Inorg Biochem 2019; 203:110944. [PMID: 31794895 DOI: 10.1016/j.jinorgbio.2019.110944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Bridge splitting reactions between [Pd(C2,N-dmba)(μ-X)]2 (dmba = N,N-dimethylbenzylamine; X = Cl, I, N3, NCO) and 2,6-lutidine (lut) in the 1:2 molar ratio at room temperature afforded cyclopalladated compounds of general formulae [Pd(C2,N-dmba)(X)(lut)] {X = Cl- (1), I-(2), NNN-(3), NCO-(4)}, which were characterized by elemental analyses and infrared (IR), 1H NMR spectroscopy. The molecular structures of all synthesized palladacycles have been solved by single-crystal X-ray crystallography. The cytotoxicity of the cyclopalladated compounds has been evaluated against a panel of murine {mammary carcinoma (4T1) and melanoma (B16F10-Nex2)} and human {melanoma (A2058, SK-MEL-110 and SK-MEL-5) tumor cell lines. All complexes were about 10 to 100-fold more active than cisplatin, depending on the tested tumor cell line. For comparison purposes, the cytotoxic effects of 1-4 towards human lung fibroblasts (MRC-5) have also been tested. The late apoptosis-inducing properties of 1-4 compounds in SK-MEL-5 cells were verified 24 h incubation using annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide (PI). The binding properties of the model compound 1 on human serum albumin (HSA) and calf thymus DNA (ct-DNA) have been studied using circular dichroism and fluorescence spectroscopy. Docking simulations have been carried out to gain more information about the interaction of the palladacycle and HSA. The ability of compounds 1-4 to inhibit the activity of cathepsin B and L has also been investigated in this work.
Collapse
Affiliation(s)
- Gislaine A da Cunha
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Ronan F F de Souza
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Renan L de Farias
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Mariete B Moreira
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Débora E S Silva
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Renan D Zanetti
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Daniel M Garcia
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Daniel G Spindola
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Luis F G Michelin
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Claudia Bincoletto
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Aline A de Souza
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Alyne A Antunes
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Wagner A de S Judice
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Renan C F Leitao
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), 13566-590 São Carlos, SP, Brazil
| | - Victor M Deflon
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), 13566-590 São Carlos, SP, Brazil
| | - Antônio E Mauro
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Adelino V G Netto
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil.
| |
Collapse
|
8
|
Organometallic binuclear Pd(II) complex: Synthesis, crystal structure and in-vitro antitumor activity study. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Orthopalladated acetophenone oxime compounds bearing thioamides as ligands: Synthesis, structure and cytotoxic evaluation. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
dos Santos IB, da Silva DAM, Paz FACR, Garcia DM, Carmona AK, Teixeira D, Longo-Maugéri IM, Katz S, Barbiéri CL. Leishmanicidal and Immunomodulatory Activities of the Palladacycle Complex DPPE 1.1, a Potential Candidate for Treatment of Cutaneous Leishmaniasis. Front Microbiol 2018; 9:1427. [PMID: 30018604 PMCID: PMC6038773 DOI: 10.3389/fmicb.2018.01427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023] Open
Abstract
The present study focused on the activity of the palladacycle complex DPPE 1.1 on Leishmania (Leishmania) amazonensis. Promastigotes of L. (L.) amazonensis were destroyed in vitro by nanomolar concentrations of DPPE 1.1, whereas intracellular amastigotes were killed at drug concentrations fivefold less toxic than those harmful to macrophages. L. (L.) amazonensis-infected BALB/c mice were treated by intralesional injection of DPPE 1.1. Animals treated with 3.5 and 7.0 mg/kg of DPPE 1.1 showed a significant decrease of foot lesion sizes and a parasite load reduction of 93 and 99%, respectively, when compared to untreated controls. Furthermore, DPPE 1.1 was non-toxic to treated animals. The cathepsin B activity of L. (L.) amazonensis amastigotes was inhibited by DPPE 1.1 as demonstrated spectrofluorometrically by use of a specific fluorogenic substrate. Analysis of T-cells populations in mice treated with DPPE 1.1 and untreated controls was performed by fluorescence-activated cell sorter (FACS). IFN-γ was measured in supernatants of lymphocytes from popliteal and inguinal lymph nodes isolated from treated and untreated mice and stimulated with L. (L.) amazonensis amastigotes extract and active TGF-β was evaluated in supernatants of foot lesions; both dosages were carried out by means of a double-sandwich ELISA assay. A significant increase of TCD4+ and TCD8+ lymphocytes and IFN-γ secretion was displayed in mice treated with DPPE 1.1 compared to untreated animals, whereas a significant reduction of active TGF-β was observed in treated mice. These findings open perspectives for further investment in DPPE 1.1 as an alternative option for the chemotherapy of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Isabela B. dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danielle A. M. da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabiana A. C. R. Paz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel M. Garcia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriana K. Carmona
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ieda M. Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clara L. Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Gong G, Cao Y, Wang F, Zhao G. Planar Chiral Ferrocene Cyclopalladated Derivatives Induce Caspase-Dependent Apoptosis and Antimetastasis in Cancer Cells. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guidong Gong
- College of Chemical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yuan Cao
- College of Chemical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Fei Wang
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR Chian
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
12
|
Mendes AN, Filgueiras LA, Siqueira MRP, Barbosa GM, Holandino C, de Lima Moreira D, Pinto JC, Nele M. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells. Int J Nanomedicine 2017; 12:8363-8373. [PMID: 29200848 PMCID: PMC5701609 DOI: 10.2147/ijn.s134756] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n-hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia.
