1
|
Kang EJ, Prager O, Lublinsky S, Oliveira-Ferreira AI, Reiffurth C, Major S, Müller DN, Friedman A, Dreier JP. Stroke-prone salt-sensitive spontaneously hypertensive rats show higher susceptibility to spreading depolarization (SD) and altered hemodynamic responses to SD. J Cereb Blood Flow Metab 2023; 43:210-230. [PMID: 36329390 PMCID: PMC9903222 DOI: 10.1177/0271678x221135085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spreading depolarization (SD) occurs in a plethora of clinical conditions including migraine aura, delayed ischemia after subarachnoid hemorrhage and malignant hemispheric stroke. It describes waves of near-breakdown of ion homeostasis, particularly Na+ homeostasis in brain gray matter. SD induces tone alterations in resistance vessels, causing either hyperperfusion in healthy tissue; or hypoperfusion (inverse hemodynamic response = spreading ischemia) in tissue at risk. Observations from mice with genetic dysfunction of the ATP1A2-encoded α2-isoform of Na+/K+-ATPase (α2NaKA) suggest a mechanistic link between (1) SD, (2) vascular dysfunction, and (3) salt-sensitive hypertension via α2NaKA. Thus, α2NaKA-dysfunctional mice are more susceptible to SD and show a shift toward more inverse hemodynamic responses. α2NaKA-dysfunctional patients suffer from familial hemiplegic migraine type 2, a Mendelian model disease of SD. α2NaKA-dysfunctional mice are also a genetic model of salt-sensitive hypertension. To determine whether SD thresholds and hemodynamic responses are also altered in other genetic models of salt-sensitive hypertension, we examined these variables in stroke-prone spontaneously hypertensive rats (SHRsp). Compared with Wistar Kyoto control rats, we found in SHRsp that electrical SD threshold was significantly reduced, propagation speed was increased, and inverse hemodynamic responses were prolonged. These results may have relevance to both migraine with aura and stroke.
Collapse
Affiliation(s)
- Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ofer Prager
- Department of Physiology & Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Lublinsky
- Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alon Friedman
- Department of Physiology & Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
5
|
Barreto F, Rezende D, Scaramello C, Silva C, Cunha V, Caricati-Neto A, Jurkiewicz A, Noël F, Quintas L. Lack of evidence for regulation of cardiac P-type ATPases and MAP kinases in transgenic mice with cardiac-specific overexpression of constitutively active α1B-adrenoceptors. Braz J Med Biol Res 2010; 43:500-5. [DOI: 10.1590/s0100-879x2010007500028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 04/01/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
- F. Barreto
- Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | - F. Noël
- Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
6
|
Hilgenberg LGW, Pham B, Ortega M, Walid S, Kemmerly T, O'Dowd DK, Smith MA. Agrin regulation of alpha3 sodium-potassium ATPase activity modulates cardiac myocyte contraction. J Biol Chem 2009; 284:16956-16965. [PMID: 19376779 DOI: 10.1074/jbc.m806855200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drugs that inhibit Na,K-ATPases, such as digoxin and ouabain, alter cardiac myocyte contractility. We recently demonstrated that agrin, a protein first identified at the vertebrate neuromuscular junction, binds to and regulates the activity of alpha3 subunit-containing isoforms of the Na,K-ATPase in the mammalian brain. Both agrin and the alpha3 Na,K-ATPase are expressed in heart, but their potential for interaction and effect on cardiac myocyte function was unknown. Here we show that agrin binds to the alpha3 subunit of the Na,K-ATPase in cardiac myocyte membranes, inducing tyrosine phosphorylation and inhibiting activity of the pump. Agrin also triggers a rapid increase in cytoplasmic Na(+) in cardiac myocytes, suggesting a role in cardiac myocyte function. Consistent with this hypothesis, spontaneous contraction frequencies of cultured cardiac myocytes prepared from mice in which agrin expression is blocked by mutation of the Agrn gene are significantly higher than in the wild type. The Agrn mutant phenotype is rescued by acute treatment with recombinant agrin. Furthermore, exposure of wild type myocytes to an agrin antagonist phenocopies the Agrn mutation. These data demonstrate that the basal frequency of myocyte contraction depends on endogenous agrin-alpha3 Na,K-ATPase interaction and suggest that agrin modulation of the alpha3 Na,K-ATPase is important in regulating heart function.
Collapse
Affiliation(s)
| | - Bryan Pham
- From the Departments of Anatomy and Neurobiology, Irvine, California 92697
| | - Maria Ortega
- From the Departments of Anatomy and Neurobiology, Irvine, California 92697; Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Saif Walid
- From the Departments of Anatomy and Neurobiology, Irvine, California 92697
| | - Thomas Kemmerly
- From the Departments of Anatomy and Neurobiology, Irvine, California 92697; Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Diane K O'Dowd
- From the Departments of Anatomy and Neurobiology, Irvine, California 92697; Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Martin A Smith
- From the Departments of Anatomy and Neurobiology, Irvine, California 92697.
| |
Collapse
|
7
|
Matsui H, Ando K, Kawarazaki H, Nagae A, Fujita M, Shimosawa T, Nagase M, Fujita T. Salt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder. Hypertension 2008; 52:287-94. [PMID: 18606904 DOI: 10.1161/hypertensionaha.108.111815] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metabolic syndrome is a highly predisposing condition for cardiovascular disease and could be a cause of excess salt-induced organ damage. Recently, several investigators have demonstrated that salt loading causes left ventricular diastolic dysfunction associated with increased oxidative stress and mineralocorticoid receptor activation. We, therefore, investigated whether excess salt induces cardiac diastolic dysfunction in metabolic syndrome via increased oxidative stress and upregulation of mineralocorticoid receptor signals. Thirteen-week-old spontaneously hypertensive rats and SHR/NDmcr-cps, the genetic model of metabolic syndrome, were fed a normal salt (0.5% NaCl) or high-salt (8% NaCl) diet for 4 weeks. In SHR/NDmcr-cps, salt loading induced severe hypertension, abnormal left ventricular relaxation, and perivascular fibrosis. Salt-loaded SHR/NDmcr-cps also exhibited overproduction of reactive oxygen species and upregulation of mineralocorticoid receptor-dependent gene expression, such as Na(+)/H(+) exchanger-1 and serum- and glucocorticoid-inducible kinase-1 in the cardiac tissue. However, in spontaneously hypertensive rats, salt loading did not cause these cardiac abnormalities despite a similar increase in blood pressure. An antioxidant, tempol, prevented salt-induced diastolic dysfunction, perivascular fibrosis, and upregulation of mineralocorticoid receptor signals in SHR/NDmcr-cps. Moreover, a selective mineralocorticoid receptor antagonist, eplerenone, prevented not only diastolic dysfunction but also overproduction of reactive oxygen species in salt-loaded SHR/NDmcr-cps. These results suggest that metabolic syndrome is a predisposed condition for salt-induced left ventricular diastolic dysfunction, possibly via increased oxidative stress and enhanced mineralocorticoid receptor signals.
Collapse
Affiliation(s)
- Hiromitsu Matsui
- Department of Nephrology and Endocrinology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|