1
|
Chen X, Li J, Liu P, Zhou Y, Zhang T, Li L, Shi J, Deng X, Sheng Y, Chen W, Wang D, Hu H. Inflammasome-Independent Mechanism of NLRP3 Is Critical for Platelet GPIb-IX Function and Thrombosis. Thromb Haemost 2024. [PMID: 38325399 DOI: 10.1055/a-2263-8372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Platelets link thrombosis and inflammation, but how platelets handle the endogenous intraplatelet inflammatory machinery is less well understood. NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) is the central component of the interleukin (IL)-1-producing inflammasome. Elucidating the cell type-specific mechanism of NLRP3 in platelets may improve our understanding of thrombotic diseases. METHODS Ferric chloride-induced mesenteric arteriole thrombosis models, tail bleeding models, and microfluidic whole-blood perfusion were used to study thrombosis and hemostasis. Additionally, we utilized aggregometry, flow cytometry, immunoprecipitation, and western blotting to investigate glycoprotein (GP)Ib-IX-mediated platelet function and signaling. RESULTS NLRP3-/- mice exhibited severely impaired thrombosis and hemostasis, whereas apoptosis-associated speck-like protein containing a CARD (ASC)-/-, caspase-1-/-, and Nlrp3 A350V/+ CrePF4 mice did not exhibit such changes. NLRP3-/- platelets exhibited reduced adhesion to injured vessel walls and collagen and impaired von Willebrand factor (vWF)-dependent translocation and rolling behavior. NLRP3 deficiency decreased botrocetin-induced platelet aggregation and the phosphorylation of key signaling molecules in the GPIb-IX pathway. Mechanistically, decreased cAMP/PKA activity led to reduced phosphorylation of NLRP3, thereby enabling the interaction between NLRP3 and filamin A. This interaction accelerated the dissociation of filamin A from GPIbα, which allowed a 14-3-3ζ-dependent increase in GPIb-IX affinity to vWF. Finally, platelet NLRP3 was found to largely regulate thrombotic disease models, such as models of stroke and deep vein thrombosis. CONCLUSION NLRP3 promoted the function of the major platelet adhesion receptor GPIb-IX without involving NLRP3 inflammasome assembly or IL-1β production.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Jingke Li
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Pu Liu
- Department of Pathology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yangfan Zhou
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Tongtong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li Li
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Jingqi Shi
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Xin Deng
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Yilin Sheng
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Wei Chen
- Department of Cell Biology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Di Wang
- Institute of Immunology, Department of Orthopaedic Surgery of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hu Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Qureshi AI, Akhtar IN, Ma X, Lodhi A, Bhatti I, Beall J, Broderick JP, Cassarly CN, Martin RH, Sharma R, Thakkar M, Suarez JI. Effect of Cilostazol in Animal Models of Cerebral Ischemia and Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Neurocrit Care 2023; 38:698-713. [PMID: 36450971 DOI: 10.1007/s12028-022-01637-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cilostazol, a phosphodiesterase III inhibitor, appears to be a promising agent for preventing cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Here, the authors perform a systematic review and meta-analysis to quantitatively assess the effects of cilostazol on brain structural and functional outcomes in animal models of cerebral ischemia and subarachnoid hemorrhage-induced cerebral vasospasm. METHODS By using the PRISMA guidelines, a search of the PubMed, Scopus, and Web of Science was conducted to identify relevant studies. Study quality of each included study for both systematic reviews were scored by using an adapted 15-item checklist from the Collaborative Approach to Meta-Analysis of Animal Data from Experimental Studies. We calculated a standardized mean difference as effect size for each comparison. For each outcome, comparisons were combined by using random-effects modeling to account for heterogeneity, with a restricted maximum likelihood estimate of between-study variance. RESULTS A total of 22 (median [Q1, Q3] quality score of 7 [5, 8]) and 6 (median [Q1, Q3] quality score of 6 [6, 6]) studies were identified for cerebral ischemia and subarachnoid hemorrhage-induced cerebral vasospasm, respectively. Cilostazol significantly reduced the infarct volume in cerebral ischemia models with a pooled standardized mean difference estimate of - 0.88 (95% confidence interval [CI] [- 1.07 to - 0.70], p < 0.0001). Cilostazol significantly reduced neurofunctional deficits in cerebral ischemia models with a pooled standardized mean difference estimate of - 0.66 (95% CI [- 1.06 to - 0.28], p < 0.0001). Cilostazol significantly improved the basilar artery diameter in subarachnoid hemorrhage-induced cerebral vasospasm with a pooled standardized mean difference estimate of 2.30 (95% CI [0.94 to 3.67], p = 0.001). Cilostazol also significantly improved the basilar artery cross-section area with a pooled standardized mean estimate of 1.88 (95% CI [0.33 to 3.43], p < 0.05). Overall, there was between-study heterogeneity and asymmetry in the funnel plot observed in all comparisons. CONCLUSIONS Published animal data support the overall efficacy of cilostazol in reducing infarct volume and neurofunctional deficits in cerebral ischemia models and cerebral vasospasm in subarachnoid hemorrhage models.
Collapse
Affiliation(s)
- Adnan I Qureshi
- Department of Neurology, University of Missouri, Columbia, MO, USA.