Collapse
Affiliation(s)
| | | | - Monica Regina Pimentel Siqueira
- School of Pharmacy, Federal University of Rio Janeiro.,Natural Products Department, Institute of Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro
| | | | | | - Davyson de Lima Moreira
- Natural Products Department, Institute of Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro
| | - José Carlos Pinto
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro
| | - Marcio Nele
- School of Chemistry, Federal University of Rio Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Yan S, Jing L, Shuai Q. Mn(II) and Co(II) complexes functionalized by imidazolyl-ferrocene: Electrochemical property and different supramolecular architectures driven by intriguing hydrogen-bonded system. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Karami K, Lighvan ZM, Jahromi MD, Lipkowski J, Momtazi-borojeni AA. Synthesis, electronic structure and molecular docking of new organometallic palladium (II) complexes with intercalator ligands: The influence of bridged ligands on enhanced DNA/serum protein binding and in vitro antitumoral activity. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Alam MN, Huq F. Comprehensive review on tumour active palladium compounds and structure–activity relationships. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Gigli R, Pereira GJ, Antunes F, Bechara A, Garcia DM, Spindola DG, Jasiulionis MG, Caires AC, Smaili SS, Bincoletto C. The biphosphinic paladacycle complex induces melanoma cell death through lysosomal–mitochondrial axis modulation and impaired autophagy. Eur J Med Chem 2016; 107:245-54. [DOI: 10.1016/j.ejmech.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022]
|
17
|
Amantini C, Morelli MB, Santoni M, Soriani A, Cardinali C, Farfariello V, Eleuteri AM, Bonfili L, Mozzicafreddo M, Nabissi M, Cascinu S, Santoni G. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells. Oncoscience 2015; 2:395-409. [PMID: 26097873 PMCID: PMC4468325 DOI: 10.18632/oncoscience.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells.
Collapse
Affiliation(s)
- Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy ; Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Matteo Santoni
- Department of Medical Oncology, Polytechnic University of Marche, Ancona, Italy
| | | | - Claudio Cardinali
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy ; Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Stefano Cascinu
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
18
|
Albert J, Granell J, Qadir R, Quirante J, Calvis C, Messeguer R, Badía J, Baldomà L, Font-Bardia M, Calvet T. Cyclopalladated Benzophenone Imines: Synthesis, Antitumor Activity, Cell Accumulation, DNA Interaction, and Cathepsin B Inhibition. Organometallics 2014. [DOI: 10.1021/om501060f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Joan Albert
- Departament
de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut
de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Granell
- Departament
de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut
de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Romana Qadir
- Departament
de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Josefina Quirante
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- Institut
de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carme Calvis
- Biomed Division, LEITAT Technological Center, Parc Científic,
Edifici Hèlix, Baldiri Reixach 15-21, 08028 Barcelona, Spain
| | - Ramon Messeguer
- Biomed Division, LEITAT Technological Center, Parc Científic,
Edifici Hèlix, Baldiri Reixach 15-21, 08028 Barcelona, Spain
| | - Josefa Badía
- Departament
de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- Institut
de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Baldomà
- Departament
de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- Institut
de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Departament
de Crystallografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
- Unitat
de Difracció de Raigs-X, Centre Científic
i Tecnològic de la Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Teresa Calvet
- Departament
de Crystallografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Kapdi AR, Fairlamb IJS. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chem Soc Rev 2014; 43:4751-77. [PMID: 24723061 DOI: 10.1039/c4cs00063c] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much success has been achieved with platinum-based chemotherapeutic agents, i.e. through interactions with DNA. The long-term application of Pt complexes is thwarted by issues, leading scientists to examine other metals such as palladium which could exhibit complementary modes of action (given emphasis wherever known). Over the last 10 years several research groups have focused on the application of an eclectic array of palladium complexes (of the type PdX2L2, palladacycles and related structures) as potential anti-cancer agents. This review therefore provides readers with an up to date account of the advances that have taken place over the past several decades.
