1
|
Silvestro S, Raffaele I, Mazzon E. Modulating Stress Proteins in Response to Therapeutic Interventions for Parkinson's Disease. Int J Mol Sci 2023; 24:16233. [PMID: 38003423 PMCID: PMC10671288 DOI: 10.3390/ijms242216233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.)
| |
Collapse
|
2
|
Shang J, Ma S, Zang C, Bao X, Wang Y, Zhang D. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson's disease treatment. Acta Pharm Sin B 2021; 11:1213-1226. [PMID: 34094829 PMCID: PMC8148066 DOI: 10.1016/j.apsb.2021.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
The gut microbiota plays an important role in regulating the pharmacokinetics and pharmacodynamics of many drugs. FLZ, a novel squamosamide derivative, has been shown to have neuroprotective effects on experimental Parkinson's disease (PD) models. FLZ is under phase Ⅰ clinical trial now, while the underlying mechanisms contributing to the absorption of FLZ are still not fully elucidated. Due to the main metabolite of FLZ was abundant in feces but rare in urine and bile of mice, we focused on the gut microbiota to address how FLZ was metabolized and absorbed. In vitro studies revealed that FLZ could be exclusively metabolized to its major metabolite M1 by the lanosterol 14 alpha-demethylase (CYP51) in the gut microbiota, but was almost not metabolized by any other metabolism-related organs, such as liver, kidney, and small intestine. M1 was quickly absorbed into the blood and then remethylated to FLZ by catechol O-methyltransferase (COMT). Notably, dysbacteriosis reduced the therapeutic efficacy of FLZ on the PD mouse model by inhibiting its absorption. The results show that the gut microbiota mediate the absorption of FLZ through a FLZ-M1-FLZ circulation. Our research elucidates the vital role of the gut microbiota in the absorption of FLZ and provides a theoretical basis for clinical pharmacokinetic studies and clinical application of FLZ in the treatment of PD.
Collapse
Affiliation(s)
| | | | | | - Xiuqi Bao
- Corresponding authors. Tel./fax: +86 10 63165203.
| | - Yan Wang
- Corresponding authors. Tel./fax: +86 10 63165203.
| | - Dan Zhang
- Corresponding authors. Tel./fax: +86 10 63165203.
| |
Collapse
|
3
|
Yang X, Li Y, Chen L, Xu M, Wu J, Zhang P, Nel D, Sun B. Protective effect of hydroxysafflor yellow A on dopaminergic neurons against 6-hydroxydopamine, activating anti-apoptotic and anti-neuroinflammatory pathways. PHARMACEUTICAL BIOLOGY 2020; 58:686-694. [PMID: 32658590 PMCID: PMC7470140 DOI: 10.1080/13880209.2020.1784237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Hydroxysafflor yellow A (HSYA) has been shown to have neuroprotective effects in cerebral infarction. However, its underlying roles in apoptosis and inflammation in Parkinson's disease (PD) are unknown. OBJECTIVE The present study investigates the effects and underlying mechanisms of HSYA on dopaminergic (DA) neurodegeneration, inflammation, and apoptosis. MATERIALS AND METHODS The PD model was established by 2 μL of 6-hyroxydopamine (6-OHDA) (3 μg/μL) striatal injection in C57BL/6J mice with different doses of HSYA (2, 4, or 8 mg/kg). In vitro, after being treated with HSYA for 1 h, SH-SY5Y cells were exposed to 6-OHDA for 24 h before analysis. Expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and corpus striatum (STR) was evaluated by immunohistochemistry (IHC) and western blot. In addition, apoptosis-related and inflammatory proteins were examined by western blot. RESULTS Administration of HSYA significantly reduced the Apomorphine (APO)-induced rotation, decreased from 122.5 ± 15.1 (6-OHDA group) to 47.2 ± 14.3 (8 mg/kg HSYA group). HSYA partially restored a deficit in the SN and STR of PD mice brains in TH. Furthermore, western blot analysis revealed that HSYA reduced inflammatory proteins, including iNOS, COX-2 and NF-κB and attenuated the elevation of DA neuronal apoptosis observed in PD. In vitro assays showed that HSYA reduced the levels of p-p38 and p-JNK and increased that of p-ERK in 6-OHDA-leisoned SH-SY5Y cells. CONCLUSIONS These findings indicate that HSYA protects against 6-OHDA induced DA neurodegeneration partly by regulating the MAPK inflammatory signalling pathway and apoptosis which highlight its therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Yun Li
- Department of Traditional Chinese Medicine, Dezhou People’s Hospital, Dezhou, P.R. China
| | - Lin Chen
- Department of Pharmacology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Mingguo Xu
- Department of Pediatric Cardiology, Shenzhen Children’s Hospital, Shenzhen, P.R. China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Peng Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Deon Nel
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Baozhu Sun
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| |
Collapse
|
4
|
A UHPLC-MS/MS method to determine FLZ major active metabolites in human plasma: application to a pharmacokinetic study. Bioanalysis 2020; 12:583-596. [PMID: 32469612 DOI: 10.4155/bio-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: FLZ, a novel promising dopamine neuroprotective agent, is designed to treat Parkinson's disease. F7G and F21G are FLZ major active Phase II metabolites whose exposure are nearly 100-times higher than FLZ, may chiefly produce effectiveness in human. Measurement of F7G and F21G in plasma samples is critical for investigating its pharmacokinetics in clinical studies. Methodology & results: Plasma samples were extracted by SPE method and then analyzed by a newly established ultra-UHPLC-MS/MS method. Conclusion: For the first time, a reliable and robust bioanalytical method for F7G and F21G detection was successfully applied in a first-in-human study.
