1
|
Wang H, Qin Z, Yan A. Classification models and SAR analysis on CysLT1 receptor antagonists using machine learning algorithms. Mol Divers 2021; 25:1597-1616. [PMID: 33534023 DOI: 10.1007/s11030-020-10165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
Cysteinyl leukotrienes 1 (CysLT1) receptor is a promising drug target for rhinitis or other allergic diseases. In our study, we built classification models to predict bioactivities of CysLT1 receptor antagonists. We built a dataset with 503 CysLT1 receptor antagonists which were divided into two groups: highly active molecules (IC50 < 1000 nM) and weakly active molecules (IC50 ≥ 1000 nM). The molecules were characterized by several descriptors including CORINA descriptors, MACCS fingerprints, Morgan fingerprint and molecular SMILES. For CORINA descriptors and two types of fingerprints, we used the random forests (RF) and deep neural networks (DNN) to build models. For molecular SMILES, we used recurrent neural networks (RNN) with the self-attention to build models. The accuracies of test sets for all models reached 85%, and the accuracy of the best model (Model 2C) was 93%. In addition, we made structure-activity relationship (SAR) analyses on CysLT1 receptor antagonists, which were based on the output from the random forest models and RNN model. It was found that highly active antagonists usually contained the common substructures such as tetrazoles, indoles and quinolines. These substructures may improve the bioactivity of the CysLT1 receptor antagonists.
Collapse
Affiliation(s)
- Hongzhao Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China
| | - Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy 2017; 72:682-690. [PMID: 27864967 DOI: 10.1111/all.13089] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Under homeostatic conditions, as well as in various diseases, leukocyte migration is a crucial issue for the immune system that is mainly organized through the activation of bone marrow-derived cells in various tissues. Immune cell trafficking is orchestrated by a family of small proteins called chemokines. Leukocytes express cell-surface receptors that bind to chemokines and trigger transendothelial migration. Most allergic diseases, such as asthma, rhinitis, food allergies, and atopic dermatitis, are generally classified by the tissue rather than the type of inflammation, making the chemokine/chemokine receptor system a key point of the immune response. Moreover, because small antagonists can easily block such receptors, various molecules have been developed to suppress the recruitment of immune cells during allergic reactions, representing potential new drugs for allergies. We review the chemokines and chemokine receptors that are important in asthma, food allergies, and atopic dermatitis and their respectively developed antagonists.
Collapse
Affiliation(s)
- L. Castan
- INRA; UR1268 BIA; Nantes France
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- Université de Nantes; Nantes France
| | - A. Magnan
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- CHU de Nantes; Service de Pneumologie; Institut du thorax; Nantes France
| | | |
Collapse
|
3
|
Pease JE, Horuk R. Recent progress in the development of antagonists to the chemokine receptors CCR3 and CCR4. Expert Opin Drug Discov 2014; 9:467-83. [PMID: 24641500 DOI: 10.1517/17460441.2014.897324] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The chemokine receptors CCR3 and CCR4 have been shown to be important therapeutic targets for the treatment of a variety of diseases. Although only two chemokine receptor inhibitors have been approved so far, there are numerous compounds that are in various stages of development. AREAS COVERED In this review article, the authors provide an update on the progress made in the identification of antagonists against the chemokine receptors CCR3 and CCR4 from 2009 to the present. The rationale of writing this review article is to cover the most important approaches to identifying antagonists to these two receptors, which could prove to be useful therapeutics in treating proinflammatory diseases. EXPERT OPINION Pharmaceutical companies have expended a considerable amount of money and effort to identify potent inhibitors of CCR3 and CCR4 for the treatment of asthma and atopic diseases. Although a variety of compounds have been described and several have progressed into the clinic, none have so far made it as approved drugs. There are, however, novel approaches such as mogamulizumab, a monoclonal antibody to CCR4 currently is in clinical trials for cancer and ASM8, an antisense nucleotide to CCR3, which is in Phase II clinical trials for asthma that might still prove to be successful new therapeutics.