Collapse
Affiliation(s)
- Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, 302, Advance Centre, Nathalal Parekh Road, Matunga, Mumbai-400019, India.
| | | |
Collapse
|
20
|
Bechara A, Barbosa CMV, Paredes-Gamero EJ, Garcia DM, Silva LS, Matsuo AL, Nascimento FD, Rodrigues EG, Caires ACF, Smaili SS, Bincoletto C. Palladacycle (BPC) antitumour activity against resistant and metastatic cell lines: the relationship with cytosolic calcium mobilisation and cathepsin B activity. Eur J Med Chem 2014; 79:24-33. [PMID: 24709226 DOI: 10.1016/j.ejmech.2014.03.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The search for new compounds that induce p53-independent apoptosis is the focus of many studies in cancer biology because these compounds could be more specific and would overcome chemotherapy resistance. In this study, we evaluated the in vitro antitumour activity of a Biphosphinic Palladacycle Complex (BPC) and extended preclinical studies to an in vivo model. Saos-2 cells, a p53-null human osteosarcoma drug-resistant cell line, were treated with BPC in the presence or absence of a cathepsin B inhibitor and a calcium chelator (CA074 and BAPTA-AM, respectively), and several parameters related to apoptosis were evaluated. Preclinical studies were performed with mice that were intravenously inoculated with murine melanoma B16F10-Nex2 cells and treated intraperitoneally (i.p.) with BPC (8 mg/kg/day) for ten consecutive days, when lung metastatic nodules were counted. In vitro data show that BPC induces cell death in Saos-2 cells mainly by apoptosis, which was accompanied by the effector caspase-3 activation. These events are most likely related to Bax translocation and increased cytosolic calcium mobilisation, mainly from intracellular compartments. Lysosomal Membrane Permeabilisation (LMP) was also observed after 12 h of BPC exposure. Interestingly, BAPTA-AM and CA074 significantly decreased BPC cytotoxicity, suggesting that both calcium and cathepsin B are required for BPC antitumour activity. In vivo studies demonstrated that BPC protects mice against murine metastatic melanoma. In conclusion, BPC complex is an effective anticancer compound against metastatic murine melanoma. This complex is cytotoxic to the drug-resistant osteosarcoma Saos-2 human tumour cells by inducing apoptosis triggered by calcium signalling and a lysosomal-dependent pathway.
Collapse
Affiliation(s)
- Alexandre Bechara
- Departamento de Farmacologia, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Três de maio, 100 - 2nd Floor, Vila Clementino, São Paulo, SP, Brazil
| | - Christiano M V Barbosa
- Departamento de Biofísica, EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Biofísica, EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daniel M Garcia
- Departamento de Farmacologia, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Três de maio, 100 - 2nd Floor, Vila Clementino, São Paulo, SP, Brazil
| | - Luís S Silva
- Unidade de Oncologia Experimental (UNONEX), EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alisson L Matsuo
- Unidade de Oncologia Experimental (UNONEX), EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Elaine G Rodrigues
- Unidade de Oncologia Experimental (UNONEX), EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Antonio C F Caires
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Soraya S Smaili
- Departamento de Farmacologia, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Três de maio, 100 - 2nd Floor, Vila Clementino, São Paulo, SP, Brazil
| | - Claudia Bincoletto
- Departamento de Farmacologia, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Três de maio, 100 - 2nd Floor, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Campos JF, dos Santos UP, Macorini LFB, de Melo AMMF, Balestieri JBP, Paredes-Gamero EJ, Cardoso CAL, de Picoli Souza K, dos Santos EL. Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae). Food Chem Toxicol 2014; 65:374-80. [PMID: 24412556 DOI: 10.1016/j.fct.2014.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/07/2013] [Accepted: 01/02/2014] [Indexed: 12/23/2022]
Abstract
Propolis from stingless bees is well known for its biologic properties; however, few studies have demonstrated these effects. Therefore, this study aimed to investigate the chemical composition and antimicrobial, antioxidant and cytotoxic activities of propolis from the stingless bee Melipona orbignyi, found in Mato Grosso do Sul, Brazil. The chemical composition of the ethanol extract of propolis (EEP) indicated the presence of aromatic acids, phenolic compounds, alcohols, terpenes and sugars. The EEP was active against the bacterium Staphylococcus aureus and the fungus Candida albicans. The EEP showed antioxidant activity by scavenging free radicals and inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent. Additionally, EEP promoted cytotoxic activity and primarily necrotic death in K562 erythroleukemia cells. Taken together, these results indicate that propolis from M. orbignyi has therapeutic potential for the treatment and/or prevention of diseases related to microorganism activity, oxidative stress and tumor cell proliferation.