Collapse
|
5
|
Xu Y, Gao YW, Yang Y. SC79 protects dopaminergic neurons from oxidative stress. Oncotarget 2018; 9:12639-12648. [PMID: 29560097 PMCID: PMC5849161 DOI: 10.18632/oncotarget.23538] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress could lead to dopaminergic neuronal cell death. SC79 is a novel, selective and highly-efficient Akt activator. The current study tested its effect in dopaminergic neurons with oxidative stress. In both SH-SY5Y cells and primary murine dopaminergic neurons, pre-treatment with SC79 largely inhibited hydrogen peroxide (H2O2)-induced cell viability reduction, apoptosis and necrosis. SC79 activated Akt in the neuronal cells, which was required for its neuroprotection against H2O2. Inhibition of Akt activation (by MK-2206 or AT7867) or expression (by targeted short hairpin RNA) largely attenuated SC79-induced neuroprotection. Further, CRISPR-Cas9-mediated Akt1 knockout in SH-SY5Y cells abolished SC79-induced neuroprotective function against H2O2. Reversely, forced activation of Akt by the constitutively-active Akt1 mimicked SC79-induced anti-H2O2 activity. Together, we conclude that activation of Akt by SC79 protects dopaminergic neurons from H2O2.
Collapse
Affiliation(s)
- Yan Xu
- Geriatrics Department, The Second Xiang Ya Hospital of Central South University, Changsha, China
| | - Ya-Wen Gao
- Geriatrics Department, The Second Xiang Ya Hospital of Central South University, Changsha, China
| | - Yu Yang
- Geriatrics Department, The Second Xiang Ya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Weng Y, Lin J, Liu H, Wu H, Yan Z, Zhao J. AMPK activation by Tanshinone IIA protects neuronal cells from oxygen-glucose deprivation. Oncotarget 2017; 9:4511-4521. [PMID: 29435120 PMCID: PMC5796991 DOI: 10.18632/oncotarget.23391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
The current study tested the potential neuroprotective function of Tanshinone IIA (ThIIA) in neuronal cells with oxygen-glucose deprivation (ODG) and re-oxygenation (OGDR). In SH-SY5Y neuronal cells and primary murine cortical neurons, ThIIA pre-treatment attenuated OGDR-induced viability reduction and apoptosis. Further, OGDR-induced mitochondrial depolarization, reactive oxygen species production, lipid peroxidation and DNA damages in neuronal cells were significantly attenuated by ThIIA. ThIIA activated AMP-activated protein kinase (AMPK) signaling, which was essential for neuroprotection against OGDR. AMPKα1 knockdown or complete knockout in SH-SY5Y cells abolished ThIIA-induced AMPK activation and neuroprotection against OGDR. Further studies found that ThIIA up-regulated microRNA-135b to downregulate the AMPK phosphatase Ppm1e. Notably, knockdown of Ppm1e by targeted shRNA or forced microRNA-135b expression also activated AMPK and protected SH-SY5Y cells from OGDR. Together, AMPK activation by ThIIA protects neuronal cells from OGDR. microRNA-135b-mediated silence of Ppm1e could be the key mechanism of AMPK activation by ThIIA.
Collapse
Affiliation(s)
- Yingfeng Weng
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jixian Lin
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Liu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Wu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhimin Yan
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Safari M, Sameni HR, Badban L, Bandegi AR, Vafaei AA, Pour AR, Ghahari L. Protective Effects of Water Extract of Propolis on Dopaminergic Neurons, Brain
Derived Neurotrophic Factor and Stress Oxidative Factors in the Rat Model of
Parkinson’s Disease. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.300.308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Kong X, Zhang L, Hua X, Ma X. Squamosamide Derivative FLZ Protects Pancreatic β-Cells from Glucotoxicity by Stimulating Akt-FOXO1 Pathway. J Diabetes Res 2015; 2015:803986. [PMID: 26167511 PMCID: PMC4488173 DOI: 10.1155/2015/803986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/29/2015] [Indexed: 01/17/2023] Open
Abstract
Chronic hyperglycemia increases apoptosis and reduces glucose-stimulated insulin secretion. Although protective agents have been searched extensively, none has been found so far. Here we tested FLZ, a synthetic derivative of squamosamide from a Chinese herb, as a potential candidate for antiglucotoxicity in INS-1E cells and mouse islets. Chronic culture of β-cells in 30 mM glucose caused progressive reduction of cell viability, accompanied with increased apoptosis and reduced insulin secretion. These effects on apoptosis and insulin were reversed by FLZ in a dose-dependent manner. FLZ treatment also increased forkhead box O1 protein phosphorylation and reduced its nuclear location. On the contrary, FLZ increased pancreatic and duodenal homeobox-1 expression and its nuclear localization, an effect mediated by increased p-Akt. Consistently, Akt selective inhibitor MK-2206 completely abolished antiglucotoxicity effect of FLZ. Furthermore, FLZ treatment increased cytosolic ATP/ADP ratio. Taken together, our results suggest that FLZ could be a potential therapeutic agent to treat the hyperglycemia-induced β-cell failure.
