1
|
Aydemir MC, Yaman İ, Kilic MA. Membrane Receptor-Mediated Disruption of Cellular Homeostasis: Changes in Intracellular Signaling Pathways Increase the Toxicity of Ochratoxin A. Mol Nutr Food Res 2024; 68:e2300777. [PMID: 38880772 DOI: 10.1002/mnfr.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Organisms maintain their cellular homeostatic balance by interacting with their environment through the use of their cell surface receptors. Membrane based receptors such as the transforming growth factor β receptor (TGFR), the prolactin receptor (PRLR), and hepatocyte growth factor receptor (HGFR), along with their associated signaling cascade, play significant roles in retaining cellular homeostasis. While these receptors and related signaling pathways are essential for health of cell and organism, their dysregulation can lead to imbalance in cell function with severe pathological conditions such as cell death or cancer. Ochratoxin A (OTA) can disrupt cellular homeostasis by altering expression levels of these receptors and/or receptor-associated intracellular downstream signaling modulators and/or pattern and levels of their phosphorylation/dephosphorylation. Recent studies have shown that the activity of the TGFR, the PRLR, and HGFR and their associated signaling cascades change upon OTA exposure. A critical evaluation of these findings suggests that while increased activity of the HGFR and TGFR signaling pathways leads to an increase in cell survival and fibrosis, decreased activity of the PRLR signaling pathway leads to tissue damage. This review explores the roles of these receptors in OTA-related pathologies and effects on cellular homeostasis.
Collapse
Affiliation(s)
- Mesut Cihan Aydemir
- Department of Biology, Institute of Natural and Applied Sciences, Akdeniz University, Antalya, 07070, Turkey
| | - İbrahim Yaman
- Molecular Toxicology and Cancer Research Laboratory, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Bebek, 34342, Turkey
| | - Mehmet Akif Kilic
- Department of Biology, Molecular Biology Section, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
2
|
Lu XR, Tao Q, Qin Z, Liu XW, Li SH, Bai LX, Ge WB, Liu YX, Li JY, Yang YJ. A combined transcriptomics and proteomics approach to reveal the mechanism of AEE relieving hyperlipidemia in ApoE -/- mice. Biomed Pharmacother 2024; 173:116400. [PMID: 38484560 DOI: 10.1016/j.biopha.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Hyperlipidemia caused by abnormal lipid metabolism has reached epidemic proportions. This phenomenon is also common in companion animals. Previous studies showed that AEE significantly improves abnormal blood lipids in hyperlipidemia rats and mice, but its mechanism is still not clear enough. In this study, the mechanism and potential key pathways of AEE on improving hyperlipidemia in mice were investigated through the transcriptome and proteome study of ApoE-/- mice liver and the verification study on high-fat HepG2 cells. The results showed that AEE significantly decreased the serum TC and LDL-C levels of hyperlipidemia ApoE-/- mice, and significantly increased the enzyme activity of CYP7A1. After AEE intervention, the results of mice liver transcriptome and proteome showed that differential genes and proteins were enriched in lipid metabolism-related pathways. The results of RT-qPCR showed that AEE significantly regulated the expression of genes related to lipid metabolism in mice liver tissue. AEE significantly upregulated the protein expression of CYP7A1 in hyperlipidemia ApoE-/- mice liver tissue. The results in vitro showed that AEE significantly decreased the levels of TC and TG, and improved lipid deposition in high-fat HepG2 cells. AEE significantly increased the expression of CYP7A1 protein in high-fat HepG2 cells. AEE regulates the expression of genes related to lipid metabolism in high-fat HepG2 cells, mainly by FXR-SHP-CYP7A1 and FGF19-TFEB-CYP7A1 pathways. To sum up, AEE can significantly improve the hyperlipidemia status of ApoE-/- mice and the lipid deposition of high-fat HepG2 cells, and its main pathway is probably the bile acid metabolism-related pathway centered on CYP7A1.
Collapse
Affiliation(s)
- Xiao-Rong Lu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Qi Tao
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Zhe Qin
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Shi-Hong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Li-Xia Bai
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Wen-Bo Ge
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Ya-Xian Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
3
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
4
|
Xu D, You G. Loops and layers of post-translational modifications of drug transporters. Adv Drug Deliv Rev 2017; 116:37-44. [PMID: 27174152 DOI: 10.1016/j.addr.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
Drug transporters encoded by solute carrier (SLC) family are distributed in multiple organs including kidney, liver, placenta, brain, and intestine, where they mediate the absorption, distribution, and excretion of a diverse array of environmental toxins and clinically important drugs. Alterations in the expression and function of these transporters play important roles in intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. While it is clear that the regulation of these transporters tightly depends on genetic mechanisms, many studies have demonstrated that these transporters are the target of various post-translational modifications. This review article summarizes the recent advances in identifying the posttranslational modifications underlying the regulation of the drug transporters of SLC family. Such mechanisms are pivotal not only in physiological conditions, but also in diseases.
