1
|
Li Y, Wang H, Zhang Z, Tang C, Zhou X, Mohan C, Wu T. Identification of polo-like kinase 1 as a therapeutic target in murine lupus. Clin Transl Immunology 2022; 11:e1362. [PMID: 35024139 PMCID: PMC8733964 DOI: 10.1002/cti2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The signalling cascades that contribute to lupus pathogenesis are incompletely understood. We address this by using an unbiased activity‐based kinome screen of murine lupus. Methods An unbiased activity‐based kinome screen (ABKS) of 196 kinases was applied to two genetically different murine lupus strains. Systemic and renal lupus were evaluated following in vivo PLK1blockade. The upstream regulators and downstream targets of PLK1 were also interrogated. Results Multiple signalling cascades were noted to be more active in murine lupus spleens, including PLK1. In vivo administration of a PLK1‐specific inhibitor ameliorated splenomegaly, anti‐dsDNA antibody production, proteinuria, BUN and renal pathology in MRL.lpr mice (P < 0.05). Serum IL‐6, IL‐17 and kidney injury molecule 1 (KIM‐1) were significantly decreased after PLK1 inhibition. PLK1 inhibition reduced germinal centre and marginal zone B cells in the spleen, but changes in T cells were not significant. In vitro, splenocytes were treated with anti‐mouse CD40 Ab or F(ab’)2 fragment anti‐mouse IgM. After 24‐h stimulation, IL‐6 secretion was significantly reduced upon PLK1 blockade, whereas IL‐10 production was significantly increased. The phosphorylation of mTOR was assessed in splenocyte subsets, which revealed a significant change in myeloid cells. PLK1 blockade reduced phosphorylation associated with mTOR signalling, while Aurora‐A emerged as a potential upstream regulator of PLK1. Conclusion The Aurora‐A → PLK1 → mTOR signalling axis may be central in lupus pathogenesis, and emerges as a potential therapeutic target.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Hongting Wang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Zijing Zhang
- Department of Biomedical Engineering University of Houston Houston TX USA.,Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan China
| | - Chenling Tang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Xinjin Zhou
- Department of Pathology Baylor University Medical Center at Dallas Dallas TX USA
| | - Chandra Mohan
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Tianfu Wu
- Department of Biomedical Engineering University of Houston Houston TX USA
| |
Collapse
|
2
|
Palmisiano ND, Kasner MT. Polo-like kinase and its inhibitors: Ready for the match to start? Am J Hematol 2015; 90:1071-6. [PMID: 26294255 DOI: 10.1002/ajh.24177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022]
Abstract
Polo-like kinases (Plks) plays a central role in the normal cell cycle and their upregulation has been shown to play a role in the pathogenesis of multiple human cancers. Preclinical work demonstrates that targeting Plk has a significant impact on the treatment of both solid and hematologic malignancies in vitro and in vivo. We review here the basic science and clinical work to date with the Plks as well as future directions with this novel class of mitotic inhibitors.
Collapse
|
3
|
Kumar S, Kim J. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:705745. [PMID: 26557691 PMCID: PMC4628734 DOI: 10.1155/2015/705745] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022]
Abstract
Mitotic kinases are the key components of the cell cycle machinery and play vital roles in cell cycle progression. PLK-1 (Polo-like kinase-1) is a crucial mitotic protein kinase that plays an essential role in both the onset of G2/M transition and cytokinesis. The overexpression of PLK-1 is strongly correlated with a wide spectrum of human cancers and poor prognosis. The (si)RNA-mediated depletion of PLK-1 arrests tumor growth and triggers apoptosis in cancer cells without affecting normal cells. Therefore, PLK-1 has been selected as an attractive anticancer therapeutic drug target. Some small molecules have been discovered to target the catalytic and noncatalytic domains of PLK-1. These domains regulate the catalytic activation and subcellular localization of PLK-1. However, while PLK-1 inhibitors block tumor growth, they have been shown to cause severe adverse complications, such as toxicity, neutropenia, and bone marrow suppression during clinical trials, due to a lack of selectivity and specificity within the human kinome. To minimize these toxicities, inhibitors should be tested against all protein kinases in vivo and in vitro to enhance selectivity and specificity against targets. Here, we discuss the potency and selectivity of PLK-1-targeted inhibitors and their molecular interactions with PLK-1 domains.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, Republic of Korea
| |
Collapse
|
4
|
Janning M, Fiedler W. Volasertib for the treatment of acute myeloid leukemia: a review of preclinical and clinical development. Future Oncol 2015; 10:1157-65. [PMID: 24947257 DOI: 10.2217/fon.14.53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Volasertib is a potent inhibitor of Polo-like kinase (PLK) 1 and to lesser extent also PLK2 and PLK3. PLKs are key regulators of the cell cycle and volasertib blocks cells in G2-M phase of the cell cycle. The compound has been evaluated in Phase I and II studies in acute myeloid leukemia and solid tumors. Side effects are mainly hematological. In acute myeloid leukemia (AML), a randomized Phase II study has been conducted in elderly patients unfit for intensive chemotherapy. Patients have been randomized to a combination of volarsetib and low-dose cytarabine versus low-dose cytarabine alone. Preliminary results show significantly higher rates of complete remission and of complete remission with incomplete hematological recovery in the combination versus the monotherapy arm, with 31% and 13%, respectively. Longer event-free survival was observed with the combination with 5.6 versus 2.3 months, respectively (p = 0.0237). These encouraging data supported the initiation of an international Phase III trial, which currently underway, to confirm these results. Volasertib has not yet been approved for regular clinical use.