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA.
| | - Iqra N Akhtar
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Xiaoyu Ma
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Abdullah Lodhi
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Ibrahim Bhatti
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Jonathan Beall
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | | | - Christy N Cassarly
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Renee H Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rishi Sharma
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Mahesh Thakkar
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhang W, Matsukane R, Egashira N, Tsuchiya Y, Fu R, Yamamoto S, Hirota T, Ieiri I. Neuroprotective effects of ibudilast against tacrolimus induced neurotoxicity. Toxicol Appl Pharmacol 2022; 449:116112. [DOI: 10.1016/j.taap.2022.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
|
4
|
Zhong K, Wang RX, Qian XD, Yu P, Zhu XY, Zhang Q, Ye YL. Neuroprotective effects of saffron on the late cerebral ischemia injury through inhibiting astrogliosis and glial scar formation in rats. Biomed Pharmacother 2020; 126:110041. [PMID: 32113053 DOI: 10.1016/j.biopha.2020.110041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
This study is to explore the neuroprotective effects and involved glial scar of saffron (Crocus sativus L.) on the late cerebral ischemia in rats. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in Sprague Dawley rats that were randomly divided into sham group, MCAO group, edaravone group (as a positive control) and saffron groups (saffron extract 30, 100, 300 mg/kg). Saffron was administered orally at 2 h at the first day and once daily from day 2 to 42 after ischemia. Behavioral changes were detected from day 43 to 46 after ischemia to evaluate the effects of saffron. Infarct volume, survival neuron density, activated astrocyte, and the thickness of glial scar were also detected. GFAP, neurocan, phosphocan, neurofilament expressions and inflammatory cytokine contents were detected by Western-blotting and ELISA methods, respectively. Saffron improved the body weight loss, neurological deficit and spontaneous activity. It also ameliorated anxiety-like state and cognitive dysfunction, which were detected by elevated plus maze (EPM), marble burying test (MBT) and novel object recognition test (NORT). Toluidine blue staining found that saffron treatment decreased the infarct volume and increased the neuron density in cortex in the ischemic boundary zone. The activated astrocyte number and the thickness of glial scar in the penumbra zone reduced after saffron treatment. Additionally, saffron decreased the contents of IL-6 and IL-1β, increased the content of IL-10 in the ischemic boundary zone. GFAP, neurocan, and phosphocan expressions in ischemic boundary zone and ischemic core zone all decreased after saffron treatment. Saffron exerted neuroprotective effects on late cerebral ischemia, associating with attenuating astrogliosis and glial scar formation after ischemic injury.
Collapse
Affiliation(s)
- Kai Zhong
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Rou-Xin Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Ping Yu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin-Ying Zhu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Lu Ye
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Bieber M, Schuhmann MK, Volz J, Kumar GJ, Vaidya JR, Nieswandt B, Pham M, Stoll G, Kleinschnitz C, Kraft P. Description of a Novel Phosphodiesterase (PDE)-3 Inhibitor Protecting Mice From Ischemic Stroke Independent From Platelet Function. Stroke 2019; 50:478-486. [PMID: 30566040 PMCID: PMC6358218 DOI: 10.1161/strokeaha.118.023664] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— Acetylsalicylic acid and clopidogrel are the 2 main antithrombotic drugs for secondary prevention in patients with ischemic stroke (IS) without indication for anticoagulation. Because of their limited efficacy and potential side effects, novel antiplatelet agents are urgently needed. Cilostazol, a specific phosphodiesterase (PDE)-3 inhibitor, protected from IS in clinical studies comprising mainly Asian populations. Nevertheless, the detailed mechanistic role of PDE-3 inhibitors in IS pathophysiology is hardly understood. In this project, we analyzed the efficacy and pathophysiologic mechanisms of a novel and only recently described PDE-3 inhibitor (substance V) in a mouse model of focal cerebral ischemia. Methods— Focal cerebral ischemia was induced by transient middle cerebral artery occlusion in 6- to 8-week-old male C57Bl/6 wild-type mice receiving substance V or vehicle 1 hour after ischemia induction. Infarct volumes and functional outcomes were assessed between day 1 and day 7, and findings were validated by magnetic resonance imaging. Blood-brain barrier damage, as well as the extent of local inflammatory response and cell death, was determined. Results— Inhibition of PDE-3 by pharmacological blockade with substance V significantly reduced infarct volumes and improved neurological outcome on day 1 and 7 after experimental cerebral ischemia. Reduced blood-brain barrier damage, attenuated brain tissue inflammation, and decreased local cell death could be identified as potential mechanisms. PDE-3 inhibitor treatment did neither increase the number of intracerebral hemorrhages nor affect platelet function. Conclusions— The novel PDE-3 inhibitor substance V protected mice from IS independent from platelet function. Pharmaceutical inactivation of PDE-3 might become a promising therapeutic approach to combat IS via inhibition of thromboinflammatory mechanisms and stabilization of the blood-brain barrier.