Collapse
|
5
|
Qi X, Wagenaar E, Xu W, Huang K, Schinkel AH. Ochratoxin A transport by the human breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), and organic anion-transporting polypeptides 1A2, 1B1 and 2B1. Toxicol Appl Pharmacol 2017; 329:18-25. [PMID: 28532671 DOI: 10.1016/j.taap.2017.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023]
Abstract
Ochratoxin A (OTA) is a fungal secondary metabolite that can contaminate various foods. OTA has several toxic effects like nephrotoxicity, hepatotoxicity, and neurotoxicity in different animal species, but its mechanisms of toxicity are still unclear. How OTA accumulates in kidney, liver, and brain is as yet unknown, but transmembrane transport proteins are likely involved. We studied transport of OTA in vitro, using polarized MDCKII cells transduced with cDNAs of the efflux transporters mouse (m)Bcrp, human (h)BCRP, mMrp2, or hMRP2, and HEK293 cells overexpressing cDNAs of the human uptake transporters OATP1A2, OATP1B1, OATP1B3, or OATP2B1 at pH7.4 and 6.4. MDCKII-mBcrp cells were more resistant to OTA toxicity than MDCKII parental and hBCRP-transduced cells. Transepithelial transport experiments showed some apically directed transport by MDCKII-mBcrp cells at pH7.4, whereas both mBcrp and hBCRP clearly transported OTA at pH6.4. There was modest transport of OTA by mMrp2 and hMRP2 only at pH6.4. OATP1A2 and OATP2B1 mediated uptake of OTA both at pH7.4 and 6.4, but OATP1B1 only at pH7.4. There was no detectable transport of OTA by OATP1B3. Our data indicate that human BCRP and MRP2 can mediate elimination of OTA from cells, thus reducing OTA toxicity. On the other hand, human OATP1A2, OATP1B1, and OATP2B1 can mediate cellular uptake of OTA, which could aggravate OTA toxicity.
Collapse
Affiliation(s)
- Xiaozhe Qi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Els Wagenaar
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Alfred H Schinkel
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Fardel O, Kolasa E, Le Vee M. Environmental chemicals as substrates, inhibitors or inducers of drug transporters: implication for toxicokinetics, toxicity and pharmacokinetics. Expert Opin Drug Metab Toxicol 2011; 8:29-46. [DOI: 10.1517/17425255.2012.637918] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Okumura M, Iwakiri T, Takagi A, Hirabara Y, Kawano Y, Arimori K. Hepatocyte growth factor suppresses the anticancer effect of irinotecan by decreasing the level of active metabolite in HepG2 cells. Biochem Pharmacol 2011; 82:1720-30. [DOI: 10.1016/j.bcp.2011.07.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/25/2022]
|
8
|
Le Vee M, Lecureur V, Moreau A, Stieger B, Fardel O. Differential regulation of drug transporter expression by hepatocyte growth factor in primary human hepatocytes. Drug Metab Dispos 2009; 37:2228-35. [PMID: 19661216 DOI: 10.1124/dmd.109.028035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte growth factor (HGF) is known to down-regulate expression of drug-detoxifying proteins such as cytochromes P450 (P450s) in human hepatocytes. The present study was designed to determine whether HGF may also impair expression of uptake and efflux drug transporters, which constitute important determinants of the liver detoxification pathway, such as P450s. Exposure of primary human hepatocytes to 20 ng/ml HGF for 48 h was found to down-regulate mRNA levels of major sinusoidal uptake transporters, including sodium taurocholate-cotransporting polypeptide (NTCP), organic anion-transporting polypeptide (OATP) 2B1, OATP1B1, organic cation transporter (OCT) 1, and organic anion transporter 2. HGF concomitantly reduced NTCP, OATP2B1, and OATP1B1 protein expression and NTCP, OATP, and OCT1 transport activities. With respect to efflux pumps, HGF decreased mRNA expression of the canalicular bile salt export pump, whereas that of the multidrug resistance (MDR) 1 gene was transiently increased. Moreover, Western blot analysis indicated that HGF up-regulated expressions of MDR1/P-glycoprotein and breast cancer resistance protein in human hepatocytes, whereas those of multidrug resistance gene-associated protein (MRP) 2 and MRP3 were unchanged. However, HGF prevented constitutive androstane receptor-related up-regulation of MRP2 occurring in phenobarbital-treated hepatocytes. Taken together, these data demonstrate that HGF differentially regulates transporter expression in human hepatocytes, i.e., it represses most of the sinusoidal uptake transporters, whereas expression of most of the efflux transporters is unchanged or increased. Such changes probably contribute to alterations of pharmacokinetics in patients with diseases associated with increased plasma levels of HGF such as fulminant hepatitis.
Collapse
Affiliation(s)
- Marc Le Vee
- Equipe d'Accueil 4427, SeRAIC/Institut National de la Santé et de la Recherche Médicale U620, Institut Fédératif de Recherches 140, University of Rennes 1, Rennes, France
| | | | | | | | | |
Collapse
|