Collapse
Affiliation(s)
- Jaqueline Ferreira Campos
- School of Environmental and Biological Science, Federal University of Grande Dourados, Rodovia Dourados Ithaum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Uilson Pereira dos Santos
- School of Environmental and Biological Science, Federal University of Grande Dourados, Rodovia Dourados Ithaum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Luis Fernando Benitez Macorini
- School of Environmental and Biological Science, Federal University of Grande Dourados, Rodovia Dourados Ithaum, Km 12, 79804-970 Dourados, MS, Brazil
| | | | - José Benedito Perrella Balestieri
- School of Environmental and Biological Science, Federal University of Grande Dourados, Rodovia Dourados Ithaum, Km 12, 79804-970 Dourados, MS, Brazil
| | | | - Claudia Andrea Lima Cardoso
- Course of Chemistry, State University of Mato Grosso do Sul, Rodovia Dourados Ithaum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Kely de Picoli Souza
- School of Environmental and Biological Science, Federal University of Grande Dourados, Rodovia Dourados Ithaum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Edson Lucas dos Santos
- School of Environmental and Biological Science, Federal University of Grande Dourados, Rodovia Dourados Ithaum, Km 12, 79804-970 Dourados, MS, Brazil.
| |
Collapse
|
22
|
|
23
|
Synthesis, Characterization, X-ray Structure, DNA Cleavage, and Cytotoxic Activities of Palladium(II) Complexes of 4-Phenyl-3-thiosemicarbazide and Triphenylphosphane. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201201560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Lease N, Vasilevski V, Carreira M, de Almeida A, Sanaú M, Hirva P, Casini A, Contel M. Potential anticancer heterometallic Fe-Au and Fe-Pd agents: initial mechanistic insights. J Med Chem 2013; 56:5806-18. [PMID: 23786413 DOI: 10.1021/jm4007615] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenylphosphanes [{Cp-P(Ph2)═N-Ph}2Fe] (1), [{Cp-P(Ph2)═N-CH2-2-NC5H4}2Fe] (2), and [{Cp-P(Ph2)═N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)], and [{PdCl2}2(2)]. The complexes have been evaluated for their antiproliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a nontumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin.
Collapse
Affiliation(s)
- Nicholas Lease
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York , Brooklyn, New York 11210, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Moraes VWR, Caires ACF, Paredes-Gamero EJ, Rodrigues T. Organopalladium compound 7b targets mitochondrial thiols and induces caspase-dependent apoptosis in human myeloid leukemia cells. Cell Death Dis 2013; 4:e658. [PMID: 23744358 PMCID: PMC3702286 DOI: 10.1038/cddis.2013.190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 12/11/2022]
Abstract
The advances in the treatment of chronic myeloid leukemia (CML) during the last years were also accompanied by the development of evading strategies by tumor cells, resulting in chemotherapy resistance in some patients. Patented organopalladium compounds derived from the reaction of N,N-dimethyl-1-phenethylamine (dmpa) with [1,2-ethanebis(diphenylphosphine)] (dppe) exhibited a potent antitumor activity in vivo and in vitro in melanoma cells. We showed here that the cyclopalladated derivative [Pd2(R(+))C(2), N-dmpa)2(μ-dppe)Cl2], named compound 7b, was highly effective to promote cell death in the K562 human leukemia cells and its mechanisms of action were investigated. It was shown that compound 7b was able to promote exclusively apoptotic cell death in K562 cells associated to cytochrome c release and caspase 3 activation. This cytotoxic effect was not observed in normal peripheral mononuclear blood cells. The compound 7b-induced intrinsic apoptotic pathway was triggered by the protein thiol oxidation that resulted in the dissipation of the mitochondrial transmembrane potential. The preventive effect of the dithiothreitol on the compound 7b-induced cell death and all downstream events associated to apoptosis confirmed that death signal was elicited by the thiol oxidation. These findings contribute to the elucidation of the palladacycle 7b-induced cell death mechanism and present this compound as a promising drug in the CML antitumor chemotherapy.