Collapse
Affiliation(s)
- Michael Bieber
- From the Department of Neurology (M.B., M.K.S., G.S., C.K., P.K.), University Hospital Würzburg, Germany
| | - Michael K Schuhmann
- From the Department of Neurology (M.B., M.K.S., G.S., C.K., P.K.), University Hospital Würzburg, Germany
| | - Julia Volz
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Germany (J.V., B.N.)
| | - Gangasani Jagadeesh Kumar
- Fluro Agro Chemicals (Organic Chemistry II) Division (G.J.K., J.R.V.) and AcSIR (G.J.K., J.R.V.), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Jayathirtha Rao Vaidya
- Fluro Agro Chemicals (Organic Chemistry II) Division (G.J.K., J.R.V.) and AcSIR (G.J.K., J.R.V.), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Germany (J.V., B.N.)
| | - Mirko Pham
- Department of Neuroradiology (M.P.), University Hospital Würzburg, Germany
| | - Guido Stoll
- From the Department of Neurology (M.B., M.K.S., G.S., C.K., P.K.), University Hospital Würzburg, Germany
| | - Christoph Kleinschnitz
- From the Department of Neurology (M.B., M.K.S., G.S., C.K., P.K.), University Hospital Würzburg, Germany.,Department of Neurology, University Hospital Essen, Germany (C.K.)
| | - Peter Kraft
- From the Department of Neurology (M.B., M.K.S., G.S., C.K., P.K.), University Hospital Würzburg, Germany.,Department of Neurology, Klinikum Main-Spessart, Lohr, Germany (P.K.)
| |
Collapse
|
6
|
PI3K/Akt/NF-κB signaling pathway regulates behaviors in adolescent female rats following with neonatal maternal deprivation and chronic mild stress. Behav Brain Res 2019; 362:199-207. [PMID: 30630016 DOI: 10.1016/j.bbr.2019.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
The early-life aversive experiences are associated with the increased risk for adolescent neuropsychiatric disorders and neuroinflammation. So, we used neonatal maternal deprivation (NMD) and chronic mild stress (CMS) to build adolescent depression model and investigate the role of microglia activation, PI3K/Akt/NF-κB pathway in female rats. Pups in NMD group were separated from mothers for 3 h each day from postnatal day (PND) 2 to PND 21 and rats in CMS group were subjected to one mild stressor each day from PND 22 to PND 42. Sucrose preference test (SPT), open field test (OFT), novel objective recognition test (NORT), Elevated-plus maze (EPM), marble burying test (MBT) and forced swimming test (FST) were performed from PND 42 to PND 50. Iba-1, pPI3K/PI3K, pAkt/Akt, and NF-κB expressions in the prefrontal cortex (PFC) and hippocampus (HIP) were detected by Western-Blot. Contents of IL-6, IL-1β and TNF-α were detected by ELISA method. It was found NMD + CMS increased the immobility time, buried marble number, inflammatory cytokines release and reduced the sucrose consumption ratio, time ratio and distance ratio in open arm, crossing times, rearing times. Furthermore, it decreased the discrimination ratio (DR) and discrimination index (DI) in T2 phase. NMD + CMS upregulated the expression of Iba-1, pPI3K/PI3K, pacts/Akt, and NF-κB in PFC and HIP. NMD or CMS solely didn't affect all these behaviors in rats. Sertraline treatment reversed these changes after NMD + CMS. In view of our findings we propose the NMD + CMS procedure as a potentially useful animal model to analyze developmental emotional behaviors and cognitive dysfunction in adolescent female rats, which may be related with microglial activation and PI3k/Akt/NF-κB pathway upregulation.
Collapse
|
7
|
El-Abhar H, Abd El Fattah MA, Wadie W, El-Tanbouly DM. Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington's disease. PLoS One 2018; 13:e0203837. [PMID: 30260985 PMCID: PMC6160003 DOI: 10.1371/journal.pone.0203837] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Countless neurodegenerative diseases are associated with perverse multiple targets of cyclic nucleotide signalling, hastening neuronal death. Cilostazol, a phosphodiesterase-III inhibitor, exerts neuroprotective effects against sundry models of neurotoxicity, however, its role against Huntington's disease (HD) has not yet been tackled. Hence, its modulatory effect on several signalling pathways using the 3-nitropropionic acid (3-NP) model was conducted. Animals were injected with 3-NP (10 mg/kg/day, i.p) for two successive weeks with or without the administration of cilostazol (100 mg/kg/day, p.o.). Contrary to the 3-NP effects, cilostazol largely preserved striatal dopaminergic neurons, improved motor coordination, and enhanced the immunohistochemical reaction of tyrosine hydroxylase enzyme. The anti-inflammatory effect of cilostazol was documented by the pronounced reduction of the toll like receptor-4 (TLR-4) protein expression and the inflammatory cytokine IL-6, but with a marked elevation in IL-10 striatal contents. As a consequence, cilostazol reduced IL-6 downstream signal, where it promoted the level of suppressor of cytokine signalling 3 (SOCS3), while abated the phosphorylation of Janus Kinase 2 (JAK-2) and Signal transducers and activators of transcription 3 (STAT-3). Phosphorylation of the protein kinase B/glycogen synthase kinase-3β/cAMP response element binding protein (Akt/GSK-3β/CREB) cue is another signalling pathway that was modulated by cilostazol to further signify its anti-inflammatory and antiapoptotic capacities. The latter was associated with a reduction in the caspase-3 expression assessed by immunohistochemical assay. In conclusion the present study provided a new insight into the possible mechanisms by which cilostazol possesses neuroprotective properties. These intersecting mechanisms involve the interference between TLR-4, IL-6-IL-10/JAK-2/STAT-3/SOCS-3, and Akt/GSK-3β/CREB signalling pathways.
