1
|
Silva-Velasco RC, Villanueva-Castillo B, Haanes KA, MaassenVanDenBrink A, Villalón CM. Pharmacological Nature of the Purinergic P2Y Receptor Subtypes That Participate in the Blood Pressure Changes Produced by ADPβS in Rats. Pharmaceuticals (Basel) 2023; 16:1683. [PMID: 38139810 PMCID: PMC10747513 DOI: 10.3390/ph16121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Purine nucleosides (adenosine) and nucleotides such as adenosine mono/di/triphosphate (AMP/ADP/ATP) may produce complex cardiovascular responses. For example, adenosine-5'-(β-thio)-diphosphate (ADPβS; a stable synthetic analogue of ADP) can induce vasodilatation/vasodepressor responses by endothelium-dependent and independent mechanisms involving purinergic P2Y receptors; however, the specific subtypes participating in these responses remain unknown. Therefore, this study investigated the receptor subtypes mediating the blood pressure changes induced by intravenous bolus of ADPβS in male Wistar rats in the absence and presence of central mechanisms with the antagonists MRS2500 (P2Y1), PSB0739 (P2Y12), and MRS2211 (P2Y13). For this purpose, 120 rats were divided into 60 anaesthetised rats and 60 pithed rats, and further subdivided into four groups (n = 30 each), namely: (a) anaesthetised rats, (b) anaesthetised rats with bilateral vagotomy, (c) pithed rats, and (d) pithed rats continuously infused (intravenously) with methoxamine (an α1-adrenergic agonist that restores systemic vascular tone). We observed, in all four groups, that the immediate decreases in diastolic blood pressure produced by ADPβS were exclusively mediated by peripheral activation of P2Y1 receptors. Nevertheless, the subsequent increases in systolic blood pressure elicited by ADPβS in pithed rats infused with methoxamine probably involved peripheral activation of P2Y1, P2Y12, and P2Y13 receptors.
Collapse
Affiliation(s)
- Roberto C. Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, Ciudad de México 14330, Mexico; (R.C.S.-V.); (B.V.-C.)
| | - Belinda Villanueva-Castillo
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, Ciudad de México 14330, Mexico; (R.C.S.-V.); (B.V.-C.)
| | - Kristian A. Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, 2600 Glostrup, Denmark;
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Universtitetsparken 13, 2100 Copenhagen Ø, Denmark
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - Carlos M. Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, Ciudad de México 14330, Mexico; (R.C.S.-V.); (B.V.-C.)
| |
Collapse
|
2
|
Miguel-Martínez AD, Linares-Bedolla J, Villanueva-Castillo B, Haanes KA, MaassenVanDenBrink A, Villalón CM. Pharmacological Profile of the Purinergic P2Y Receptors That Modulate, in Response to ADPβS, the Vasodepressor Sensory CGRPergic Outflow in Pithed Rats. Pharmaceuticals (Basel) 2023; 16:ph16030475. [PMID: 36986572 PMCID: PMC10056196 DOI: 10.3390/ph16030475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP), an endogenous neuropeptide released from perivascular sensory nerves, exerts a powerful vasodilatation. Interestingly, adenosine triphosphate (ATP) stimulates the release of CGRP by activation of prejunctional P2X2/3 receptors, and adenosine 5'-O-2-thiodiphosphate (ADPβS), a stable adenosine diphosphate (ADP) analogue, produces vasodilator/vasodepressor responses by endothelial P2Y1 receptors. Since the role of ADP in the prejunctional modulation of the vasodepressor sensory CGRPergic drive and the receptors involved remain unknown, this study investigated whether ADPβS inhibits this CGRPergic drive. Accordingly, 132 male Wistar rats were pithed and subsequently divided into two sets. In set 1, ADPβS (5.6 and 10 µg/kg·min) inhibited the vasodepressor CGRPergic responses by electrical stimulation of the spinal T9-T12 segment. This inhibition by ADPβS (5.6 µg/kg·min) was reverted after i.v. administration of the purinergic antagonists MRS2500 (300 µg/kg; P2Y1) or MRS2211 (3000 µg/kg; P2Y13), but not by PSB0739 (300 µg/kg; P2Y12), MRS2211 (1000 µg/kg; P2Y13) or the KATP blocker glibenclamide (20 mg/kg). In set 2, ADPβS (5.6 µg/kg·min) failed to modify the vasodepressor responses to exogenous α-CGRP. These results suggest that ADPβS inhibits CGRP release in perivascular sensory nerves. This inhibition, apparently unrelated to activation of ATP-sensitive K+ channels, involves P2Y1 and probably P2Y13, but not P2Y12 receptors.