Collapse
Affiliation(s)
- Melanie Janning
- Department of Hematology, Oncology & Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52 D-20246, Hamburg, Germany
| | | |
Collapse
|
5
|
Brassesco MS, Pezuk JA, Morales AG, de Oliveira JC, Roberto GM, da Silva GN, Francisco de Oliveira H, Scrideli CA, Tone LG. In vitro targeting of Polo-like kinase 1 in bladder carcinoma: comparative effects of four potent inhibitors. Cancer Biol Ther 2013; 14:648-57. [PMID: 23792639 PMCID: PMC3742494 DOI: 10.4161/cbt.25087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 04/16/2013] [Accepted: 05/19/2013] [Indexed: 01/21/2023] Open
Abstract
Despite the improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little over the past 30 years. In the present study we tested and compared the in vitro antitumor activities of four different inhibitors of Polo-like kinase 1 (PLK1) (BI 2536, BI 6727, GW843682X, and GSK461364), against 3 bladder carcinoma cell lines RT4, 5637 and T24. The impact on radiosensitivity and drug interactions in simultaneous treatments with cisplatin, methotrexate, and doxorubicin were also investigated. Our results showed that PLK1 inhibition prevented cell proliferation and clonogenicity, causing significant inhibition of invasion of tumor cells, though modest differences were observed between drugs. Moreover, all PLK1 inhibitors induced G 2/M arrest, with the subsequent induction of death in all 3 cell lines. Drug interactions studies showed auspicious results for all PLK1 inhibitors when combined with the commonly used cisplatin and methotrexate, though combinations with doxorubicin showed mostly antagonistic effects. Comparably, the four PLK1 inhibitors efficiently sensitized cells to ionizing radiation. Our findings demonstrate that irrespective of the inhibitor used, the pharmacological inhibition of PLK1 constrains bladder cancer growth and dissemination, providing new opportunities for future therapeutic intervention. However, further laboratorial and pre-clinical tests are still needed to corroborate the usefulness of using them in combination with other commonly used chemotherapeutic drugs.
Collapse
Affiliation(s)
- María Sol Brassesco
- Division of Pediatric Oncology, Department of Pediatrics, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
New therapies targeting critical elements of the cell cycle open novel and attractive avenues for the treatment of cancer patients. At present, the number of clinical trials that are registered with the European Organization for Research and Treatment of Cancer (EORTC) and with the US National Cancer Institute, which investigate the efficacy of Polo-like kinase 1 (Plk1) inhibitors against solid tumors and different types of leukemia is growing. Plks are important regulators of mitotic progression. Plk1, the best characterized mammalian Plk, has become an attractive target for cancer drug development, because most types of cancer appear to be addicted to the non-oncogene Plk1. Here, the authors discuss the role of Plk1 and the potential tumor suppressor gene Plk2 in acute myeloid leukemia (AML).