Collapse
Affiliation(s)
- Hanan El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail:
| | - Mai A. Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M. El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Jin WN, Shi SXY, Li Z, Li M, Wood K, Gonzales RJ, Liu Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab 2017; 37:2224-2236. [PMID: 28273719 PMCID: PMC5444553 DOI: 10.1177/0271678x17694185] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 11/15/2022]
Abstract
Brain ischemia elicits microglial activation and microglia survival depend on signaling through colony-stimulating factor 1 receptor (CSF1R). Although depletion of microglia has been linked to worse stroke outcomes, it remains unclear to what extent and by what mechanisms activated microglia influence ischemia-induced inflammation and injury in the brain. Using a mouse model of transient focal cerebral ischemia and reperfusion, we demonstrated that depletion of microglia via administration of the dual CSF1R/c-Kit inhibitor PLX3397 exacerbates neurodeficits and brain infarction. Depletion of microglia augmented the production of inflammatory mediators, leukocyte infiltration, and cell death during brain ischemia. Of note, microglial depletion-induced exacerbation of stroke severity did not solely depend on lymphocytes and monocytes. Importantly, depletion of microglia dramatically augmented the production of inflammatory mediators by astrocytes after brain ischemia . In vitro studies reveal that microglia restricted ischemia-induced astrocyte response and provided neuroprotective effects. Our findings suggest that neuroprotective effects of microglia may result, in part, from its inhibitory action on astrocyte response after ischemia.
Collapse
Affiliation(s)
- Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Samuel Xiang-Yu Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
9
|
Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 2016; 114:E396-E405. [PMID: 27994144 DOI: 10.1073/pnas.1612930114] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15-expressing transgenic mouse (GFAP-IL-15tg) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8+ T and natural killer (NK) cells was augmented in these GFAP-IL-15tg mice after brain ischemia. Of note, depletion of CD8+ T or NK cells attenuated ischemic brain injury in GFAP-IL-15tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8+ T and NK cells in GFAP-IL-15tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8+ T and NK cell-mediated immunity.
Collapse
|
10
|
Liu B, Li F, Shi J, Yang D, Deng Y, Gong Q. Gastrodin ameliorates subacute phase cerebral ischemia‑reperfusion injury by inhibiting inflammation and apoptosis in rats. Mol Med Rep 2016; 14:4144-4152. [PMID: 27748849 PMCID: PMC5101922 DOI: 10.3892/mmr.2016.5785] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/26/2016] [Indexed: 11/08/2022] Open
Abstract
Gastrodin (GAS), which is extracted from the Chinese herbal medicine Gastrodia elata Blume, has long been used to improve stroke, epilepsy, dizziness and dementia. However, the effects and underlying mechanisms of GAS on subacute phase cerebral ischemia-reperfusion (I/R) injury remain unknown. The aim of the present study was to investigate the effects and mechanisms of GAS on cerebral I/R injury in rats. The rats were pretreated with GAS by gavage for 7 days followed by I/R surgery, and were then treated with GAS for 7 days after I/R surgery. Neurological deficits were assessed on days 1, 3 and 7 post-cerebral I/R injury. 2,3,5-Triphenyltetrazolium chloride staining was using to measure the infarct volume; morphological alterations were observed by hematoxylin and eosin staining under an optical microscope; apoptosis in the hippocampus and cortex was observed by terminal deoxynucleotidyl transferase dUTP nick end labeling staining; and the level of mRNA and protein expression was tested by reverse transcription-quantitative polymerase chain reation and western blot analysis, respectively. GAS markedly attenuated I/R-induced disability and histological damage, alleviated neuronal apoptosis, and reduced the mRNA and protein expression levels of inflammatory and proapoptotic factors, including interleukin-1β, cyclooxygenase-2, inducible nitric oxide synthase and cleaved caspase-3. These findings suggested that GAS may ameliorate subacute phase cerebral I/R injury by inhibiting inflammation and apoptosis in rats; therefore, GAS may be considered a potential candidate for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Fei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Danli Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yuanyuan Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
11
|
Zhang J, Zou H, Zhang Q, Wang L, Lei J, Wang Y, Ouyang J, Zhang Y, Zhao H. Effects of Xiaoshuan enteric-coated capsule on neurovascular functions assessed by quantitative multiparametric MRI in a rat model of permanent cerebral ischemia. Altern Ther Health Med 2016; 16:198. [PMID: 27391841 PMCID: PMC4938911 DOI: 10.1186/s12906-016-1184-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
Background Buyang Huanwu Decoction (BYHWD) is a Traditional Chinese Medicine (TCM) formula for treating stroke-induced disability. Xiaoshuan enteric-coated capsule (XSECC), derived from the formula BYHWD, is a drug approved by the China Food and Drug Administration (CFDA) for stroke management. To further investigate the potential protective effects of XSECC on neurovascular functions, we endeavour to monitor the neurovascular functions using multimodal magnetic resonance imaging (MRI) and evaluated histopathological changes of neurovascular unit (NVU) after stroke. Methods Ischemic stroke was induced by permanent middle cerebral artery occlusion (pMCAO). XSECC (420 mg/kg) was orally administered 2 h after stroke and daily thereafter. T2-weighted imaging (T2WI), T2 relaxometry mapping and diffusion tensor imaging (DTI) were used to measure cerebral infarct volume, edema and white matter fiber integrity, respectively. Neurochemical metabolite levels were monitored by 1H-magnetic resonance spectroscopy (1H-MRS). Arterial spin labeling (ASL) – cerebral blood flow (CBF) measurements and structural magnetic resonance angiography (MRA) images provided real-time and dynamic information about vascular hemodynamic dysfunction on the 3rd, 7th and 14th days after pMCAO. At the last imaging time point, immunohistochemistry, immunofluorescence as well as transmission electron microscopy (TEM) were used to test the microscopic and ultrastructural changes of NVU. Results T2WI, T2 relaxometry mapping and Fractional anisotropy (FA) in DTI showed that XSECC significantly reduced cerebral infarct volume, relieved edema and alleviated nerve fiber injuries, respectively. 1H-MRS provided information about improvement of neuronal/glial metabolism after XSECC treatment. Moreover, ASL – CBF measurements combined with MRA showed that XSECC significantly increased CBF and vascular signal strength and alleviated ischemia-induced morphological changes of arteries in ischemic hemisphere within 14 days after stroke. In addition, neuron specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), CD34 staining and TEM detection indicated that XSECC not only ameliorated neuronal injury, but also reduced endothelial damage and inhibited astrocyte proliferation. Conclusions Our results suggested that XSECC has multi-target neurovascular protective effects on ischemic stroke, which may be closely correlated with the improvement of cerebral blood supply and neuronal/glial metabolism.