Collapse
Affiliation(s)
- Xiangchen Kong
- Diabetes Center, Shenzhen University, Shenzhen 518060, China
| | - Longmei Zhang
- Diabetes Center, Shenzhen University, Shenzhen 518060, China
| | - Xianxin Hua
- Diabetes Center, Shenzhen University, Shenzhen 518060, China
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaosong Ma
- Diabetes Center, Shenzhen University, Shenzhen 518060, China
- *Xiaosong Ma:
| |
Collapse
|
9
|
Zhou C, Zhou Y, Wang J, Zhu Y, Deng J, Wang MW. Emergence of Chinese drug discovery research: impact of hit and lead identification. ACTA ACUST UNITED AC 2014; 20:318-29. [PMID: 25520370 DOI: 10.1177/1087057114561950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of hits and the generation of viable leads is an early and yet crucial step in drug discovery. In the West, the main players of drug discovery are pharmaceutical and biotechnology companies, while in China, academic institutions remain central in the field of drug discovery. There has been a tremendous amount of investment from the public as well as private sectors to support infrastructure buildup and expertise consolidation relative to drug discovery and development in the past two decades. A large-scale compound library has been established in China, and a series of high-impact discoveries of lead compounds have been made by integrating information obtained from different technology-based strategies. Natural products are a major source in China's drug discovery efforts. Knowledge has been enhanced via disruptive breakthroughs such as the discovery of Boc5 as a nonpeptidic agonist of glucagon-like peptide 1 receptor (GLP-1R), one of the class B G protein-coupled receptors (GPCRs). Most of the original hit identification and lead generation were carried out by academic institutions, including universities and specialized research institutes. The Chinese pharmaceutical industry is gradually transforming itself from manufacturing low-end generics and active pharmaceutical ingredients to inventing new drugs.
Collapse
Affiliation(s)
- Caihong Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jia Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yue Zhu
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiejie Deng
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ming-Wei Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Squamosamide derivative FLZ protects retinal pigment epithelium cells from oxidative stress through activation of epidermal growth factor receptor (EGFR)-AKT signaling. Int J Mol Sci 2014; 15:18762-75. [PMID: 25329617 PMCID: PMC4227245 DOI: 10.3390/ijms151018762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS)-mediated retinal pigment epithelium (RPE) cell apoptosis is attributed to age-related macular degeneration (AMD) pathogenesis. FLZ, a novel synthetic squamosamide derivative from a Chinese herb, Annona glabra, has displayed significant cyto-protective activity. In the current study, we explored the pro-survival effect of FLZ in oxidative stressed-RPE cells and studied the underlying signaling mechanisms. Our results showed that FLZ attenuated hydrogen peroxide (H2O2)-induced viability decrease and apoptosis in the RPE cell line (ARPE-19 cells) and in primary mouse RPE cells. Western blotting results showed that FLZ activated AKT signaling in RPE cells. The AKT-specific inhibitor, MK-2206, the phosphoinositide 3-kinase (PI3K)/AKT pan inhibitor, wortmannin, and AKT1-shRNA (short hairpin RNA) depletion almost abolished FLZ-mediated pro-survival/anti-apoptosis activity. We discovered that epidermal growth factor receptor (EGFR) trans-activation mediated FLZ-induced AKT activation and the pro-survival effect in RPE cells, and the anti-apoptosis effect of FLZ against H2O2 was inhibited by the EGFR inhibitor, PD153035, or by EGFR shRNA-knockdown. In conclusion, FLZ protects RPE cells from oxidative stress through activation of EGFR-AKT signaling, and our results suggest that FLZ might have therapeutic values for AMD.