Collapse
|
7
|
Tsykunova G, Reikvam H, Ahmed AB, Nepstad I, Gjertsen BT, Bruserud Ø. Targeting of polo-like kinases and their cross talk with Aurora kinases--possible therapeutic strategies in human acute myeloid leukemia? Expert Opin Investig Drugs 2012; 21:587-603. [PMID: 22424119 DOI: 10.1517/13543784.2012.668525] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Five human polo-like kinases (PLKs) have been identified, and PLK1 - 4 seem to interact with Aurora kinases and act as cell cycle regulators in both normal and malignant human cells. AREAS COVERED The present review describes i) experimental evidence for a role for PLKs and Aurora kinases in human leukemogenesis and ii) the results from clinical studies of PLK and Aurora kinase inhibitors in the treatment of human acute myeloid leukemia (AML). The review was based on searches in the PubMed and the ClinicalTrials.gov databases. These inhibitors have antiproliferative and proapoptotic effects in AML cells. Hematological and gastrointestinal toxicities are frequently dose limiting, and this may limit the use of these agents in combination with conventional AML therapy. Aurora kinase inhibitors seem to be most effective for patients with high expression of the target kinases, and the same may be true for PLK inhibitors. EXPERT OPINION PLK inhibition is a promising strategy for the treatment of AML. Future clinical studies have to clarify i) whether this strategy is most effective for certain subsets of patients; ii) whether multikinase inhibitors targeting several cell cycle regulators should be preferred; and iii) how this therapeutic strategy eventually should be combined with conventional antileukemic chemotherapy.
Collapse
Affiliation(s)
- Galina Tsykunova
- Haukeland University Hospital, Division for Haematology, Department of Medicine, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
8
|
Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2011; 2:95-107. [PMID: 21779483 DOI: 10.1177/1947601911408076] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/17/2011] [Indexed: 01/31/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disorder in which there are too many immature blood-forming cells accumulating in the bone marrow and interfering with the production of normal blood cells. It has long been recognized that AML is a clinically heterogeneous disease characterized by a multitude of chromosomal abnormalities and gene mutations, which translate to marked differences in responses and survival following chemotherapy. The cytogenetic and molecular genetic aberrations associated with AML are not mutually exclusive and often coexist in the leukemic cells. AML is a disease of the elderly, with a mean age of diagnosis of 70 years. Adverse cytogenetic abnormalities increase with age, and within each cytogenetic group, prognosis with standard treatment worsens with age. In the past 20 years, there has been little improvement in chemotherapeutic regimens and hence the overall survival for patients with AML. A huge unmet need exists for efficacious targeted therapies for elderly patients that are less toxic than available chemotherapy regimens. The multitude of chromosomal and genetic abnormalities makes the treatment of AML a challenging prospect. A detailed understanding of the molecular changes associated with the chromosomal and genetic abnormalities in AML is likely to provide a rationale for therapy design and biomarker development. This review summarizes the variety of cytogenetic and genetic changes observed in AML and gives an overview of the clinical status of new drugs in development.
Collapse
|
9
|
Spaniol K, Boos J, Lanvers-Kaminsky C. An in-vitro evaluation of the polo-like kinase inhibitor GW843682X against paediatric malignancies. Anticancer Drugs 2011; 22:531-42. [PMID: 21637161 DOI: 10.1097/cad.0b013e3283454526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polo-like kinase 1 (PLK1) is a regulator of mitosis and its upregulation in tumours is often associated with poor prognosis. Although PLK1 inhibitors have already entered phase 1 clinical trials, little is known about their impact on the treatment of paediatric malignancies. Thus, we evaluated the concept of PKL1 inhibition by testing the effects of the PLK1 inhibitor GW843682X alone and in combination with the topoisomerase 1 inhibitor, camptothecin, against a panel of 18 paediatric tumour cell lines. Cytotoxicity was evaluated by MTT test and by caspase 3/7 activation. Expression of target was confirmed by western blot analysis. Expression of ATP binding cassette transporters was analysed by quantitative real-time reverse transcription PCR. GW843682X significantly inhibited cell growth in all 18 cell lines. Concentrations, which inhibited cell growth by 50% compared with untreated controls after 72 h, ranged from 0.02 to 11.7 μmol/l. Apart from the N-Myc-amplified neuroblastoma cell lines, the osteosarcoma cell lines MNNG-HOS and OST, which are highly resistant to standard anticancer drugs, were sensitive to GW843682X. The toxicity of GW843682X was dependent neither on the ATP binding cassette drug transporter expression nor on the p53 mutation status. Neither synergistic nor antagonistic effects were observed for the combination of GW843682X and camptothecin in 14 cell lines. GW843682X showed considerable toxicity against a panel of paediatric tumour cell lines suggesting that PLK1 inhibitors under clinical development should be evaluated against paediatric malignancies too.