Collapse
|
12
|
Zhou Y, Zhang XM, Ma A, Zhang YL, Chen YY, Zhou H, Li WJ, Jin X. Orally administrated pterostilbene attenuates acute cerebral ischemia–reperfusion injury in a dose- and time-dependent manner in mice. Pharmacol Biochem Behav 2015; 135:199-209. [DOI: 10.1016/j.pbb.2015.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 01/28/2023]
|
13
|
Kumar A, Kumar A, Jaggi AS, Singh N. Efficacy of Cilostazol a selective phosphodiesterase-3 inhibitor in rat model of Streptozotocin diabetes induced vascular dementia. Pharmacol Biochem Behav 2015; 135:20-30. [DOI: 10.1016/j.pbb.2015.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 01/02/2023]
|
14
|
Neuroprotective effects of cilostazol are mediated by multiple mechanisms in a mouse model of permanent focal ischemia. Brain Res 2015; 1602:53-61. [DOI: 10.1016/j.brainres.2015.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/26/2023]
|
15
|
Cheng CY, Lin JG, Tang NY, Kao ST, Hsieh CL. Electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints protects rats against subacute-phase cerebral ischemia-reperfusion injuries by reducing S100B-mediated neurotoxicity. PLoS One 2014; 9:e91426. [PMID: 24626220 PMCID: PMC3953388 DOI: 10.1371/journal.pone.0091426] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/09/2014] [Indexed: 11/30/2022] Open
Abstract
Objectives The purpose of this study was to evaluate the effects of electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints (EA at acupoints) during the subacute phase of cerebral ischemia-reperfusion (I/R) injury and to establish the neuroprotective mechanisms involved in the modulation of the S100B-mediated signaling pathway. Methods The experimental rats were subjected to middle cerebral artery occlusion (MCAo) for 15 min followed by 1 d or 7 d of reperfusion. EA at acupoints was applied 1 d postreperfusion then once daily for 6 consecutive days. Results We observed that 15 min of MCAo caused delayed infarct expansion 7 d after reperfusion. EA at acupoints significantly reduced the cerebral infarct and neurological deficit scores. EA at acupoints also downregulated the expression of the glial fibrillary acidic protein (GFAP), S100B, nuclear factor-κB (NF-κB; p50), and tumor necrosis factor-α (TNF-α), and reduced the level of inducible nitric oxide synthase (iNOS) and apoptosis in the ischemic cortical penumbra 7 d after reperfusion. Western blot analysis showed that EA at acupoints significantly downregulated the cytosolic expression of phospho-p38 MAP kinase (p-p38 MAP kinase), tumor necrosis factor receptor type 1-associated death domain (TRADD), Fas-associated death domain (FADD), cleaved caspase-8, and cleaved caspase-3 in the ischemic cortical penumbra 7 d after reperfusion. EA at acupoints significantly reduced the numbers of GFAP/S100B and S100B/nitrotyrosine double-labeled cells. Conclusion Our study results indicate that EA at acupoints initiated 1 d postreperfusion effectively downregulates astrocytic S100B expression to provide neuroprotection against delayed infarct expansion by modulating p38 MAP kinase-mediated NF-κB expression. These effects subsequently reduce oxidative/nitrative stress and inhibit the TNF-α/TRADD/FADD/cleaved caspase-8/cleaved caspase-3 apoptotic pathway in the ischemic cortical penumbra 7 d after reperfusion.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Acupuncture Research Center, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Shin KH, Yoon G, Yoon IS, Park JW. Preparation and evaluation of oral controlled-release cilostazol formulation: pharmacokinetics and antithrombotic efficacy in dogs and healthy male Korean participants. J Pharm Pharmacol 2014; 66:961-74. [DOI: 10.1111/jphp.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/12/2014] [Indexed: 01/11/2023]
Abstract
Abstract
Objectives
To prepare oral controlled-release cilostazol formulations and evaluate their pharmacokinetics and pharmacodynamics in dogs and humans compared with a commercial twice-daily immediate-release formulation (Pletal), thereby showing the potential for the development of an improved once-daily cilostazol formulation.