Collapse
Affiliation(s)
- V W R Moraes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Paulo, Brazil
| | - A C F Caires
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, São Paulo, Brazil
| | - E J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - T Rodrigues
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Paulo, Brazil
| |
Collapse
|
26
|
Kornienko A, Mathieu V, Rastogi SK, Lefranc F, Kiss R. Therapeutic Agents Triggering Nonapoptotic Cancer Cell Death. J Med Chem 2013; 56:4823-39. [DOI: 10.1021/jm400136m] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University—San Marcos, San Marcos, Texas 78666,
United States
| | - Véronique Mathieu
- Laboratoire
de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, CP205/1,
Boulevard du Triomphe, Brussels, Belgium
| | - Shiva K. Rastogi
- Department of Chemistry and Biochemistry, Texas State University—San Marcos, San Marcos, Texas 78666,
United States
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, ULB, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Robert Kiss
- Laboratoire
de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, CP205/1,
Boulevard du Triomphe, Brussels, Belgium
| |
Collapse
|
27
|
Cyclopalladated benzophenone imines: Synthesis, cytotoxicity against human breast adenocarcinoma cell lines and DNA interaction. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2012.11.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Carreira M, Calvo-Sanjuán R, Sanaú M, Marzo I, Contel M. Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand as Potential Anticancer Agents. Organometallics 2012; 31:5772-5781. [PMID: 23066172 PMCID: PMC3466594 DOI: 10.1021/om3006239] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and characterization of a new water-soluble iminophosphorane ligand TPA=N-C(O)-2BrC(6)H(4) (C,N-IM; TPA = 1,3,5-triaza-7-phosphaadamantane) 1 is reported. Oxidative addition of 1 to Pd(2)(dba)(3) affords the orthopalladated dimer [Pd(μ-Br){C(6)H(4)(C(O)N=TPA-kC,N)-2}](2) (2) as a mixture of cis and trans isomers (1:1 molar ratio) where the iminophosphorane moeity behaves as a C,N-pincer ligand. By addition of different neutral or monoanionic ligands to 2, the bridging bromide can be cleaved and a variety of hydrophilic or water-soluble mononuclear organometallic palladium(II) complexes of the type [Pd{C(6)H(4)(C(O)N=TPA-kC,N)-2}(L-L)] (L-L = acac (3); S(2)CNMe(2) (4); 4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid disodium salt C(12)H(6)N(2)(C(6)H(4)SO(3)Na)(2) (5)); [Pd{C(6)H(4)(C(O)N=TPA-kC,N)-2}(L)Br] (L = P(mC(6)H(4)SO(3)Na)(3) (6); P(3-Pyridyl)(3) (7)) and, [Pd(C(6)H(4)(C(O)N=TPA)-2}(TPA)(2)Br] (8) are obtained as single isomers. All new complexes were tested as potential anticancer agents and their cytotoxicity properties were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells, normal T-lymphocytes (PBMC) and DU-145 human prostate cancer cells. Compounds [Pd(μ-Br){C(6)H(4)(C(O)N=TPA-kC,N)-2}](2) (2) and [Pd{C(6)H(4)(C(O)N=TPA-kC,N)-2}(acac)] 3 (which has been crystallographically characterized) display the higher cytotoxicity against the above mentioned cancer cell lines while being less toxic to normal T-lymphocytes (peripheral blood mononuclear cells: PBMC). In addition, 3 is very toxic to cisplatin resistant Jurkat shBak indicating a cell death pathway that may be different to that of cisplatin. The interaction of 2 and 3 with plasmid (pBR322) DNA is much weaker than that of cisplatin pointing to an alternative biomolecular target for these cytotoxic compounds. All the compounds show an interaction with human serum albumin (HSA) faster than that of cisplatin.