Collapse
Affiliation(s)
- Alejandro D Miguel-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, Ciudad de Mexico C.P. 14330, Mexico
| | - Juan Linares-Bedolla
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, Ciudad de Mexico C.P. 14330, Mexico
| | - Belinda Villanueva-Castillo
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, Ciudad de Mexico C.P. 14330, Mexico
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, Ciudad de Mexico C.P. 14330, Mexico
| |
Collapse
|
3
|
Ibogaine-Mediated ROS/Antioxidant Elevation in Isolated Rat Uterus Is β-Adrenergic Receptors and K ATP Channels Mediated. Antioxidants (Basel) 2021; 10:antiox10111792. [PMID: 34829663 PMCID: PMC8615200 DOI: 10.3390/antiox10111792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Ibogaine effects are mediated by cellular receptors, ATP depletion followed by ROS production and antioxidant enzyme activity elevation in a dose and time dependent manner. Since the role of KATP channels and β-adrenoceptors in ROS cellular circuit was established here we explored their role in ibogaine pro-antioxidant effectiveness. Single dose of ibogaine (10 mg/L i.e., 28.8 μmol/L) was applied to isolated rat uterus (spontaneous and Ca2+-stimulated) and contractility and antioxidant enzymes activity were monitored during 4 h. Ibogaine increased amplitude and frequency of spontaneous active uteri immediately after addition that was prevented by propranolol (β1 and β2 adrenoceptors selective antagonists) and glibenclamide (KATP sensitive channels inhibitor; only frequency) pre-treatment. In Ca2+-stimulated uteri, ibogaine decreased both amplitude and frequency after 4 h. Pre-treatment with propranolol abolished ibogaine induced amplitude lowering, while glibenclamide had no effect. In both types of active uterus, ibogaine induced a decrease in SOD1 and an increase in CAT activity after 2 h. In Ca2+-stimulated uterus, there was also a decrease of SOD2 activity after 2 h. After 4 h, SOD1 activity returned to the baseline level, but GSH-Px activity increased. Pre-treatment with both propranolol and glibenclamide abolished observed changes of antioxidant enzymes activity suggesting that ibogaine pro-antioxidative effectiveness is β-adrenergic receptors and KATP channels mediated.
Collapse
|
4
|
The Effects of Ibogaine on Uterine Smooth Muscle Contractions: Relation to the Activity of Antioxidant Enzymes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5969486. [PMID: 29599898 PMCID: PMC5828116 DOI: 10.1155/2018/5969486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/28/2017] [Indexed: 11/21/2022]
Abstract
Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga. It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H2O2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H2O2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis.
Collapse
|
5
|
Alotaibi M. Changes in expression of P2X7 receptors in rat myometrium at different gestational stages and the mechanism of ATP-induced uterine contraction. Life Sci 2018. [PMID: 29524518 DOI: 10.1016/j.lfs.2018.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS Given the importance of ATP in the control of uterine activity for successful labor and involution, this study was performed to measure the level of P2X7 receptors (P2X7Rs) in rat myometrium at different gestational stages and to investigate the mechanisms of ATP-induced uterine contraction. MATERIALS AND METHODS Myometrial tissues were obtained from rats at different gestational stages and the level of P2X7Rs was measured by ELISA. In other experiments, the effect of 1 mM ATP was tested on spontaneous contraction and the underlying mechanisms were investigated. KEY FINDINGS P2X7Rs were expressed in nonpregnant uterine tissues, progressively increased throughout pregnancy, and markedly peaked during postpartum involution. ATP significantly increased the force of spontaneous contraction in all uterine strips from different gestational stages with marked increase during labor and postpartum. ATP could not maintain the force when external Ca2+ was removed. In addition, ATP was able to cause tonic transient contraction in the absence of external Ca2+. SIGNIFICANCE P2X7Rs are functionally regulated and contributed to ATP-induced uterine contraction. The sensitivity of the myometrium to ATP increases as pregnancy progresses and it involves Ca2+ influx and Ca2+ release pathways. The clear effects of ATP on contractility suggest its physiological requirement for successful labor and postpartum involution.