Methods
Six different controlled-release preparations were formulated using a micronized cilostazol, solubilizer/absorption enhancer and erodible hydrogel. In-vitro drug release profiles were tailored by varying hydrogel viscosity. Pharmacokinetics and pharmacodynamic (antithrombotic) efficacy were evaluated in beagle dog model of arterial thrombosis. Finally, their pharmacokinetics and pharmacodynamics were also evaluated in healthy human volunteers after single and multiple oral administrations.
Key findings
Hydrogel viscosity-dependent sustained drug release profiles were observed with zero-order release kinetics during 8–12 h. In dogs and humans, compared with Pletal, prolonged drug absorption profiles were observed in the two controlled-release formulations studied. In dogs, the controlled-release formulations showed greater antithrombotic efficacy than twice-daily Pletal. In humans, the antithrombotic efficacy of the selected once-daily cilostazol formulation was equivalent to that of twice-daily Pletal after single and multiple administrations.
Conclusions
The prepared oral controlled-release cilostazol formulation may provide prolonged drug absorption and sufficient therapeutic efficacy, potentially serving as an oral once-daily cilostazol formulation to improve patient compliance.
Collapse
Affiliation(s)
- Kwang-Hyun Shin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
- R&D Team, Pacificpharma Co., Yongin-si, Republic of Korea
| | - Goo Yoon
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| |
Collapse
|
17
|
Biscetti F, Pecorini G, Straface G, Arena V, Stigliano E, Rutella S, Locatelli F, Angelini F, Ghirlanda G, Flex A. Cilostazol promotes angiogenesis after peripheral ischemia through a VEGF-dependent mechanism. Int J Cardiol 2013; 167:910-6. [DOI: 10.1016/j.ijcard.2012.03.103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 11/27/2022]
|
18
|
Nishino A, Umegaki M, Fujinaka T, Yoshimine T. Cilostazol attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Neurol Res 2013; 32:873-8. [DOI: 10.1179/016164109x12608733393791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Aggravated inflammation and increased expression of cysteinyl leukotriene receptors in the brain after focal cerebral ischemia in AQP4-deficient mice. Neurosci Bull 2012; 28:680-92. [PMID: 23132680 DOI: 10.1007/s12264-012-1281-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/06/2012] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE Aquaporin-4 (AQP4), the main water channel protein in the brain, plays a critical role in water homeostasis and brain edema. Here, we investigated its role in the inflammatory responses after focal cerebral ischemia. METHODS In AQP4-knockout (KO) and wild-type mice, focal cerebral ischemia was induced by 30 min of middle cerebral arterial occlusion (MCAO). Ischemic neuronal injury and cellular inflammatory responses, as well as the expression and localization of cysteinyl leukotriene CysLT(2) and CysLT(1) receptors, were determined at 24 and 72 h after MCAO. RESULTS AQP4-KO mice showed more neuronal loss, more severe microglial activation and neutrophil infiltration, but less astrocyte proliferation in the brain after MCAO than wild-type mice. In addition, the protein levels of both CysLT(1) and CysLT(2) receptors were up-regulated in the ischemic brain, and the up-regulation was more pronounced in AQP4-KO mice. The CysLT(1) and CysLT(2) receptors were primarily localized in neurons, microglia and neutrophils; those localized in microglia and neutrophils were enhanced in AQP4-KO mice. CONCLUSION AQP4 may play an inhibitory role in postischemic inflammation.
Collapse
|
20
|
Shi WZ, Qi LL, Fang SH, Lu YB, Zhang WP, Wei EQ. Aggravated chronic brain injury after focal cerebral ischemia in aquaporin-4-deficient mice. Neurosci Lett 2012; 520:121-5. [PMID: 22634625 DOI: 10.1016/j.neulet.2012.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
Abstract
The water channel aquaporin-4 (AQP4) is important in brain water homeostasis, and is also involved in astrocyte growth and glial scar formation. It has been reported that AQP4 deficiency attenuates acute ischemic brain injury as a result of reducing cytotoxic edema. Here, we determined whether AQP4 deficiency influences chronic brain injury after focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion (MCAO). AQP4(-/-) mice exhibited a lower survival rate and less body weight gain than wild-type mice, but their neurological deficits were similar to wild-type mice during 35 days after MCAO. At 35 days after MCAO, AQP4(-/-) mice showed more severe brain atrophy and cavity formation in the ischemic hemisphere as well as more neuronal loss in the hippocampus. Furthermore, astrocyte proliferation and glial scar formation were impaired in AQP4(-/-) mice. Therefore, AQP4 deficiency complicated by astrocyte dysfunction aggravates chronic brain injury after focal cerebral ischemia, suggesting that AQP4 may be important in the chronic phase of the post-ischemic recovery process.
Collapse
Affiliation(s)
- Wen-Zhen Shi
- Institute of Neuroscience Research and Department of Pharmacology, School of Medicine, Zhejiang University, 388 Yu Hang Tang Road, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
21
|
Barreto G, White RE, Ouyang Y, Xu L, Giffard RG. Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:164-73. [PMID: 21521168 DOI: 10.2174/187152411796011303] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
In the past two decades, over 1000 clinical trials have failed to demonstrate a benefit in treating stroke, with the exception of thrombolytics. Although many targets have been pursued, including antioxidants, calcium channel blockers, glutamate receptor blockers, and neurotrophic factors, often the focus has been on neuronal mechanisms of injury. Broader attention to loss and dysfunction of non-neuronal cell types is now required to increase the chance of success. Of the several glial cell types, this review will focus on astrocytes. Astrocytes are the most abundant cell type in the higher mammalian nervous system, and they play key roles in normal CNS physiology and in central nervous system injury and pathology. In the setting of ischemia astrocytes perform multiple functions, some beneficial and some potentially detrimental, making them excellent candidates as therapeutic targets to improve outcome following stroke and in other central nervous system injuries. The older neurocentric view of the central nervous system has changed radically with the growing understanding of the many essential functions of astrocytes. These include K+ buffering, glutamate clearance, brain antioxidant defense, close metabolic coupling with neurons, and modulation of neuronal excitability. In this review, we will focus on those functions of astrocytes that can both protect and endanger neurons, and discuss how manipulating these functions provides a novel and important strategy to enhance neuronal survival and improve outcome following cerebral ischemia.
