1
|
Miyazaki Y, Ichimura A, Sato S, Fujii T, Oishi S, Sakai H, Takeshima H. The natural flavonoid myricetin inhibits gastric H + , K + -ATPase. Eur J Pharmacol 2018; 820:217-221. [DOI: 10.1016/j.ejphar.2017.12.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 01/26/2023]
|
2
|
Abstract
1-(5-(1H-indol-5-yl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl)-N-methylmethanamine (KFP-H008),a novel and potent potassium-competitive acid blocker for the treatment of acid secretion related diseases, has not been reported previously. In this study, we demonstrated that KFP-H008 inhibits basal acid secretion, 2-deoxy-D-glucose- (2DG-) stimulated gastric acid secretion in rats. KFP-H008 blocked histamine-stimulated acid secretion in rats and heidenhain pouch dogs and reversed acid output in isolated gastric perfusion under histamine stimulation. In all the animal experiments, KFP-H008 exerted a more effective, potent and longer-lasting inhibitory action in comparison with lansoprazole, a proton pump inhibitor (PPI) commonly used in clinic. KFP-H008 inhibited H+-K+-ATPase activity both at pH 6.5 and pH 7.5, and was unaffected by pH. The inhibitory action was reversible and was achieved in a K+-competitive manner. Furthermore, KFP-H008 did not affect Na+-K+-ATPase activity, thus exhibiting high selectivity, which is different from PPIs. In all, KFP-H008, a novel potassium-competitive acid blocker, may provide new option for the patients with acid-related diseases and provide longer-lasting inhibitory action than drugs commonly used in clinical treatment.
Collapse
|
3
|
Sunuwar L, Asraf H, Donowitz M, Sekler I, Hershfinkel M. The Zn 2+-sensing receptor, ZnR/GPR39, upregulates colonocytic Cl - absorption, via basolateral KCC1, and reduces fluid loss. Biochim Biophys Acta Mol Basis Dis 2017; 1863:947-960. [PMID: 28093242 PMCID: PMC5557417 DOI: 10.1016/j.bbadis.2017.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
Administration of zinc, as a complement to oral rehydration solutions, effectively diminishes duration and severity of diarrhea, but it is not known whether it merely fulfills a nutritional deficiency, or if zinc has a direct role of regulating solute absorption. We show that Zn2+ acts via a specific receptor, ZnR/GPR39, to reduce fluid loss. Intestinal fluid secretion triggered by cholera toxin (CTx) was lower in WT mice compared to ZnR/GPR39 KO. In the absence of dietary Zn2+ we observed similar fluid accumulation in WT and ZnR/GPR39 KO mice, indicating that Zn2+ and ZnR/GPR39 are both required for a beneficial effect of Zn2+ in diarrhea. In primary colonocytes and in Caco-2 colonocytic cells, activation of ZnR/GPR39 enhanced Cl- transport, a critical factor in diarrhea, by upregulating K+/Cl- cotransporter (KCC1) activity. Importantly, we show basolateral expression of KCC1 in mouse and human colonocytes, thus identifying a novel Cl- absorption pathway. Finally, inhibition of KCC-dependent Cl- transport enhanced CTx-induced fluid loss. Altogether, our data indicate that Zn2+ acting via ZnR/GPR39 has a direct role in controlling Cl- absorption via upregulation of basolateral KCC1 in the colon. Moreover, colonocytic ZnR/GPR39 and KCC1 reduce water loss during diarrhea and may therefore serve as effective drug targets.