Collapse
Affiliation(s)
- James Edward Pease
- National Heart and Lung Institute, Imperial College London, Faculty of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Leukocyte Biology Section , SW7 2AZ , UK
| | | |
Collapse
|
4
|
Terfenadine induces anti-proliferative and apoptotic activities in human hormone-refractory prostate cancer through histamine receptor-independent Mcl-1 cleavage and Bak up-regulation. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:33-45. [PMID: 24048439 DOI: 10.1007/s00210-013-0912-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022]
Abstract
Although the results of several studies have underscored the regulatory effect of H1-histamine receptors in cell proliferation of some cancer cell types, its effect in prostate cancers remains unclear. We have therefore studied the effect of terfenadine (an H1-histamine receptor antagonist) in prostate cancer cell lines. Our data demonstrate that terfenadine was effective against PC-3 and DU-145 cells (two prostate cancer cell lines). In contrast, based on the sulforhodamine B assay, loratadine had less potency while fexofenadine and diphenhydramine had little effect. Terfenadine induced the cleavage of Mcl-1 cleavage into a pro-apoptotic 28-kDa fragment and up-regulation of Bak, resulting in the loss of mitochondrial membrane potential (ΔΨm) and the release of cytochrome c and apoptosis-inducing factor into the cytosol. The activation of caspase cascades was detected to be linked to terfenadine action. Bak up-regulation was also examined at both the transcriptional and translational levels, and Bak activation was validated based on conformational change to expose the N terminus. Terfenadine also induced an indirect-but not direct-DNA damage response through the cleavage and activation of caspase-2, phosphorylation and activation of Chk1 and Chk2 kinases, phosphorylation of RPA32 and acetylation of Histone H3; these processes were highly correlated to severe mitochondrial dysfunction and the activation of caspase cascades. In conclusion, terfenadine induced apoptotic signaling cascades against HRPCs in a sequential manner. The exposure of cells to terfenadine caused the up-regulation and activation of Bak and the cleavage of Mcl-1, leading to the loss of ΔΨm and activation of caspase cascades which further resulted in DNA damage response and cell apoptosis.
Collapse
|
5
|
Deppong CM, Green JM. Experimental advances in understanding allergic airway inflammation. Front Biosci (Schol Ed) 2013; 5:167-80. [PMID: 23277043 DOI: 10.2741/s364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma is largely an inflammatory disease, with the development of T cell mediated inflammation in the lung following exposure to allergen or other precipitating factors. Currently, the major therapies for this disease are directed either at relief of bronchoconstriction (ie beta-agonists) or are non-specific immunomodulators (ie, corticosteroids). While much attention has been paid to factors that regulate the initiation of an inflammatory response, chronic inflammation may also be due to defects in regulatory mechanisms that limit or terminate immune responses. In this review, we explore the elements controlling both the recruitment of T cells to the lung and their function. Possibilities for future therapeutic intervention are highlighted.
Collapse
Affiliation(s)
- Christine M Deppong
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
6
|
Affiliation(s)
- James Pease
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London SW7 2AZ, U.K
| | | |
Collapse
|
7
|
Thiele S, Malmgaard-Clausen M, Engel-Andreasen J, Steen A, Rummel PC, Nielsen MC, Gloriam DE, Frimurer TM, Ulven T, Rosenkilde MM. Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors. J Med Chem 2012; 55:8164-77. [DOI: 10.1021/jm301121j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stefanie Thiele
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Mikkel Malmgaard-Clausen
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Jens Engel-Andreasen
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - Anne Steen
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Pia C. Rummel
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Mads C. Nielsen
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - David E. Gloriam
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Dk-2100
Copenhagen, Denmark
| | - Thomas M. Frimurer
- The
Novo Nordisk Foundation
Center for Basic Metabolic Research, Faculty of Health and Medical
Sciences, University of Copenhagen, Blegdamsvej
3, Dk-2200 Copenhagen, Denmark
| | - Trond Ulven
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - Mette M. Rosenkilde
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| |
Collapse
|
8
|
Wegmann M. Targeting eosinophil biology in asthma therapy. Am J Respir Cell Mol Biol 2011; 45:667-74. [PMID: 21474432 DOI: 10.1165/rcmb.2011-0013tr] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Due to their role as main effector cells in immune reactions against invading parasites, eosinophils have a plethora of molecules available to destroy these complex pathogens. Their role in allergic diseases such as bronchial asthma, where they do not have to conquer pathogens, is discussed controversially. However, since eosinophils were identified by Paul Ehrlich in tissue and sputum of patients with asthma, it was regarded that their important defensive role turns into its direct opposite so that these cells cause destruction of the airway tissue, ultimately leading to the formation of disease phenotype. Thus, eosinophils were identified as a prime target in therapeutic intervention of bronchial asthma. Over the last years, a number of mediators and receptors involved in the regulation of eosinophil recruitment, chemotaxis, activation, survival, and apoptosis have been identified. Some of these molecules have been addressed in vitro and in animal models of experimental asthma to evaluate their therapeutic potential in asthma. A few of these candidates have been tested in clinical studies, which produced surprising results questioning the role of eosinophils in asthma pathogenesis. This article summarizes these approaches and gives a critical overview about further candidate molecules that have been recently discussed as targets for an eosinophil-specific asthma therapy.