Collapse
Affiliation(s)
- Monica Carreira
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| | - Rubén Calvo-Sanjuán
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, 50009, Spain
| | - Mercedes Sanaú
- Departamento de Química Inorgánica, Universidad de Valencia, Burjassot, Valencia, 46100, Spain
| | - Isabel Marzo
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, 50009, Spain
| | - María Contel
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| |
Collapse
|
29
|
Paladi CDS, Pimentel IAS, Katz S, Cunha RLOR, Judice WADS, Caires ACF, Barbiéri CL. In vitro and in vivo activity of a palladacycle complex on Leishmania (Leishmania) amazonensis. PLoS Negl Trop Dis 2012; 6:e1626. [PMID: 22616018 PMCID: PMC3352823 DOI: 10.1371/journal.pntd.0001626] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Background Antitumor cyclopalladated complexes with low toxicity to laboratory animals have shown leishmanicidal effect. These findings stimulated us to test the leishmanicidal property of one palladacycle compound called DPPE 1.2 on Leishmania (Leishmania) amazonensis, an agent of simple and diffuse forms of cutaneous leishmaniasis in the Amazon region, Brazil. Methodology/Principal Findings Promastigotes of L. (L.) amazonensis and infected bone marrow-derived macrophages were treated with different concentrations of DPPE 1.2. In in vivo assays foot lesions of L. (L.) amazonensis-infected BALB/c mice were injected subcutaneously with DPPE 1.2 and control animals received either Glucantime or PBS. The effect of DPPE 1.2 on cathepsin B activity of L. (L.) amazonensis amastigotes was assayed spectrofluorometrically by use of fluorogenic substrates. The main findings were: 1) axenic L. (L.) amazonensis promastigotes were destroyed by nanomolar concentrations of DPPE 1.2 (IC50 = 2.13 nM); 2) intracellular parasites were killed by DPPE 1.2 (IC50 = 128.35 nM), and the drug displayed 10-fold less toxicity to macrophages (CC50 = 1,267 nM); 3) one month after intralesional injection of DPPE 1.2 infected BALB/c mice showed a significant decrease of foot lesion size and a reduction of 97% of parasite burdens when compared to controls that received PBS; 4) DPPE 1.2 inhibited the cysteine protease activity of L. (L.) amazonensis amastigotes and more significantly the cathepsin B activity. Conclusions/Significance The present results demonstrated that DPPE 1.2 can destroy L. (L.) amazonensis in vitro and in vivo at concentrations that are non toxic to the host. We believe these findings support the potential use of DPPE 1.2 as an alternative choice for the chemotherapy of leishmaniasis. Leishmaniasis is an important public health problem with an estimated annual incidence of 1.5 million of new human cases of cutaneous leishmaniasis and 500,000 of visceral leishmaniasis. Treatment of the diseases is limited by toxicity and parasite resistance to the drugs currently in use, validating the need to develop new leishmanicidal compounds. We evaluated the killing by the palladacycle complex DPPE 1.2 of Leishmania (Leishmania) amazonensis, an agent of human cutaneous leishmaniasis in the Amazon region, Brazil. DPPE 1.2 destroyed promastigotes of L. (L.) amazonensis in vitro at nanomolar concentrations, whereas intracellular amastigotes were killed at drug concentrations 10-fold less toxic than those displayed to macrophages. L. (L.) amazonensis-infected BALB/c mice treated by intralesional injection of DPPE 1.2 exhibited a significant decrease of foot lesion sizes and a 97% reduction of parasite burdens when compared to untreated controls. Additional experiments indicated the inhibition of the cathepsin B activity of L. (L.) amazonensis amastigotes by DPPE 1.2. Further studies are needed to explore the potential of DPPE 1.2 as an additional option for the chemotherapy of leishmaniasis.
Collapse
Affiliation(s)
- Carolina de Siqueira Paladi
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Rodrigo L. O. R. Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Wagner Alves de Souza Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Antonio C. F. Caires
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Clara Lúcia Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
30
|
Campanella NC, da Silva Demartini M, Torres C, de Almeida ET, Gouvêa CMCP. The cytotoxic and growth inhibitory effects of palladium(II) complexes on MDA-MB-435 cells. Genet Mol Biol 2012; 35:159-63. [PMID: 22481890 PMCID: PMC3313506 DOI: 10.1590/s1415-47572012005000016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 12/02/2011] [Indexed: 11/25/2022] Open
Abstract
The antitumorigenic potential of two palladium(II) complexes, [Pd(ca(2)-o-phen)Cl(2)] - C1 and [Pd(dmba)(dppp)Cl] - C2, was evaluated, using MDA-MB-435 cells, a human breast adenocarcinoma cell-line that does not express the estrogen receptor α (ER-). Growth inhibition and induced alterations in cell-morphology were analyzed. The sulforhodamine B test showed that, compared to control cells, both C1 and C2 significantly inhibited (p < 0.5) cell growth. The maximum effect with both was achieved with 1 μM complexes, after 24 h of treatment. No further cell-growth inhibition was achieved by increasing concentration or incubation time. Cell morphology was analyzed after staining with hematoxylin-eosin (HE). The morphological changes noted in the treated cells were cell rounding-up, shrinkage, nuclear condensation and reduction of cell length (p < 0.05), thereby indicating that both C1 and C2 are cytotoxic to breast adenocarcinoma cells. All together, there was every indication that, by decreasing cell growth and inducing morphological changes, the tested complexes are cytotoxic, hence their potentiality as promising candidates for antineoplastic drug development.