Collapse
Affiliation(s)
- Laxmi Sunuwar
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
4
|
Fujii T, Watanabe M, Shimizu T, Takeshima H, Kushiro K, Takai M, Sakai H. Positive regulation of the enzymatic activity of gastric H + ,K + -ATPase by sialylation of its β-subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1228-35. [DOI: 10.1016/j.bbamem.2016.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
|
5
|
Fujii T, Takahashi Y, Takeshima H, Saitoh C, Shimizu T, Takeguchi N, Sakai H. Inhibition of gastric H+,K+-ATPase by 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), an inhibitor of volume-regulated anion channel. Eur J Pharmacol 2015; 765:34-41. [PMID: 26277321 DOI: 10.1016/j.ejphar.2015.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/24/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022]
Abstract
4-(2-Butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB) has been used as an inhibitor of volume-regulated anion channel (VRAC), which is expressed in almost all cells (IC50 is around 4 µM). Here, we found that DCPIB significantly inhibited the activities of gastric proton pump (H+,K+-ATPase) in isolated gastric tubulovesicles and the membrane sample of the H+,K+-ATPase-expressing cells, and their IC50 values were around 9 µM. In the tubulovesicles, no significant expression of leucine rich repeat containing 8 family member A (LRRC8A), an essential component of VRAC, was observed. The inhibitory effect of DCPIB was also found in the membrane sample obtained from the cells in which LRRC8A had been knocked down. On the other hand, DCPIB had no significant effect on the activity of Na+,K+-ATPase or Ca2+-ATPase. In the H+,K+-ATPase-expressing cells, DCPIB inhibited the 86Rb+ transport activity of H+,K+-ATPase but not that of Na+,K+-ATPase. DCPIB had no effect on the activity of Cl- channels other than VRAC in the cells. These results suggest that DCPIB directly inhibits H+,K+-ATPase activity. DCPIB may be a beneficial tool for studying the H+,K+-ATPase function in vitro.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuji Takahashi
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Chisato Saitoh
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Noriaki Takeguchi
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
6
|
Lauf PK, Alqahtani T, Flues K, Meller J, Adragna NC. Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak. Am J Physiol Cell Physiol 2015; 308:C51-60. [DOI: 10.1152/ajpcell.00287.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257–276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis.
Collapse
Affiliation(s)
- Peter K. Lauf
- Cell Biophysics Group, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pathology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| | - Tariq Alqahtani
- Cell Biophysics Group, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| | - Karin Flues
- Cell Biophysics Group, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| | - Jaroslaw Meller
- Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Norma C. Adragna
- Cell Biophysics Group, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| |
Collapse
|
7
|
Korbmacher JP, Michel C, Neubauer D, Thompson K, Mizaikoff B, Frick M, Dietl P, Wittekindt OH. Amiloride-sensitive fluid resorption in NCI-H441 lung epithelia depends on an apical Cl(-) conductance. Physiol Rep 2014; 2:e00201. [PMID: 24744880 PMCID: PMC3967684 DOI: 10.1002/phy2.201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/12/2013] [Accepted: 12/21/2013] [Indexed: 01/12/2023] Open
Abstract
Proper apical airway surface hydration is essential to maintain lung function. This hydration depends on well‐balanced water resorption and secretion. The mechanisms involved in resorption are still a matter of debate, especially as the measurement of transepithelial water transport remains challenging. In this study, we combined classical short circuit current (ISC) measurements with a novel D2O dilution method to correlate ion and water transport in order to reveal basic transport mechanisms in lung epithelia. D2O dilution method enabled precise analysis of water resorption with an unprecedented resolution. NCI‐H441 cells cultured at an air–liquid interface resorbed water at a rate of 1.5 ± 0.4 μL/(h cm2). Water resorption and ISC were reduced by almost 80% in the presence of the bulk Cl− channel inhibitor 5‐nitro‐2‐(3‐phenylpropylamino)benzoic acid (NPPB) or amiloride, a specific inhibitor of epithelial sodium channel (ENaC). However, water resorption and ISC were only moderately affected by forskolin or cystic fibrosis transmembrane regulator (CFTR) channel inhibitors (CFTRinh‐172 and glybenclamide). In line with previous studies, we demonstrate that water resorption depends on ENaC, and CFTR channels have only a minor but probably modulating effect on water resorption. However, the major ENaC‐mediated water resorption depends on an apical non‐CFTR Cl− conductance. We investigated water transport across lung epithelia, using a novel D2O dilution method in combination with Ussing chamber experiments. Our results revealed that CFTR channels have a minor modulating effect on water resorption. The major ENaC‐mediated resorption depends on non‐CFTR channels.