Collapse
|
11
|
Canal M, Romaní-Aumedes J, Martín-Flores N, Pérez-Fernández V, Malagelada C. RTP801/REDD1: a stress coping regulator that turns into a troublemaker in neurodegenerative disorders. Front Cell Neurosci 2014; 8:313. [PMID: 25324725 PMCID: PMC4183088 DOI: 10.3389/fncel.2014.00313] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
Mechanistic target of Rapamycin (mTOR) pathway regulates essential processes directed to preserve cellular homeostasis, such as cell growth, proliferation, survival, protein synthesis and autophagy. Importantly, mTOR pathway deregulation has been related to many diseases. Indeed, it has become a hallmark in neurodegenerative disorders, since a fine-tuned regulation of mTOR activities is crucial for neuron function and survival. RTP801/REDD1/Dig2 has become one of the most puzzling regulators of mTOR. Although the mechanism is not completely understood, RTP801 inactivates mTOR and Akt via the tuberous sclerosis complex (TSC1/TSC2) in many cellular contexts. Intriguingly, RTP801 protects dividing cells from hypoxia or H2O2-induced apoptosis, while it sensitizes differentiated cells to stress. Based on experimental models of Parkinson’s disease (PD), it has been proposed that at early stages of the disease, stress-induced RTP801 upregulation contributes to mTOR repression, in an attempt to maintain cell function and viability. However, if RTP801 elevation is sustained, it leads to neuron cell death by a sequential inhibition of mTOR and Akt. Here, we will review RTP801 deregulation of mTOR in a context of PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mercè Canal
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona Barcelona, Catalonia, Spain
| | - Joan Romaní-Aumedes
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona Barcelona, Catalonia, Spain
| | - Núria Martín-Flores
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona Barcelona, Catalonia, Spain
| | - Víctor Pérez-Fernández
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona Barcelona, Catalonia, Spain
| | - Cristina Malagelada
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Arodin L, Miranda-Vizuete A, Swoboda P, Fernandes AP. Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death. Free Radic Biol Med 2014; 73:328-36. [PMID: 24863694 DOI: 10.1016/j.freeradbiomed.2014.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/02/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
Abstract
Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that oxidative stress plays an important role in the pathogenic mechanism. The thioredoxin (Trx) and glutaredoxin (Grx) systems are two central systems upholding the sulfhydryl homeostasis by reducing disulfides and mixed disulfides within the cell and thereby protecting against oxidative stress. By examining the expression of redox proteins in human postmortem PD brains, we found the levels of Trx1 and thioredoxin reductase 1 (TrxR1) to be significantly decreased. The human neuroblastoma cell line SH-SY5Y and the nematode Caenorhabditis elegans were used as model systems to explore the potential protective effects of the redox proteins against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 6-OHDA is highly prone to oxidation, resulting in the formation of the quinone of 6-OHDA, a highly reactive species and powerful neurotoxin. Treatment of human cells with 6-OHDA resulted in an increased expression of Trx1, TrxR1, Grx1, and Grx2, and small interfering RNA for these genes significantly increased the cytotoxic effects exerted by the 6-OHDA neurotoxin. Evaluation of the dopaminergic neurons in C. elegans revealed that nematodes lacking trxr-1 were significantly more sensitive to 6-OHDA, with significantly increased neuronal degradation. Importantly, both the Trx and the Grx systems were also found to directly mediate reduction of the 6-OHDA-quinone in vitro and thus render its cytotoxic effects. In conclusion, our results suggest that the two redox systems are important for neuronal survival in dopamine-induced cell death.
Collapse
Affiliation(s)
- Lisa Arodin
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge, Sweden
| | - Aristi P Fernandes
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Liu Q, Hou J, Chen X, Liu G, Zhang D, Sun H, Zhang J. P-glycoprotein mediated efflux limits the transport of the novel anti-Parkinson's disease candidate drug FLZ across the physiological and PD pathological in vitro BBB models. PLoS One 2014; 9:e102442. [PMID: 25036090 PMCID: PMC4103815 DOI: 10.1371/journal.pone.0102442] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 06/19/2014] [Indexed: 12/12/2022] Open
Abstract
FLZ, a novel anti-Parkinson's disease (PD) candidate drug, has shown poor blood-brain barrier (BBB) penetration based on the pharmacokinetic study using rat brain. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two important transporters obstructing substrates entry into the CNS as well as in relation to PD neuropathology. However, it is unclear whether P-gp and BCRP are involved in low BBB permeability of FLZ and what the differences of FLZ brain penetration are between normal and Parkinson's conditions. For this purpose, in vitro BBB models mimicking physiological and PD pathological-related BBB properties were constructed by C6 astroglial cells co-cultured with primary normal or PD rat cerebral microvessel endothelial cells (rCMECs) and in vitro permeability experiments of FLZ were carried out. High transepithelial electrical resistance (TEER) and low permeability for sodium fluorescein (NaF) confirmed the BBB functionality of the two models. Significantly greater expressions of P-gp and BCRP were detected in PD rCMECs associated with the lower in vitro BBB permeability of FLZ in pathological BBB model compared with physiological model. In transport studies only P-gp blocker effectively inhibited the efflux of FLZ, which was consistent with the in vivo permeability data. This result was also confirmed by ATPase assays, suggesting FLZ is a substrate for P-gp but not BCRP. The present study first established in vitro BBB models reproducing PD-related changes of BBB functions in vivo and demonstrated that poor brain penetration of FLZ and low BBB permeability were due to the P-gp transport.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jinfeng Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gengtao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (HS) (HS); (JZ) (JZ)
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (HS) (HS); (JZ) (JZ)
| |
Collapse
|
14
|
Hou J, Liu Q, Li Y, Sun H, Zhang J. An in vivo microdialysis study of FLZ penetration through the blood-brain barrier in normal and 6-hydroxydopamine induced Parkinson's disease model rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:850493. [PMID: 25045708 PMCID: PMC4090575 DOI: 10.1155/2014/850493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/18/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
Abstract
FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) is a novel synthetic squamosamide derivative and a potential anti-Parkinson's disease (PD) agent. The objective of the present study was to investigate the penetration of free FLZ across the BBB and the effects of P-gp inhibition on FLZ transport in normal and 6-hydroxydopamine (6-OHDA) induced PD model rats. In vivo microdialysis was used to collect FLZ containing brain and blood dialysates following intravenous (i.v.) drug administration either with or without pretreatment with the specific P-gp inhibitor, zosuquidar trihydrochloride (zosuquidar·3HCl). A sensitive, rapid, and reliable ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed and validated to quantitate free FLZ levels in the dialysates. No significant differences were observed in the brain/blood FLZ area under the concentration-time curve (AUC) ratio between normal and PD model rats. However, pretreatment with zosuquidar·3HCl markedly increased the AUC ratio in both rat models. In addition, FLZ penetration was similar in zosuquidar·3HCl-pretreated normal and PD rats. These results suggest that P-gp inhibition increases BBB permeability to FLZ, thereby supporting the hypothesis that P-gp normally restricts FLZ transfer to the brain. These findings could provide reference data for future clinical trials and may aid investigation of the BBB permeability of other CNS-active substances.