Collapse
Affiliation(s)
- Nathália Cristina Campanella
- Laboratório de Cultura de Células, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Mariana da Silva Demartini
- Laboratório Interdisciplinar de Química, Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Claudia Torres
- Laboratório Interdisciplinar de Química, Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Eduardo Tonon de Almeida
- Laboratório Interdisciplinar de Química, Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
31
|
Zhen X, Cen J, Li YM, Yan F, Guan T, Tang XZ. Cytotoxic effect and apoptotic mechanism of tanshinone A, a novel tanshinone derivative, on human erythroleukemic K562 cells. Eur J Pharmacol 2011; 667:129-35. [DOI: 10.1016/j.ejphar.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 05/22/2011] [Accepted: 06/06/2011] [Indexed: 12/21/2022]
|
32
|
|
33
|
Zhang H, Zhong C, Shi L, Guo Y, Fan Z. Granulysin induces cathepsin B release from lysosomes of target tumor cells to attack mitochondria through processing of bid leading to Necroptosis. THE JOURNAL OF IMMUNOLOGY 2009; 182:6993-7000. [PMID: 19454696 DOI: 10.4049/jimmunol.0802502] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Granulysin is a killer effector molecule localized in cytolytic granules of human NK and CTL cells. Granulysin exhibits broad antimicrobial activity and potent cytotoxic action against tumor cells. However, the molecular mechanism of granulysin-induced tumor lysis is poorly understood. In this study, we found that granulysin causes a novel cell death termed necroptosis. Granulysin can target lysosomes of target tumor cells and induce partial release of lysosomal contents into the cytosol. Relocalized lysosomal cathepsin B can process Bid to active tBid to cause cytochrome c and apoptosis-activating factor release from mitochondria. Cathepsin B silencing and Bid or Bax/Bak deficiency resists granulysin-induced cytochrome c and apoptosis-activating factor release and is less susceptible to cytolysis against target tumor cells.
Collapse
Affiliation(s)
- Honglian Zhang
- National Laboratory of Biomacromolecules and Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
34
|
Chitanda JM, Wilson Quail J, Foley SR. Mononuclear palladacycles of N,N′-diaryl-2-iminoisoindolines. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2008.12.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Oliveira CR, Barbosa CM, Nascimento FD, Lanetzki CS, Meneghin MB, Pereira FE, Paredes-Gamero EJ, Ferreira AT, Rodrigues T, Queiroz ML, Caires AC, Tersariol IL, Bincoletto C. Pre-clinical antitumour evaluation of Biphosphinic Palladacycle Complex in human leukaemia cells. Chem Biol Interact 2009; 177:181-9. [DOI: 10.1016/j.cbi.2008.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
36
|
Palladacycles catalyse the oxidation of critical thiols of the mitochondrial membrane proteins and lead to mitochondrial permeabilization and cytochrome c release associated with apoptosis. Biochem J 2008; 417:247-56. [DOI: 10.1042/bj20080972] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Permeabilization of the mitochondrial membrane has been extensively associated with necrotic and apoptotic cell death. Similarly to what had been previously observed for B16F10-Nex2 murine melanoma cells, PdC (palladacycle compounds) obtained from the reaction of dmpa (N,N-dimethyl-1-phenethylamine) with the dppe [1,2-ethanebis(diphenylphosphine)] were able to induce apoptosis in HTC (hepatoma, tissue culture) cells, presenting anticancer activity in vitro. To elucidate cell site-specific actions of dmpa:dppe that could respond to the induction of apoptosis in cancer cells in the present study, we investigated the effects of PdC on isolated RLM (rat liver mitochondria). Our results showed that these palladacycles are able to induce a Ca2+-independent mitochondrial swelling that was not inhibited by ADP, Mg2+ and antioxidants. However, the PdC-induced mitochondrial permeabilization was partially prevented by pre-incubation with CsA (cyclosporin A), NEM (N-ethylmaleimide) and bongkreic acid and totally prevented by DTT (dithiothreitol). A decrease in the content of reduced thiol groups of the mitochondrial membrane proteins was also observed, as well as the presence of membrane protein aggregates in SDS/PAGE without lipid and GSH oxidation. FTIR (Fourier-transform IR) analysis of PdC-treated RLM demonstrated the formation of disulfide bonds between critical thiols in mitochondrial membrane proteins. Associated with the mitochondrial permeabilization, PdC also induced the release of cytochrome c, which is sensitive to inhibition by DTT. Besides the contribution to clarify the pro-apoptotic mechanism of PdC, this study shows that the catalysis of specific protein thiol cross-linkage is enough to induce mitochondrial permeabilization and cytochrome c release.