Collapse
Affiliation(s)
- George Barreto
- Department of Anesthesia, Stanford University School of Medicine, S272, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
22
|
Zhou Y, Yang L, Ma A, Zhang X, Li W, Yang W, Chen C, Jin X. Orally administered oleoylethanolamide protects mice from focal cerebral ischemic injury by activating peroxisome proliferator-activated receptor α. Neuropharmacology 2012; 63:242-9. [PMID: 22480617 DOI: 10.1016/j.neuropharm.2012.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 12/21/2022]
Abstract
Oleoylethanolamide (OEA) is a high-affinity agonist of peroxisome proliferator-activated receptor α (PPARα) which may act as an endogenous neuroprotective factor. However, it is not clear whether orally administered OEA is effective against ischemic brain injury. In our study, transient focal cerebral ischemia was induced by middle cerebral artery occlusion for 90 min followed by reperfusion. To evaluate its preventive effects, OEA (10, 20 or 40 mg/kg, ig) was administered for 3 days before ischemia. To evaluate its therapeutic effects, OEA (40 mg/kg, ig) was administered at 0.5 or 1h before reperfusion or at 0 or 1h after reperfusion. In some experiments, the PPARα antagonist MK886 (10mg/kg, ig) was administered 0.5h before OEA. Neurological deficit score, infarct volume and brain edema degree were determined at 24h after reperfusion. Blood-brain barrier (BBB) disruption was evaluated by Evans blue (EB) leakage at 6h after reperfusion. Real-time RT-PCR and western blot were performed to detect PPARα mRNA and protein expression. Oral OEA pretreatment improved neurological dysfunction reduced infarct volume and alleviated brain edema in a dose-dependent manner; the most effective dose was 40 mg/kg. The therapeutic time is within 1h after reperfusion. OEA also increased PPARα mRNA and protein expression in the ischemic brain. The PPARα antagonist MK886 abolished the protective effects of OEA. In conclusion, our results indicate that orally administered OEA protects against acute cerebral ischemic injury in mice, at least in part by activating PPARα.
Collapse
Affiliation(s)
- Yu Zhou
- Faculty of Basic Medicine, Medical College, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ye Y, Huang C, Jiang L, Shen X, Zhu S, Rao Y, Wang J, Zhang Q. Huanglian-Jie-Du-Tang Extract Protects against Chronic Brain Injury after Focal Cerebral Ischemia via Hypoxia-Inducible-Factor-1α-Regulated Vascular Endothelial Growth Factor Signaling in Mice. Biol Pharm Bull 2012; 35:355-61. [DOI: 10.1248/bpb.35.355] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yilu Ye
- Department of Pharmacology, Zhejiang Medical College
| | - Chunyan Huang
- Department of Pharmacology, Zhejiang Medical College
- School of Pharmacy, Wenzhou Medical College
| | - Lili Jiang
- Department of Pharmacology, Zhejiang Medical College
- School of Pharmacy, Wenzhou Medical College
| | - Xiangdi Shen
- Department of Pharmacology, Zhejiang Medical College
| | - Shanyong Zhu
- Department of Pharmacology, Zhejiang Medical College
| | - Yan Rao
- Department of Pharmacology, Zhejiang Medical College
| | - Jue Wang
- Department of Pharmacology, Zhejiang Medical College
| | - Qi Zhang
- Department of Pharmacology, Zhejiang Medical College
| |
Collapse
|
24
|
Kim JH, Park SH, Bae SS, Hong KW, Kim YD, Park KP, Choi BT, Shin HK. Combinatorial effect of probucol and cilostazol in focal ischemic mice with hypercholesterolemia. J Pharmacol Exp Ther 2011; 338:451-7. [PMID: 21546537 DOI: 10.1124/jpet.111.181180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypercholesterolemia may increase stroke risk by accelerating atherosclerosis, narrowing the luminal diameter in cerebral vessels, and disrupting both vascular endothelial and smooth muscle function. In the present study, we investigated the beneficial effects of combinatorial therapy with probucol and cilostazol on focal cerebral ischemia with hypercholesterolemia. Apolipoprotein E (ApoE) knockout (KO) mice were fed a high-fat diet with or without 0.5% probucol and/or 0.2% cilostazol for 10 weeks. Probucol alone and probucol and cilostazol significantly decreased total, low-density lipoprotein, and high-density lipoprotein cholesterol, whereas cilostazol did not affect the plasma cholesterol levels in ApoE KO mice. Administration of probucol alone and cilostazol alone significantly decreased atherosclerotic lesion area in the aorta, with a significant decrease evident using combinatorial administration. Middle cerebral artery occlusion resulted in significantly larger infarct volumes in ApoE KO mice fed 10 weeks of high-fat diet compared with those in ApoE KO mice fed a regular diet. The infarct volume was reduced significantly using probucol alone or cilostazol alone and even was reduced significantly by their combinatorial administration. Consistent with a larger infarct size, the combinatorial therapy prominently improved neurological function. The combinatorial administration increased cerebral blood flow during ischemia. Expression of endothelial nitric oxide synthase and adiponectin in the cortex were decreased by high-fat diet but were elevated by combinatorial treatment. Adiponectin expression colocalized within the cerebral vascular endothelium. The data suggest that the combination of probucol and cilostazol prevents cerebrovascular damage in focal cerebral ischemic mice with hypercholesterolemia by up-regulation of endothelial nitric oxide synthase and adiponectin.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Saklani R, Jaggi A, Singh N. Pharmacological preconditioning by milrinone: Memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice. Arch Pharm Res 2010; 33:1049-57. [DOI: 10.1007/s12272-010-0711-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/05/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