Collapse
Affiliation(s)
- Kristina Spaniol
- Department of Paediatric Haematology and Oncology, University Children's Hospital, Muenster, Germany
| | | | | |
Collapse
|
10
|
Christoph DC, Schuler M. Polo-like kinase 1 inhibitors in mono- and combination therapies: a new strategy for treating malignancies. Expert Rev Anticancer Ther 2011; 11:1115-30. [PMID: 21806334 DOI: 10.1586/era.11.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polo-like kinase 1 (Plk1) inhibitors belong to a new class of drugs for the treatment of malignant diseases. They selectively act against a target (Plk1) which is involved in different stages of mitosis such as centrosome maturation, spindle formation, chromosome separation and cytokinesis. Because Plk1 is mainly expressed in proliferating tissues and overexpressed in cancers, its inhibition is potentially less prone to toxicities associated with current antimitotic agents, which also act on nondividing cells. Several Plk1 inhibitors are being evaluated as cancer treatment drugs. Based on the essential role of Plk1 during mitosis, Plk1 inhibitors target all rapidly dividing cells irrespective of their tumor suppressor or oncogene mutations. In this article, their mechanisms of action, efficacy and toxicity profile are discussed.
Collapse
Affiliation(s)
- Daniel C Christoph
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | |
Collapse
|
11
|
Peter B, Gleixner KV, Cerny-Reiterer S, Herrmann H, Winter V, Hadzijusufovic E, Ferenc V, Schuch K, Mirkina I, Horny HP, Pickl WF, Müllauer L, Willmann M, Valent P. Polo-like kinase-1 as a novel target in neoplastic mast cells: demonstration of growth-inhibitory effects of small interfering RNA and the Polo-like kinase-1 targeting drug BI 2536. Haematologica 2011; 96:672-80. [PMID: 21242189 PMCID: PMC3084913 DOI: 10.3324/haematol.2010.031328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/21/2010] [Accepted: 01/11/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In advanced systemic mastocytosis the response of neoplastic mast cells to conventional drugs is poor and the prognosis is bad. Current research is, therefore, attempting to identify novel drug targets in neoplastic mast cells. Polo-like kinase-1 is a serine/threonine kinase that plays an essential role in mitosis and has recently been introduced as a new target in myeloid leukemias and solid tumors. DESIGN AND METHODS In the present study, we analyzed the expression and function of Polo-like kinase-1 in neoplastic mast cells in systemic mastocytosis. RESULTS As determined by immunostaining, primary neoplastic mast cells as well as the human mast cell leukemia cell line HMC-1 displayed phosphorylated Polo-like kinase-1. In addition, neoplastic mast cells expressed Polo-like kinase-1 mRNA. Polo-like kinase-1-specific small interfering RNA induced apoptosis in neoplastic mast cells, whereas no effect was seen with a control small interfering RNA. BI 2536, a drug targeting Polo-like kinase-1, was found to inhibit proliferation in HMC-1 cells in a dose-dependent manner. BI 2536 also inhibited the growth of primary neoplastic mast cells and cells of the canine mastocytoma cell line C2. The growth-inhibitory effects of BI 2536 on neoplastic mast cells were found to be associated with mitotic arrest and subsequent apoptosis. Finally, BI 2536 was found to synergize with the KIT-targeting kinase inhibitor midostaurin (PKC412) in inhibiting the growth of neoplastic mast cells. In control experiments, BI 2536 did not induce apoptosis in normal cultured mast cells. CONCLUSIONS Collectively, our data show that Polo-like kinase-1 is a potential therapeutic target in neoplastic mast cells. Targeting Polo-like kinase-1 may be an attractive pharmacological concept in the management of advanced systemic mastocytosis.