Collapse
|
37
|
Conus S, Simon HU. Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol 2008; 76:1374-82. [PMID: 18762176 DOI: 10.1016/j.bcp.2008.07.041] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 11/18/2022]
Abstract
Apoptosis is a key mechanism in the build up and maintenance of both innate and adaptive immunity as well as in the regulation of cellular homeostasis in almost every organ and tissue. Central to the apoptotic process is a family of intracellular cysteine proteases with aspartate-specificity, called caspases. Nevertheless, there is growing evidence that other non-caspase proteases, in particular lysosomal cathepsins, can play an important role in the regulation of apoptosis. In this review, the players and the molecular mechanisms involved in the lysosomal apoptotic pathways will be discussed as well as the importance of these pathways in the immune system and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Sébastien Conus
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | | |
Collapse
|
38
|
Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 2008; 283:19140-50. [PMID: 18469004 DOI: 10.1074/jbc.m802513200] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
As a model for defining the role of lysosomal cathepsins in apoptosis, we characterized the action of the lysosomotropic agent LeuLeuOMe using distinct cellular models. LeuLeuOMe induces lysosomal membrane permeabilization, resulting in release of lysosomal cathepsins that cleave the proapoptotic Bcl-2 family member Bid and degrade the antiapoptotic member Bcl-2, Bcl-xL, or Mcl-1. The papain-like cysteine protease inhibitor E-64d largely prevented apoptosis, Bid cleavage, and Bcl-2/Bcl-xL/Mcl-1 degradation. The pancaspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone failed to prevent Bid cleavage and degradation of anti-apoptotic Bcl-2 homologues but substantially decreased cell death, suggesting that cathepsin-mediated apoptosis in these cellular models mostly follows a caspase-dependent pathway. Moreover, in vitro experiments showed that one or more of the cysteine cathepsins B, L, S, K, and H could cleave Bcl-2, Bcl-xL, Mcl-1, Bak, and BimEL, whereas no Bax cleavage was observed. On the basis of inhibitor studies, we demonstrate that lysosomal disruption triggered by LeuLeuOMe occurs before mitochondrial damage. We propose that degradation of anti-apoptotic Bcl-2 family members by lysosomal cathepsins synergizes with cathepsin-mediated activation of Bid to trigger a mitochondrial pathway to apoptosis. Moreover, XIAP (X-chromosome-linked inhibitor of apoptosis) was also found to be a target of cysteine cathepsins, suggesting that cathepsins can mediate caspase-dependent apoptosis also downstream of mitochondria.
Collapse
Affiliation(s)
- Gabriela Droga-Mazovec
- Department of Biochemistry, Molecular and Structural Biology, J. Stefan Institute, Sl-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chitanda JM, Prokopchuk DE, Quail JW, Foley SR. Synthesis of palladacycles employing iminoisoindolines as monoanionic bidentate ligands. Dalton Trans 2008:6023-9. [DOI: 10.1039/b806544f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Abstract
Apoptosis is the major mechanism by which eukaryotic organisms eliminate potentially dangerous, superfluous and damaged cells. Initially, nuclei and mitochondria were found to be the key organelles involved in the process. However, recent data suggest that lysosomes and the endoplasmic reticulum also play important roles in the process. A number of different stimuli were found to directly or indirectly target the lysosomal membrane, thereby inducing lysosomal permeabilization and the release of cysteine cathepsins and the aspartic protease cathepsin D into the cytosol. Once in the cytosol, cathepsins can trigger cell death by different mechanisms. Here we discuss the different signaling pathways used by lysosomal proteases to trigger apoptosis and their potential role in physiological processes.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|