Collapse
Affiliation(s)
- Michael Wegmann
- Experimental Pneumology, Research Center Borstel, Parkallee 1, D-23845 Borstel, Germany 1887402.
| |
Collapse
|
9
|
|
10
|
Abstract
The directed migration of cells in response to chemical cues is known as chemoattraction, and plays a key role in the temporal and spatial positioning of cells in lower- and higher-order life forms. Key molecules in this process are the chemotactic cytokines, or chemokines, which, in humans, constitute a family of approx. 40 molecules. Chemokines exert their effects by binding to specific GPCRs (G-protein-coupled receptors) which are present on a wide variety of mature cells and their progenitors, notably leucocytes. The inappropriate or excessive generation of chemokines is a key component of the inflammatory response observed in several clinically important diseases, notably allergic diseases such as asthma. Consequently, much time and effort has been directed towards understanding which chemokine receptors and ligands are important in the allergic response with a view to therapeutic intervention. Such strategies can take several forms, although, as the superfamily of GPCRs has historically proved amenable to blockade by small molecules, the development of specific antagonists has been has been a major focus of several groups. In the present review, I detail the roles of chemokines and their receptors in allergic disease and also highlight current progress in the development of relevant chemokine receptor antagonists.
Collapse
|
11
|
Willems LI, Ijzerman AP. Small molecule antagonists for chemokine CCR3 receptors. Med Res Rev 2011; 30:778-817. [PMID: 19967721 DOI: 10.1002/med.20181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The chemokine receptor CCR3 is believed to play a role in the development of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis. Despite the conflicting results that have been reported regarding the importance of eosinophils and CCR3 in allergic inflammation, inhibition of this receptor with small molecule antagonists is thought to provide a valuable approach for the treatment of these diseases. This review describes the structure-activity relationships (SAR) of small molecule CCR3 antagonists as reported in the scientific and patent literature. Various chemical classes of small molecule CCR3 antagonists have been described so far, including (bi)piperidine and piperazine derivatives, N-arylalkylpiperidine urea derivatives and (N-ureidoalkyl)benzylpiperidines, phenylalanine derivatives, morpholinyl derivatives, pyrrolidinohydroquinazolines, arylsulfonamides, amino-alkyl amides, imidazole- and pyrimidine-based antagonists, and bicyclic diamines. The (N-ureidoalkyl)benzylpiperidines are the best studied class in view of their generally high affinity and antagonizing potential. For many of these antagonists subnanomolar IC(50) values were reported for binding to CCR3 along with the ability to effectively inhibit intracellular calcium mobilization and eosinophil chemotaxis induced by CCR3 agonist ligands in vitro.