Collapse
Affiliation(s)
- Mohammed Alotaibi
- Department of Physiology, College of Medicine, King Saud University, P.O Box 2925, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
6
|
Mastropaolo M, Zizzo MG, Auteri M, Mulè F, Serio R. Arginine vasopressin, via activation of post-junctional V1 receptors, induces contractile effects in mouse distal colon. ACTA ACUST UNITED AC 2013; 187:29-34. [DOI: 10.1016/j.regpep.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
|
7
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Pharmacological characterization of uracil nucleotide-preferring P2Y receptors modulating intestinal motility: a study on mouse ileum. Purinergic Signal 2011; 8:275-85. [PMID: 22102167 DOI: 10.1007/s11302-011-9281-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023] Open
Abstract
We investigated the possible modulation of the intestinal contractility by uracil nucleotides (UTP and UDP), using as model the murine small intestine. Contractile activity of a mouse ileum longitudinal muscle was examined in vitro as changes in isometric tension. Transcripts encoding for uracil-sensitive receptors was investigated by RT-PCR. UDP induced muscular contractions, sensitive to PPADS, suramin, or MRS 2578, P2Y(6) receptor antagonist, and mimicked by PSB 0474, P2Y(6)-receptor agonist. UTP induced biphasic effects characterized by an early inhibition of the spontaneous contractile activity followed by muscular contraction. UTP excitatory effects were antagonized by PPADS, suramin, but not by MRS 2578, whilst the inhibitory effects were antagonized by PPADS but not by suramin or MRS 2578. UTPγS, P2Y(2)/(4) receptor agonist but not 2-thio-UTP, P2Y(2) receptor agonist, mimicked UTP effects. The inhibitory effects induced by UTP was abolished by ATP desensitization and increased by extracellular acidification. UDP or UTP responses were insensitive to TTX, atropine, or L-NAME antagonized by U-73122, inhibitor of phospholipase C (PLC) and preserved in the presence of nifedipine or low Ca(2+) solution. Transcripts encoding the uracil nucleotide-preferring receptors were expressed in mouse ileum. Functional postjunctional uracil-sensitive receptors are present in the longitudinal muscle of the mouse ileum. Activation of P2Y(6) receptors induces muscular contraction, whilst activation of P2Y(4) receptors leads to inhibition of the contractile activity. Indeed, the presence of atypical UTP-sensitive receptors leading to muscular contraction is suggested. All uracil-sensitive receptors are linked to the PLC pathway.
Collapse
|
9
|
Borrelli F, Capasso R, Severino B, Fiorino F, Aviello G, De Rosa G, Mazzella M, Romano B, Capasso F, Fasolino I, Izzo AA. Inhibitory effects of bromelain, a cysteine protease derived from pineapple stem (Ananas comosus), on intestinal motility in mice. Neurogastroenterol Motil 2011; 23:745-e331. [PMID: 21689210 DOI: 10.1111/j.1365-2982.2011.01735.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bromelain (BR) is a cysteine protease with inhibitory effects on intestinal secretion and inflammation. However, its effects on intestinal motility are largely unexplored. Thus, we investigated the effect of this plant-derived compound on intestinal contractility and transit in mice. METHODS Contractility in vitro was evaluated by stimulating the mouse isolated ileum, in an organ bath, with acetylcholine, barium chloride, or electrical field stimulation. Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine. Transit was also evaluated in pathophysiologic states induced by the pro-inflammatory compound croton oil or by the diabetogenic agent streptozotocin. KEY RESULTS Bromelain inhibited the contractions induced by different spasmogenic compounds in the mouse ileum with similar potency. The antispasmodic effect was reduced or counteracted by the proteolytic enzyme inhibitor, gabexate (15 × 10(-6) mol L(-1) ), protease-activated receptor-2 (PAR-2) antagonist, N(1) -3-methylbutyryl-N(4) -6-aminohexanoyl-piperazine (10(-4) mol L(-1) ), phospholipase C (PLC) inhibitor, neomycin (3 × 10(-3) mol L(-1) ), and phosphodiesterase 4 (PDE4) inhibitor, rolipram (10(-6) mol L(-1) ). In vivo, BR preferentially inhibited motility in pathophysiologic states in a PAR-2-antagonist-sensitive manner. CONCLUSIONS & INFERENCES Our data suggest that BR inhibits intestinal motility - preferentially in pathophysiologic conditions - with a mechanism possibly involving membrane PAR-2 and PLC and PDE4 as intracellular signals. Bromelain could be a lead compound for the development of new drugs, able to normalize the intestinal motility in inflammation and diabetes.