Collapse
Affiliation(s)
- Jinfeng Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yingfei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Bao XQ, Kong XC, Kong LB, Wu LY, Sun H, Zhang D. Squamosamide derivative FLZ protected dopaminergic neuron by activating Akt signaling pathway in 6-OHDA-induced in vivo and in vitro Parkinson's disease models. Brain Res 2014; 1547:49-57. [DOI: 10.1016/j.brainres.2013.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/30/2022]
|
16
|
Tai W, Ye X, Bao X, Zhao B, Wang X, Zhang D. Inhibition of Src tyrosine kinase activity by squamosamide derivative FLZ attenuates neuroinflammation in both in vivo and in vitro Parkinson's disease models. Neuropharmacology 2013; 75:201-12. [DOI: 10.1016/j.neuropharm.2013.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/26/2013] [Accepted: 07/16/2013] [Indexed: 11/26/2022]
|
17
|
Ye X, Tai W, Bao X, Chen X, Zhang D. FLZ inhibited γ-secretase selectively and decreased Aβ mitochondrial production in APP-SH-SY5Y cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 387:75-85. [PMID: 24071813 DOI: 10.1007/s00210-013-0918-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
Abstract
Amyloid precursor protein (APP) metabolism is a key factor in the pathogenesis of Alzheimer's disease (AD). Amyloid-beta (Aβ) in mitochondria comes from APP mitochondrial metabolism or from the uptake Aβ from outside of mitochondria. It has been recently proposed that mitochondria are involved in the biochemical pathways through which Aβ causes neuronal dysfunction. The accumulated Aβ in mitochondria decreases the level of cytochrome c oxidase (COX IV) and attenuates the ATP production consequently. FLZ is a synthetic cyclic derivative of squamosamide from Annona glabra. In this study, the effect of FLZ on APP processing in mitochondria was investigated in SH-SY5Y cells over-expressing APP695 (wt/Swe). FLZ treatment attenuated APP processing and decreased Aβ production in mitochondria. The mitochondrial function was increased with the upregulation of COX IV both at protein and activity levels. ATP production was also increased after FLZ treatment. The mechanistic study showed that FLZ inhibited γ-secretase activity by decreasing C-terminal fragment protein level of presenilin, the active center of γ-secretase. The effect of FLZ differs from DAPT (a non-selective γ-secretase inhibitor), suggesting FLZ is a selective γ-secretase inhibitor. FLZ selectively inhibited γ-secretase in the cleavage of recombinant C terminus of APP in vitro, without specifically modulating the processing of recombinant Notch intracellular domain. These results indicate that FLZ decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. We propose that FLZ is a potential anti-AD drug candidate, and its mechanism may be improving mitochondrial function by reducing the Aβ burden in mitochondria.
Collapse
Affiliation(s)
- Xuan Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Yuan HL, Li B, Xu J, Wang Y, He Y, Zheng Y, Wang XM. Tenuigenin protects dopaminergic neurons from inflammation-mediated damage induced by the lipopolysaccharide. CNS Neurosci Ther 2013; 18:584-90. [PMID: 22759267 DOI: 10.1111/j.1755-5949.2012.00347.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). AIMS To study if tenuigenin (TEN), the main active component of Polygala tenuifolia, can protect dopaminergic neurons from inflammation-mediated damage in vivo. METHODS We observed the effects of TEN on lipopolysaccharide (LPS) induced PD model by behavioral analysis, high-performance liquid chromatography, immunohistochemistry and enzyme-linked immunoadsorbent assay, etc. RESULTS We showed that a single intranigral dose of LPSs (10 μg) induced microglial activation, reduced the survival ratio of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the SNpc and reduced dopamine (DA) content in the striatum. Treatment with 300 mg/kg TEN once per day over 14 weeks improved the survival rate of TH-ir neurons in the SNpc to 75%, on the non-injected side. Treatment with 200 or 300 mg/kg TEN once per day over 14 weeks significantly improved DA levels in the striatum to 73% and 81% on the non-injected side, respectively. The excessive production of cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was abolished by TEN administration. CONCLUSION Our results suggest that TEN may play a role in protecting dopaminergic neurons against inflammatory challenge.