Collapse
Affiliation(s)
- Barbara Peter
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
- Department for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Karoline V. Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Sabine Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | | | - Viviane Winter
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Emir Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
- Department for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Veronika Ferenc
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Karina Schuch
- Institute of Immunology, Medical University of Vienna
| | | | | | | | | | - Michael Willmann
- Department for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
- Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| |
Collapse
|
12
|
Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 2010; 9:643-60. [PMID: 20671765 DOI: 10.1038/nrd3184] [Citation(s) in RCA: 535] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The polo-like kinase 1 (PLK1) acts in concert with cyclin-dependent kinase 1-cyclin B1 and Aurora kinases to orchestrate a wide range of critical cell cycle events. Because PLK1 has been preclinically validated as a cancer target, small-molecule inhibitors of PLK1 have become attractive candidates for anticancer drug development. Although the roles of the closely related PLK2, PLK3 and PLK4 in cancer are less well understood, there is evidence showing that PLK2 and PLK3 act as tumour suppressors through their functions in the p53 signalling network, which guards the cell against various stress signals. In this article, recent insights into the biology of PLKs will be reviewed, with an emphasis on their role in malignant transformation, and progress in the development of small-molecule PLK1 inhibitors will be examined.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
13
|
Gleixner KV, Ferenc V, Peter B, Gruze A, Meyer RA, Hadzijusufovic E, Cerny-Reiterer S, Mayerhofer M, Pickl WF, Sillaber C, Valent P. Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res 2010; 70:1513-23. [PMID: 20145140 DOI: 10.1158/0008-5472.can-09-2181] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In most patients with chronic myeloid leukemia (CML), the disease can be kept under control using the BCR/ABL kinase inhibitor imatinib. Nevertheless, resistance or intolerance to imatinib and other BCR/ABL inhibitors may occur during therapy. Therefore, CML research is focusing on novel targets and targeted drugs. Polo-like kinase 1 (Plk1) is a serine/threonine kinase that plays an essential role in mitosis. In this study, we examined the expression of Plk1 in CML cells and its potential role as a therapeutic target. Plk1 was found to be expressed in phosphorylated form in the CML cell line K562 as well as in primary CML cells in all patients tested. Inhibition of BCR/ABL by imatinib or nilotinib (AMN107) led to decreased expression of the Plk1 protein in CML cells, suggesting that BCR/ABL promotes Plk1 generation. Silencing of Plk1 in CML cells by a small interfering RNA approach was followed by cell cycle arrest and apoptosis. Furthermore, the Plk1-targeting drug BI 2536 was found to inhibit proliferation of imatinib-sensitive and imatinib-resistant CML cells, including leukemic cells, carrying the T315 mutation of BCR/ABL with reasonable IC(50) values (1-50 nmol/L). The growth-inhibitory effects of BI 2536 on CML cells were found to be associated with cell cycle arrest and apoptosis. Moreover, BI 2536 was found to synergize with imatinib and nilotinib in producing growth inhibition in CML cells. In conclusion, Plk1 is expressed in CML cells and may represent a novel, interesting target in imatinib-sensitive and imatinib-resistant CML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Drug Delivery Systems/methods
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm/drug effects
- Female
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Leukemic
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Pteridines/administration & dosage
- Pteridines/therapeutic use
- Pyrimidines/therapeutic use
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Institute of Immunology, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ikezoe T, Yang J, Nishioka C, Takezaki Y, Tasaka T, Togitani K, Koeffler HP, Yokoyama A. A novel treatment strategy targeting polo-like kinase 1 in hematological malignancies. Leukemia 2009; 23:1564-76. [PMID: 19421227 DOI: 10.1038/leu.2009.94] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 01/08/2023]
Abstract
Polo-like kinase1 (PLK1) belongs to the family of serine/threonine kinases and plays an important role in centrosome maturation, bipolar spindle formation, and cytokinesis during mitosis. We found in this study that PLK1 was aberrantly highly expressed in a variety of human leukemia cell lines (n=20), as well as, freshly isolated leukemia cells from individuals with acute myelogenous leukemia (n=50) and acute lymphoblastic leukemia (n=15) compared with bone marrow mononuclear cells from healthy volunteers (n=13) (acute myelogenous leukemia, P=0.016; acute lymphoblastic leukemia, P=0.008), as measured by real-time RT-PCR. Downregulation of PLK1 by a small interfering RNA in NB4 acute myelogenous leukemia cells inhibited their proliferation. GW843682X is a novel selective PLK1 inhibitor. The compound-induced growth inhibition, caused accumulation of cells in the G2/M phase of the cell cycle and mediated apoptosis of human leukemia cells. Pre-treatment of cells with the caspase inhibitor Z-VAD-FMK attenuated the action of GW843682X in leukemia cells, indicating the involvement of the caspase pathway in the PLK1 inhibitor-mediated apoptosis. Furthermore, we found that the PLK1 inhibitor synergistically potentiated the growth inhibition and apoptosis of leukemia cells when combined with tubulin-depolymerizing agent vincristine. Taken together, targeting PLK1 may be a promising treatment strategy for individuals with leukemia.