Collapse
Affiliation(s)
- F Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II, Via D. Montesano 49, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
ATP induces contraction mediated by the P2Y(2) receptor in rat intestinal subepithelial myofibroblasts. Eur J Pharmacol 2011; 657:152-8. [PMID: 21296070 DOI: 10.1016/j.ejphar.2011.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 01/29/2023]
Abstract
Intestinal subepithelial myofibroblasts (IMFs) exist just under the epithelial membrane directly facing the mucosal microvascular capillary surface distributed in the lamina propria. In the gastrointestinal tract, ATP is released from epithelial and endothelial cells in response to mechanical stimuli. Although it has been reported that mechanical stimuli evoke synchronized Ca(2+) waves in cultured IMFs, the contractile responses by ATP stimulation have not been examined. The aim of this study was to clarify the mechanism of the contraction of IMFs in response to ATP. ATP (1-30μM) induced contraction in a concentration-dependent manner. These contractions were inhibited by LaCl(3) (100-300μM) and by Ca(2+)-free solution (0.5mM EGTA). Fura-2/Ca(2+) signals indicated that ATP (1-10μM) elicited transient increases in intracellular Ca(2+) concentration ([Ca(2+)](i)). In addition, αβ-methylene-ATP (10, 30 and 300μM), a broad spectrum P2X agonist at a concentration higher than 100μM, induced neither contraction nor [Ca(2+)](i) rise. UTP (1-30μM), a selective P2Y(2) and P2Y(4) agonist in rodent, induced concentration-dependent contractions and [Ca(2+)](i) increases, whereas ADP and UDP (10μM) did not induce contractions. Pretreatment with suramin (30-100μM), a relatively selective P2Y(2) antagonist, strongly inhibited ATP- and UTP-induced contractions and [Ca(2+)](i) increases. However, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS: 10-30μM), a receptor antagonist for several P2X and P2Y but less effective to P2Y(2) receptor, failed to inhibit ATP- and UTP-induced contractions and [Ca(2+)](i) increases. By RT-PCR, mRNA expressions of the P2Y(1) and P2Y(2) receptors, but not P2Y(4) or P2Y(6), were detected in IMFs. These results suggest that ATP induces [Ca(2+)](i)-dependent contraction in IMFs, which is mediated through the P2Y(2) receptor.
Collapse
|
11
|
Macmillan D, McCarron JG. The phospholipase C inhibitor U-73122 inhibits Ca(2+) release from the intracellular sarcoplasmic reticulum Ca(2+) store by inhibiting Ca(2+) pumps in smooth muscle. Br J Pharmacol 2010; 160:1295-301. [PMID: 20590621 DOI: 10.1111/j.1476-5381.2010.00771.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The sarcoplasmic reticulum (SR) releases Ca(2+) via inositol 1,4,5-trisphosphate receptors (IP(3)R) in response to IP(3)-generating agonists. Ca(2+) release subsequently propagates as Ca(2+) waves. To clarify the role of IP(3) production in wave generation, the contribution of a key enzyme in the production of IP(3) was examined using a phosphoinositide-specific phospholipase C (PI-PLC) inhibitor, U-73122. EXPERIMENTAL APPROACH Single colonic myocytes were voltage-clamped in whole-cell configuration and cytosolic Ca(2+) concentration ([Ca(2+)](cyto)) measured using fluo-3. SR Ca(2+) release was evoked either by activation of IP(3)Rs (by carbachol or photolysis of caged IP(3)) or ryanodine receptors (RyRs; by caffeine). KEY RESULTS U-73122 inhibited carbachol-evoked [Ca(2+)](cyto) transients. The drug also inhibited [Ca(2+)](cyto) increases, evoked by direct IP(3)R activation (by photolysis of caged IP(3)) and RyR activation (by caffeine), which do not require PI-PLC activation. U-73122 also increased steady-state [Ca(2+)](cyto) and slowed the rate of Ca(2+) removal from the cytoplasm. An inactive analogue of U-73122, U-73343, was without effect on either IP(3)R- or RyR-mediated Ca(2+) release. CONCLUSIONS AND IMPLICATIONS U-73122 inhibited carbachol-evoked [Ca(2+)](cyto) increases. However, the drug also reduced Ca(2+) release when evoked by direct activation of IP(3)R or RyR, slowed Ca(2+) removal and increased steady-state [Ca(2+)](cyto). These results suggest U-73122 reduces IP(3)-evoked Ca(2+) transients by inhibiting the SR Ca(2+) pump to deplete the SR of Ca(2+) rather than by inhibiting PI-PLC.
Collapse
Affiliation(s)
- D Macmillan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|