Collapse
Affiliation(s)
- Hui-Li Yuan
- Department of Physiology, Key laboratory of Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Quantitative determination and pharmacokinetic study of the novel anti-Parkinson's disease candidate drug FLZ in rat brain by high performance liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2012; 66:232-9. [DOI: 10.1016/j.jpba.2012.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/24/2022]
|
20
|
Bao XQ, Kong XC, Qian C, Zhang D. FLZ protects dopaminergic neuron through activating protein kinase B/mammalian target of rapamycin pathway and inhibiting RTP801 expression in Parkinson's disease models. Neuroscience 2012; 202:396-404. [DOI: 10.1016/j.neuroscience.2011.11.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/25/2011] [Accepted: 11/16/2011] [Indexed: 01/05/2023]
|
21
|
Chen WF, Chakraborty C, Sung CS, Feng CW, Jean YH, Lin YY, Hung HC, Huang TY, Huang SY, Su TM, Sung PJ, Sheu JH, Wen ZH. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: a promising candidate for the treatment of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:265-75. [DOI: 10.1007/s00210-011-0710-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
|
22
|
Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury. Neurosci Lett 2011; 497:104-9. [DOI: 10.1016/j.neulet.2011.04.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/10/2011] [Accepted: 04/16/2011] [Indexed: 01/08/2023]
|
23
|
Kong XC, Zhang D, Qian C, Liu GT, Bao XQ. FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+). Brain Res 2011; 1383:99-107. [PMID: 21295016 DOI: 10.1016/j.brainres.2011.01.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/16/2022]
Abstract
Heat shock proteins (HSPs) play an essential role in various neurodegenerative diseases. Manipulation of upregulation of HSPs in cells has been demonstrated to provide a therapeutic strategy to counteract the misfolding and aggregation of proteins that resulted in neurodegenerative disease. Our previous studies have shown that FLZ, a synthetic novel derivative of squamosamide from a Chinese herb, had potent neuroprotective effect against several experimental Parkinson's disease (PD) models. However, the mechanism of its neuroprotective effect is still not clarified. The present study demonstrated that FLZ induced HSP27 and HSP70 proteins and mRNA expression in a time- and dose-dependent manner in SH-SY5Y cells. Further studies showed that FLZ treatment stimulated the activation of heat shock factor 1 (HSF1) and its regulatory kinase Akt. Inactivation of Akt pathway by the PI3K inhibitor LY294002 blocked the expression of HSP27 and HSP70 induced by FLZ. Moreover, the inducing effects of FLZ on HSP27, HSP70, and HSF1 were all blocked by quercetin, an inhibitor of HSP biosynthesis. The cytoprotective effect of HSP27/HSP70 induced by FLZ against MPP(+) was assessed in SH-SY5Y cells. The pretreatment of FLZ significantly induced the accumulations of HSP27/HSP70 and suppressed the apoptosis caused by MPP(+) in SH-SY5Y cells. However, the protective effects of FLZ against MPP(+) were significantly blocked by quercetin, which indicated that the cytoprotective action of FLZ against MPP(+)-induced apoptosis is at least partially mediated by its induction of HSP27/HSP70. These results provide new evidence for elucidating the mechanism of the neuroprotective effect of FLZ against PD.
Collapse
Affiliation(s)
- Xiang-Chen Kong
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,1 Xian Nong Tan Street, Beijing 100050, PR China.
| | | | | | | | | |
Collapse
|
24
|
Paraquat induces cyclooxygenase-2 (COX-2) implicated toxicity in human neuroblastoma SH-SY5Y cells. Toxicol Lett 2010; 199:239-46. [PMID: 20851755 DOI: 10.1016/j.toxlet.2010.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/15/2010] [Accepted: 09/08/2010] [Indexed: 01/06/2023]
Abstract
Paraquat produces dopaminergic pathologies of Parkinson's disease, in which cyclooxygenase-2 (COX-2) is implicated. However, it is unclear whether paraquat induces toxicity within dopaminergic neurons through COX-2. To address this, human neuroblastoma SH-SY5Y cells were treated with paraquat and then the involving mechanism of COX-2 was investigated. We initially examined the involvement of COX-2 in paraquat-induced toxicity. Data suggest that COX-2 is implicated in paraquat-induced reduction of viability in SY5Y cells. Then, to confirm the presence of COX-2 in SY5Y cells, we examined COX-2 mRNA and protein levels, which are regulated by NF-κB. Data indicate that paraquat activates NF-κB and up-regulates COX-2. We then checked quinone-bound proteins as quinones produced by COX-2 bind to intracellular proteins. Paraquat obviously forms quinone-bound proteins, in particular, quinone-bound DJ-1 and this formation is attenuated by meloxicam. Finally, we investigated antioxidant system including nuclear factor erythroid-related factor 2 (Nrf2), gamma glutamylcysteine synthetase (γGCS), and glutathione (GSH) as DJ-1 is linked to Nrf2 and Nrf2 regulates γGCS expression and γGCS is a GSH synthesis enzyme. Paraquat decreases protein levels of Nrf2 and γGCS and intracellular GSH level and these decreases are alleviated by meloxicam. Therefore, collectively, our data indicate that paraquat induces COX-2 implicated toxicity in SY5Y cells. In conclusion, current findings support the idea that paraquat might produce toxicity in dopaminergic neurons through COX-2.