Collapse
Affiliation(s)
- T Ikezoe
- Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Kochi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yoshida S, Furukawa N, Haruta S, Tanase Y, Kanayama S, Noguchi T, Sakata M, Yamada Y, Oi H, Kobayashi H. Theoretical model of treatment strategies for clear cell carcinoma of the ovary: focus on perspectives. Cancer Treat Rev 2009; 35:608-15. [PMID: 19665848 DOI: 10.1016/j.ctrv.2009.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/02/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Among epithelial ovarian cancer (EOC), clear cell carcinomas (CCC) differ from the other histologic types with respect to their clinical characteristics, carcinogenesis and prognosis. The aim of this review is to summarize the current knowledge and future perspective on the new therapeutic targets and treatment strategies for CCC. MATERIALS AND METHODS The present article reviews the English language literature for preclinical and clinical trials and promising molecular targets on CCC of the ovary, based on the gene expression profiling studies. RESULTS Here, we show that (1) the expression of the genes involved in transcription, signaling, cell cycle, adhesion, matrix, proteinase, and detoxification was greatly increased in the CCC carcinogenesis; (2) upregulation of hepatocyte nuclear factor-1beta (HNF-1beta) and Polo-like kinase (PLK)-Early mitotic inhibitor-1 (Emi1) as well as their downstream targets are specifically found in most CCC. The promising molecular targeting approach will emerge in the context of HNF-1beta and PLK-Emi1 biology; and 3) several significant common pathways observed in CCC of the ovary overlap the datasets identified in CCC of the kidney. To improve the outcome in CCC therapy, we must learn various adaptive treatment strategies for renal CCC, although it is not supported by any preliminary clinical data. CONCLUSION The inhibitors that target HNF-1beta and PLK-Emi1 and their downstream signaling molecules would be evaluated. In addition, the therapy currently used in renal CCC should be considered as an alternative for the present treatments or an attractive therapeutic option for ovarian CCC. The challenges accompanying the recent advance are described in this review article.
Collapse
Affiliation(s)
- Shozo Yoshida
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stapnes C, Gjertsen BT, Reikvam H, Bruserud Ø. Targeted therapy in acute myeloid leukaemia: current status and future directions. Expert Opin Investig Drugs 2009; 18:433-55. [DOI: 10.1517/14728220902787628] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Camilla Stapnes
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Bjørn Tore Gjertsen
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Håkon Reikvam
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Øystein Bruserud
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| |
Collapse
|
17
|
Lobjois V, Jullien D, Bouché JP, Ducommun B. The polo-like kinase 1 regulates CDC25B-dependent mitosis entry. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:462-8. [PMID: 19185590 DOI: 10.1016/j.bbamcr.2008.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 12/19/2022]
Abstract
Activation of cyclin-dependent kinase complexes (CDK) at key cell cycle transitions is dependent on their dephosphorylation by CDC25 dual-specificity phosphatases (CDC25A, B and C in human). The CDC25B phosphatase plays an essential role in controlling the activity of CDK1-cyclin B complexes at the entry into mitosis and together with polo-like kinase 1 (PLK1) in regulating the resumption of cell cycle progression after DNA damage-dependent checkpoint arrest in G2. In this study, we analysed the regulation of CDC25B-dependent mitosis entry by PLK1. We demonstrate that PLK1 activity is essential for the relocation of CDC25B from the cytoplasm to the nucleus. By gain and loss of function analyses, we show that PLK1 stimulates CDC25B-induced mitotic entry in both normal conditions and after DNA-damage induced G2/M arrest. Our results support a model in which the relocalisation of CDC25B to the nucleus at the G2-M transition by PLK1 regulates its mitotic inducing activity.
Collapse
Affiliation(s)
- Valerie Lobjois
- Université de Toulouse, LBCMCP, 118 Route de Narbonne, CNRS, LBCMCP-UMR5088, F-31062 Toulouse, France
| | | | | | | |
Collapse
|