Collapse
Affiliation(s)
- Jonas P Korbmacher
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Christiane Michel
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Daniel Neubauer
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Kristin Thompson
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| |
Collapse
|
8
|
Suemasu S, Yamakawa N, Ishihara T, Asano T, Tahara K, Tanaka KI, Matsui H, Okamoto Y, Otsuka M, Takeuchi K, Suzuki H, Mizushima T. Identification of a unique nsaid, fluoro-loxoprofen with gastroprotective activity. Biochem Pharmacol 2012; 84:1470-81. [DOI: 10.1016/j.bcp.2012.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 01/01/2023]
|
9
|
Fujita K, Fujii T, Shimizu T, Takeguchi N, Sakai H. Role of cholesterol in functional association between K+–Cl− cotransporter-3a and Na+,K+-ATPase. Biochem Biophys Res Commun 2012; 424:136-40. [DOI: 10.1016/j.bbrc.2012.06.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 11/27/2022]
|
10
|
Piermarini PM, Hine RM, Schepel M, Miyauchi J, Beyenbach KW. Role of an apical K,Cl cotransporter in urine formation by renal tubules of the yellow fever mosquito (Aedes aegypti). Am J Physiol Regul Integr Comp Physiol 2011; 301:R1318-37. [PMID: 21813871 PMCID: PMC3213945 DOI: 10.1152/ajpregu.00223.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/29/2011] [Indexed: 01/07/2023]
Abstract
The K,Cl cotransporters (KCCs) of the SLC12 superfamily play critical roles in the regulation of cell volume, concentrations of intracellular Cl(-), and epithelial transport in vertebrate tissues. To date, the role(s) of KCCs in the renal functions of mosquitoes and other insects is less clear. In the present study, we sought molecular and functional evidence for the presence of a KCC in renal (Malpighian) tubules of the mosquito Aedes aegypti. Using RT-PCR on Aedes Malpighian tubules, we identified five alternatively spliced partial cDNAs that encode putative SLC12-like KCCs. The majority transcript is AeKCC1-A(1); its full-length cDNA was cloned. After expression of the AeKCC1-A protein in Xenopus oocytes, the Cl(-)-dependent uptake of (86)Rb(+) is 1) activated by 1 mM N-ethylmaleimide and cell swelling, 2) blocked by 100 μM dihydroindenyloxyalkanoic acid (DIOA), and 3) dependent upon N-glycosylation of AeKCC1-A. In Aedes Malpighian tubules, AeKCC1 immunoreactivity localizes to the apical brush border of principal cells, which are the predominant cell type in the epithelium. In vitro physiological assays of Malpighian tubules show that peritubular DIOA (10 μM): 1) significantly reduces both the control and diuretic rates of transepithelial fluid secretion and 2) has negligible effects on the membrane voltage and input resistance of principal cells. Taken together, the above observations indicate the presence of a KCC in the apical membrane of principal cells where it participates in a major electroneutral transport pathway for the transepithelial secretion of fluid in this highly electrogenic epithelium.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA.