Collapse
|
25
|
The Neuroprotective Effect of Batch-2, an Aqueous Extract From Cat′s Claw( Uncaria tomentosa) on 6-OHDA-Induced SH-SY5Y Cell Damage*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Zhang W, Hu X, Yang W, Gao Y, Chen J. Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic-ischemic brain injury through anti-inflammatory actions. Stroke 2010; 41:2341-7. [PMID: 20705927 DOI: 10.1161/strokeaha.110.586081] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Current available therapies for neonatal hypoxia/ischemia (H/I) brain injury are rather limited. Here, we investigated the effect of omega-3 polyunsaturated fatty acids on brain damage and long-term neurological function after H/I in neonates. METHODS Female rats were treated with or without an omega-3 polyunsaturated fatty acids-enriched diet from the second day of pregnancy until 14 days after parturition. Seven-day-old neonates were subjected to H/I and euthanized 5 weeks later for evaluation of tissue loss. Neurological impairment was assessed progressively for 5 weeks after H/I by grid walking, foot fault, and Morris water maze. Activation of microglia and production of inflammatory mediators were examined up to 7 days after H/I. RESULTS Omega-3 polyunsaturated fatty acid supplementation significantly reduced brain damage and improved long-term neurological outcomes up to 5 weeks after neonatal H/I injury. Omega-3 polyunsaturated fatty acids exerted an anti-inflammatory effect in microglia both in an in vivo model of H/I and in in vitro microglial cultures subjected to inflammatory stimuli by inhibiting NF-κB activation and subsequent release of inflammatory mediators. CONCLUSIONS Our results suggest that omega-3 polyunsaturated fatty acids confer potent neuroprotection against neonatal H/I brain injury through, at least partially, suppressing a microglial-mediated inflammatory response.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
27
|
Li N, Liu GT. The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol Sin 2010; 31:265-72. [PMID: 20154710 DOI: 10.1038/aps.2010.3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM The aim of this study was to study the effects of compound FLZ, a novel cyclic derivative of squamosamide from Annona glabra, on brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)/cAMP response element-binding protein (CREB) signaling and neuronal apoptosis in the hippocampus of the amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mice. METHODS APP/PS1 mice at the age of 5 months and age-matched wild-type mice (WT) were intragastrically administered FLZ (150 mg/kg) or vehicle [0.05% carboxymethyl cellulose sodium (CMC-Na)] daily for 20 weeks. The levels of BDNF in the hippocampus of WT and APP/PS1 mice were then measured by immunohistochemistry and Western blot analysis. Neuronal apoptosis in mouse hippocampus was detected by Nissl staining. Expression of NGF, NT3, pTrkB (Tyr515)/TrkB, pAkt (Ser473)/Akt, pERK/ERK, pCREB (Ser133)/CREB, Bcl-2/Bax, and active caspase-3 fragment/caspase-3 in the hippocampus of WT and APP/PS1 mice was detected by Western blot analysis. RESULTS Compared with vehicle-treated APP/PS1 mice, FLZ (150 mg/kg) significantly increased BDNF and NT3 expression in the hippocampus of APP/PS1 mice. In addition, FLZ promoted BDNF high-affinity receptor TrkB phosphorylation and activated its downstream ERK, thus increasing phosphorylation of CREB at Ser133 in the hippocampus of APP/PS1 mice. Moreover, FLZ showed neuroprotective effects on neuronal apoptosis by increasing the Bcl-2/Bax ratio and decreasing the active caspase-3 fragment/caspase-3 ratio in the hippocampus of APP/PS1 mice. CONCLUSION FLZ exerted neuroprotection at least partly through enhancing the BDNF/TrkB/CREB pathway and inhibiting neuronal apoptosis in APP/PS1 mice, which suggests that FLZ can be explored as a potential therapeutic agent in long-term Alzheimer's disease therapy.
Collapse
|
28
|
Compound FLZ inhibits lipopolysaccharide-induced inflammatory effects via down-regulation of the TAK-IKK and TAK-JNK/p38MAPK pathways in RAW264.7 macrophages. Acta Pharmacol Sin 2009; 30:209-18. [PMID: 19169268 DOI: 10.1038/aps.2008.29] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM The aim of this study was to investigate the effect of the squamosamide derivative FLZ (N-2-(4-hydroxy-phenyl)-ethyl-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) on lipopolysaccharide (LPS)-induced inflammatory mediator production and the underlying mechanism in RAW264.7 macrophages. METHODS RAW264.7 cells were preincubated with non-toxic concentrations of compound FLZ (1, 5, and 10 micromol/L) for 30 min and then stimulated with 10 microg/L LPS. The production of nitric oxide (NO), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), and the activation of nuclear factor kappa-B (NF-kappaB) and mitogen-activated protein kinase (MAPK) pathways were examined. RESULTS FLZ significantly inhibited the LPS-induced production of NO, as well as the expression of iNOS and COX-2 at both the RNA and the protein levels in RAW264.7 cells. The LPS-induced increase in the DNA binding activity of NF-kappaB and activator protein 1 (AP-1), the nuclear translocation of NF-kappaB p65, the degradation of the inhibitory kappaBalpha protein (IkappaBalpha) and the phosphorylation of IkappaBalpha, IkappaB kinase (IKK) alpha/beta, c-Jun NH(2)-terminal kinase (JNK) and p38 MAPKs were all suppressed by FLZ. However, the phosphorylation of extracellular signal-regulated kinase (ERK) was not affected. Further study revealed that FLZ inhibited the phosphorylation of transforming growth factor-beta (TGF-beta)-activated kinase 1 (TAK1), which is an upstream signaling molecule required for IKKalpha/beta, JNK and p38 activation. CONCLUSION FLZ inhibited the LPS-induced production of inflammatory mediators at least partly through the downregulation of the TAK-IKK and TAK-JNK/p38MAPK pathways.