Collapse
Affiliation(s)
- Lianne I Willems
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO Box 9502, 2300RA Leiden, The Netherlands
| | | |
Collapse
|
12
|
Beaton G, Moree WJ. The expanding role of H1antihistamines: a patent survey of selective and dual activity compounds 2005 – 2010. Expert Opin Ther Pat 2010; 20:1197-218. [DOI: 10.1517/13543776.2010.510516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Histamine and Antihistamines in Atopic Dermatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 709:73-80. [DOI: 10.1007/978-1-4419-8056-4_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Sato I, Morihira K, Inami H, Kubota H, Morokata T, Suzuki K, Ohno K, Iura Y, Nitta A, Imaoka T, Takahashi T, Takeuchi M, Ohta M, Tsukamoto SI. Synthesis, biological evaluation, and metabolic stability of acrylamide derivatives as novel CCR3 antagonists. Bioorg Med Chem 2009; 17:5989-6002. [DOI: 10.1016/j.bmc.2009.06.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
|
15
|
|
16
|
Abstract
Chemokine receptor antagonists that held much promise for the treatment of autoimmune and inflammatory diseases have recently performed poorly in clinical trials, resulting in disappointment for both pharmaceutical companies and patients. This review focuses on the redundancy of the molecular target as one potential reason for the failure of some of these antagonists to fulfil their initial promise, and discusses the use of drugs that are capable of interacting with more than one drug target - so-called promiscuous drugs - as possible approaches to overcome this difficulty. Several clinically approved promiscuous drugs, such as aspirin and olanzapine, are already used successfully. This review discusses examples of promiscuous drugs for G-protein-coupled receptors, including progress in developing dual-specific chemokine receptor antagonists, and considers evidence for the possible therapeutic utility of such drugs.
Collapse
|
17
|
|
18
|
Simon FER, Simons KJ. H1 antihistamines: current status and future directions. World Allergy Organ J 2008; 1:145-55. [PMID: 23282578 PMCID: PMC3650962 DOI: 10.1186/1939-4551-1-9-145] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/16/2008] [Indexed: 02/07/2023] Open
Abstract
In this review, we compare and contrast the clinical pharmacology, efficacy, and safety of first-generation H1 antihistamines and second-generation H1 antihistamines. First-generation H1 antihistamines cross the blood-brain barrier, and in usual doses, they potentially cause sedation and impair cognitive function and psychomotor performance. These medications, some of which have been in use for more than 6 decades, have never been optimally investigated. Second-generation H1 antihistamines such as cetirizine, desloratadine, fexofenadine, levocetirizine, and loratadine cross the blood-brain barrier to a significantly smaller extent than their predecessors. The clinical pharmacology, efficacy, and safety of these medications have been extensively studied. They are therefore the H1 antihistamines of choice in the treatment of allergic rhinitis, allergic conjunctivitis, and urticaria. In the future, clinically advantageous H1 antihistamines developed with the aid of molecular techniques might be available.
Collapse
Affiliation(s)
- F Estelle R Simon
- Department of Pediatrics and Child Health, Winnipeg, Manitoba, Canada
- Department of Immunology, Winnipeg, Manitoba, Canada
- Department of Canadian Institutes of Health Research National Training Program in Allergy and Asthma, Winnipeg, Manitoba, Canada
- Department of Faculty of Medicine, Winnipeg, Manitoba, Canada
| | - Keith J Simons
- Department of Pediatrics and Child Health, Winnipeg, Manitoba, Canada
- Department of Faculty of Medicine, Winnipeg, Manitoba, Canada
- Department of Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Current World Literature. Curr Opin Otolaryngol Head Neck Surg 2008; 16:292-5. [DOI: 10.1097/moo.0b013e3283041256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A. New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol 2008; 3 Suppl 1:S6. [PMID: 18315837 PMCID: PMC2259400 DOI: 10.1186/1745-6673-3-s1-s6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled beta2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic phenotypes. Some of these new Th2-oriented strategies may in the future not only control symptoms and modify the natural course of asthma, but also potentially prevent or cure the disease.
Collapse
Affiliation(s)
- Gaetano Caramori
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| | - David Groneberg
- Institute of Occupational Medicine, Charité- Universitätsmedizin Berlin, Free University and Humboldt University, Berlin, Germany
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Paolo Casolari
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Alberto Papi
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| |
Collapse
|