| | | | | | | | | |
Collapse
|
11
|
Fujii T, Morii M, Takeguchi N, Sakai H. [Molecular mechanisms of H(+) and Cl(-) secretion in gastric parietal cells]. Nihon Yakurigaku Zasshi 2011; 138:51-5. [PMID: 21828937 DOI: 10.1254/fpj.138.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Pellegrino C, Gubkina O, Schaefer M, Becq H, Ludwig A, Mukhtarov M, Chudotvorova I, Corby S, Salyha Y, Salozhin S, Bregestovski P, Medina I. Knocking down of the KCC2 in rat hippocampal neurons increases intracellular chloride concentration and compromises neuronal survival. J Physiol 2011; 589:2475-96. [PMID: 21486764 PMCID: PMC3115820 DOI: 10.1113/jphysiol.2010.203703] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/16/2011] [Indexed: 12/12/2022] Open
Abstract
KCC2 is a neuron-specific potassium-chloride co-transporter controlling intracellular chloride homeostasis in mature and developing neurons. It is implicated in the regulation of neuronal migration, dendrites outgrowth and formation of the excitatory and inhibitory synaptic connections. The function of KCC2 is suppressed under several pathological conditions including neuronal trauma, different types of epilepsies, axotomy of motoneurons, neuronal inflammations and ischaemic insults. However, it remains unclear how down-regulation of the KCC2 contributes to neuronal survival during and after toxic stress. Here we show that in primary hippocampal neuronal cultures the suppression of the KCC2 function using two different shRNAs, dominant-negative KCC2 mutant C568A or DIOA inhibitor, increased the intracellular chloride concentration [Cl⁻]i and enhanced the toxicity induced by lipofectamine-dependent oxidative stress or activation of the NMDA receptors. The rescuing of the KCC2 activity using over-expression of the active form of the KCC2, but not its non-active mutant Y1087D, effectively restored [Cl⁻]i and enhanced neuronal resistance to excitotoxicity. The reparative effects of KCC2 were mimicked by over-expression of the KCC3, a homologue transporter. These data suggest an important role of KCC2-dependent potassium/chloride homeostasis under neurototoxic conditions and reveal a novel role of endogenous KCC2 as a neuroprotective molecule.
Collapse
|
13
|
Fujii T, Takahashi Y, Ikari A, Morii M, Tabuchi Y, Tsukada K, Takeguchi N, Sakai H. Functional Association between K+-Cl- Cotransporter-4 and H+,K+-ATPase in the Apical Canalicular Membrane of Gastric Parietal Cells. J Biol Chem 2009; 284:619-629. [DOI: 10.1074/jbc.m806562200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Fujii T, Takahashi Y, Itomi Y, Fujita K, Morii M, Tabuchi Y, Asano S, Tsukada K, Takeguchi N, Sakai H. K+-Cl- Cotransporter-3a Up-regulates Na+,K+-ATPase in Lipid Rafts of Gastric Luminal Parietal Cells. J Biol Chem 2008; 283:6869-77. [PMID: 18178552 DOI: 10.1074/jbc.m708429200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gastric parietal cells migrate from the luminal to the basal region of the gland, and they gradually lose acid secretory activity. So far, distribution and function of K+-Cl(-) cotransporters (KCCs) in gastric parietal cells have not been reported. We found that KCC3a but not KCC3b mRNA was highly expressed, and KCC3a protein was predominantly expressed in the basolateral membrane of rat gastric parietal cells located in the luminal region of the glands. KCC3a and the Na+,K+-ATPase alpha1-subunit (alpha1NaK) were coimmunoprecipitated, and both of them were highly localized in a lipid raft fraction. The ouabain-sensitive K+-dependent ATP-hydrolyzing activity (Na+,K+-ATPase activity) was significantly inhibited by a KCC inhibitor (R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA)). The stable exogenous expression of KCC3a in LLC-PK1 cells resulted in association of KCC3a with endogenous alpha1NaK, and it recruited alpha1NaK in lipid rafts, accompanying increases of Na+,K+-ATPase activity and ouabain-sensitive Na+ transport activity that were suppressed by DIOA, whereas the total expression level of alpha1NaK in the cells was not significantly altered. On the other hand, the expression of KCC4 induced no association with alpha1NaK. In conclusion, KCC3a forms a functional complex with alpha1NaK in the basolateral membrane of luminal parietal cells, and it up-regulates alpha1NaK in lipid rafts, whereas KCC3a is absent in basal parietal cells.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|