Collapse
|
29
|
Li LB, Zhang JL, Wang YX, Wei HL, Liu GT. Establishment of a HPLC method for preclinical pharmacokinetic study of the novel anti-Parkinson's disease candidate drug FLZ in rats. Biomed Chromatogr 2008; 22:867-72. [DOI: 10.1002/bmc.1004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Gomez-Lazaro M, Bonekamp NA, Galindo MF, Jordán J, Schrader M. 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic Biol Med 2008; 44:1960-9. [PMID: 18395527 DOI: 10.1016/j.freeradbiomed.2008.03.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 02/21/2008] [Accepted: 03/11/2008] [Indexed: 11/30/2022]
Abstract
Mitochondrial alterations have been associated with the cytotoxic effect of 6-hydroxydopamine (6-OHDA), a widely used neurotoxin to study Parkinson's disease. Herein we studied the potential effects of 6-OHDA on mitochondrial morphology in SH-SY5Y neuroblastoma cells. By immunofluorescence and time-lapse fluorescence microscopy we demonstrated that 6-OHDA induced profound mitochondrial fragmentation in SH-SY5Y cells, an event that was similar to mitochondrial fission induced by overexpression of Fis1p, a membrane adaptor for the dynamin-related protein 1 (DLP1/Drp1). 6-OHDA failed to induce any changes in peroxisome morphology. Biochemical experiments revealed that 6-OHDA-induced mitochondrial fragmentation is an early event preceding the collapse of the mitochondrial membrane potential and cytochrome c release in SH-SY5Y cells. Silencing of DLP1/Drp1, which is involved in mitochondrial and peroxisomal fission, prevented 6-OHDA-induced fragmentation of mitochondria. Furthermore, in cells silenced for Drp1, 6-OHDA-induced cell death was reduced, indicating that a block in mitochondrial fission protects SH-SY5Y cells against 6-OHDA toxicity. Experiments in mouse embryonic fibroblasts deficient in Bax or p53 revealed that both proteins are not essential for 6-OHDA-induced mitochondrial fragmentation. Our data demonstrate for the first time an involvement of mitochondrial fragmentation and Drp1 function in 6-OHDA-induced apoptosis.
Collapse
Affiliation(s)
- Maria Gomez-Lazaro
- Grupo de Neurofarmacología, Department Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha-Centro Regional de Investigaciones Biomédicas, Albacete, Spain
| | | | | | | | | |
Collapse
|
31
|
Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity. J Neuroinflammation 2008; 5:21. [PMID: 18507839 PMCID: PMC2413210 DOI: 10.1186/1742-2094-5-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 05/28/2008] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD) through over-activation of microglia, which consequently causes the excessive production of proinflammatory and neurotoxic factors, and impacts surrounding neurons and eventually induces neurodegeneration. Hence, prevention of microglial over-activation has been shown to be a prime target for the development of therapeutic agents for inflammation-mediated neurodegenerative diseases. METHODS For in vitro studies, mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanism by which FLZ, a squamosamide derivative, mediates anti-inflammatory and neuroprotective effects in both lipopolysaccharide-(LPS)- and 1-methyl-4-phenylpyridinium-(MPP+)-mediated models of PD. For in vivo studies, a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-(MPTP-) induced PD mouse model was used. RESULTS FLZ showed potent efficacy in protecting dopaminergic (DA) neurons against LPS-induced neurotoxicity, as shown in rat and mouse primary mesencephalic neuronal-glial cultures by DA uptake and tyrosine hydroxylase (TH) immunohistochemical results. The neuroprotective effect of FLZ was attributed to a reduction in LPS-induced microglial production of proinflammatory factors such as superoxide, tumor necrosis factor-alpha (TNF-alpha), nitric oxide (NO) and prostaglandin E2 (PGE2). Mechanistic studies revealed that the anti-inflammatory properties of FLZ were mediated through inhibition of NADPH oxidase (PHOX), the key microglial superoxide-producing enzyme. A critical role for PHOX in FLZ-elicited neuroprotection was further supported by the findings that 1) FLZ's protective effect was reduced in cultures from PHOX-/- mice, and 2) FLZ inhibited LPS-induced translocation of the cytosolic subunit of p47PHOX to the membrane and thus inhibited the activation of PHOX. The neuroprotective effect of FLZ demonstrated in primary neuronal-glial cultures was further substantiated by an in vivo study, which showed that FLZ significantly protected against MPTP-induced DA neuronal loss, microglial activation and behavioral changes. CONCLUSION Taken together, our results clearly demonstrate that FLZ is effective in protecting against LPS- and MPTP-induced neurotoxicity, and the mechanism of this protection appears to be due, at least in part, to inhibition of PHOX activity and to prevention of microglial activation.
Collapse
|