26
|
Gil C, Campillo NE, Perez DI, Martinez A. PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.10.1127] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Calabrese EJ. Drug therapies for stroke and traumatic brain injury often display U-shaped dose responses: occurrence, mechanisms, and clinical implications. Crit Rev Toxicol 2008; 38:557-77. [PMID: 18615310 DOI: 10.1080/10408440802014287] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This article explores the occurrence of U-shaped dose responses induced by neuroprotective agents in animal stroke and traumatic brain injury (TBI) screening/preclinical studies. The assessment was stimulated by suggestions that U-shaped dose responses may be common for neuroprotective agents in stroke and TBI models, and its lack of both recognition and understanding may be a factor contributing to the failure of many promising drugs to be protective in clinical trials. Over 30 agents with neuroprotective properties in animal stroke/TBI models were identified that act via U-shaped dose responses in a broad range of experimental protocols. These findings suggest that U-shaped dose responses in animal stroke/TBI models may be a general occurrence and have significant implications for drug discovery, drug development, and clinical practice.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, School of Public Health and Health Sciences, Environmental Health Sciences Division, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
28
|
Lee JH, Park SY, Shin HK, Kim CD, Lee WS, Hong KW. Protective effects of cilostazol against transient focal cerebral ischemia and chronic cerebral hypoperfusion injury. CNS Neurosci Ther 2008; 14:143-52. [PMID: 18482026 DOI: 10.1111/j.1527-3458.2008.00042.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cilostazol increases intracellular cyclic adenosine monophosphate (cyclic AMP) levels by inhibiting type III phosphodiesterase. It was approved by the Food and Drug Administration for the treatment of intermittent claudication. Its principal actions include inhibition of platelet aggregation, antithrombotic action in cerebral ischemia, and vasodilation, mediated by increased cyclic AMP levels. In a multicenter, randomized, placebo-controlled, double-blind clinical trial, cilostazol has been shown to protect patients from recurrent cerebral infarction. It has been recently suggested that cilastozol could be useful in the treatment of transient focal cerebral ischemic injury. Beneficial effects of cilostazol in cerebral ischemic infarction and edema formation has been confirmed in rats by the magnetic resonance imaging (MRI). The preventive effect was ascribed to cAMP-dependent protein kinase (PKA)-coupled maxi-K channel activation with additional antioxidant and poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitory actions. Most recently, cilostazol has been shown to prevent vacuolation and rarefaction in the white matter of the rats subjected to chronic cerebral hypoperfusion in association with suppression of astrocyte and microglial activation. Taken together, recent experimental studies with cilostazol showed promising results in cerebral ischemia and chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Pharmacology, College of Medicine, Pusan National University, Busan, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Fukasawa M, Nishida H, Sato T, Miyazaki M, Nakaya H. 6-[4-(1-Cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2-(1H)quinolinone (Cilostazol), a Phosphodiesterase Type 3 Inhibitor, Reduces Infarct Size via Activation of Mitochondrial Ca2+-Activated K+ Channels in Rabbit Hearts. J Pharmacol Exp Ther 2008; 326:100-4. [DOI: 10.1124/jpet.108.136218] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
PDE inhibitors in psychiatry--future options for dementia, depression and schizophrenia? Drug Discov Today 2007; 12:870-8. [PMID: 17933689 DOI: 10.1016/j.drudis.2007.07.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/21/2007] [Accepted: 07/23/2007] [Indexed: 02/07/2023]
Abstract
Phosphodiesterases are key enzymes in cellular signalling pathways. They degrade cyclic nucleotides and their inhibition via specific inhibitors offers unique 'receptor-independent' opportunities to modify cellular function. An increasing number of in vitro and animal model studies point to innovative treatment options in neurology and psychiatry. This review critiques a selection of recent studies and developments with a focus on dementia/neuroprotection, depression and schizophrenia. Despite increased interest among the clinical neurosciences, there are still no approved PDE inhibitors for clinical use in neurology or psychiatry. Adverse effects are a major impediment for clinical approval. It is therefore necessary to search for more specific inhibitors at the level of different PDE sub-families and isoforms.
Collapse
|
31
|
Mocanu MM, Shakkottai P, Yellon DM. The power of drug co-administration: smaller doses better outcomes. Cardiovasc Drugs Ther 2007; 21:319-20. [PMID: 17786547 DOI: 10.1007/s10557-007-6045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|