1
|
Gao M, Ooms JF, Leurs R, Vischer HF. Histamine H 3 Receptor Isoforms: Insights from Alternative Splicing to Functional Complexity. Biomolecules 2024; 14:761. [PMID: 39062475 PMCID: PMC11274711 DOI: 10.3390/biom14070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative splicing significantly enhances the diversity of the G protein-coupled receptor (GPCR) family, including the histamine H3 receptor (H3R). This post-transcriptional modification generates multiple H3R isoforms with potentially distinct pharmacological and physiological profiles. H3R is primarily involved in the presynaptic inhibition of neurotransmitter release in the central nervous system. Despite the approval of pitolisant for narcolepsy (Wakix®) and daytime sleepiness in adults with obstructive sleep apnea (Ozawade®) and ongoing clinical trials for other H3R antagonists/inverse agonists, the functional significance of the numerous H3R isoforms remains largely enigmatic. Recent publicly available RNA sequencing data have confirmed the expression of multiple H3R isoforms in the brain, with some isoforms exhibiting unique tissue-specific distribution patterns hinting at isoform-specific functions and interactions within neural circuits. In this review, we discuss the complexity of H3R isoforms with a focus on their potential roles in central nervous system (CNS) function. Comparative analysis across species highlights evolutionary conservation and divergence in H3R splicing, suggesting species-specific regulatory mechanisms. Understanding the functionality of H3R isoforms is crucial for the development of targeted therapeutics. This knowledge will inform the design of more precise pharmacological interventions, potentially enhancing therapeutic efficacy and reducing adverse effects in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Henry F. Vischer
- Amsterdam Institute of Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.G.); (J.F.O.); (R.L.)
| |
Collapse
|
2
|
Gao M, Dekker ME, Leurs R, Vischer HF. Pharmacological characterization of seven human histamine H 3 receptor isoforms. Eur J Pharmacol 2024; 968:176450. [PMID: 38387718 DOI: 10.1016/j.ejphar.2024.176450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
The histamine H3 receptor (H3R) regulates as a presynaptic G protein-coupled receptor the release of histamine and other neurotransmitters in the brain, and is consequently a potential therapeutic target for neuronal disorders. The human H3R encodes for seven splice variants that vary in the length of intracellular loop 3 and/or the C-terminal tail but are all able to induce heterotrimeric Gi protein signaling. The last two decades H3R drug discovery and lead optimization has been exclusively focused on the 445 amino acids-long reference isoform H3R-445. In this study, we pharmacologically characterized for the first time all seven H3R isoforms by determining their binding affinities for reference histamine H3 receptor agonists and inverse agonists. The H3R-453, H3R-415, and H3R-413 isoforms display similar binding affinities for all ligands as the H3R-445. However, increased agonist binding affinities were observed for the three shorter isoforms H3R-329, H3R-365, and H3R-373, whereas inverse agonists such as the approved anti-narcolepsy drug pitolisant (Wakix®) displayed significantly decreased binding affinities for the latter two isoforms. This opposite change in binding affinity of agonist versus inverse agonists on H3R-365 and H3R-373 is associated with their higher constitutive activity in a cAMP biosensor assay as compared to the other five isoforms. The observed differences in pharmacology between longer and shorter H3R isoforms should be considered in future drug discovery programs.
Collapse
Affiliation(s)
- Meichun Gao
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Mabel E Dekker
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| | - Henry F Vischer
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Díaz NF, Flores-Herrera H, García-López G, Molina-Hernández A. Central Histamine, the H3-Receptor and Obesity Therapy. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:516-522. [DOI: 10.2174/1871527318666190703094846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 11/22/2022]
Abstract
The brain histaminergic system plays a pivotal role in energy homeostasis, through H1-
receptor activation, it increases the hypothalamic release of histamine that decreases food intake and
reduces body weight. One way to increase the release of hypothalamic histamine is through the use of
antagonist/inverse agonist for the H3-receptor. Histamine H3-receptors are auto-receptors and heteroreceptors
located on the presynaptic membranes and cell soma of neurons, where they negatively regulate
the synthesis and release of histamine and other neurotransmitters in the central nervous system.
Although several compounds acting as H3-receptor antagonist/inverse agonists have been developed,
conflicting results have been reported and only one has been tested as anti-obesity in humans. Animal
studies revealed the opposite effect in food intake, energy expeditor, and body weight, depending on
the drug, spice, and route of administration, among others. The present review will explore the state of
art on the effects of H3-receptor ligands on appetite and body-weight, going through the following: a
brief overview of the circuit involved in the control of food intake and energy homeostasis, the participation
of the histaminergic system in food intake and body weight, and the H3-receptor as a potential
therapeutic target for obesity.
Collapse
Affiliation(s)
- Néstor F. Díaz
- Departamento de Fisiologia y Desarrollo Celular, Laboratorio de Investigacion en Celulas Troncales y Biologia del Desarrollo, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, 11000 Ciudad de Mexico, Mexico
| | - Héctor Flores-Herrera
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, 11000 Ciudad de Mexico, Mexico
| | - Guadalupe García-López
- Departamento de Fisiologia y Desarrollo Celular, Laboratorio de Investigacion en Celulas Troncales y Biologia del Desarrollo, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, 11000 Ciudad de Mexico, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiologia y Desarrollo Celular, Laboratorio de Investigacion en Celulas Troncales y Biologia del Desarrollo, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, 11000 Ciudad de Mexico, Mexico
| |
Collapse
|
4
|
Nieto-Alamilla G, Márquez-Gómez R, García-Gálvez AM, Morales-Figueroa GE, Arias-Montaño JA. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol Pharmacol 2016; 90:649-673. [PMID: 27563055 DOI: 10.1124/mol.116.104752] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Among the four G protein-coupled receptors (H1-H4) identified as mediators of the biologic effects of histamine, the H3 receptor (H3R) is distinguished for its almost exclusive expression in the nervous system and the large variety of isoforms generated by alternative splicing of the corresponding mRNA. Additionally, it exhibits dual functionality as autoreceptor and heteroreceptor, and this enables H3Rs to modulate the histaminergic and other neurotransmitter systems. The cloning of the H3R cDNA in 1999 by Lovenberg et al. allowed for detailed studies of its molecular aspects. In this work, we review the characteristics of the H3R, namely, its structure, constitutive activity, isoforms, signal transduction pathways, regional differences in expression and localization, selective agonists, antagonists and inverse agonists, dimerization with other neurotransmitter receptors, and the main presynaptic and postsynaptic effects resulting from its activation. The H3R has attracted interest as a potential drug target for the treatment of several important neurologic and psychiatric disorders, such as Alzheimer and Parkinson diseases, Gilles de la Tourette syndrome, and addiction.
Collapse
Affiliation(s)
- Gustavo Nieto-Alamilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ricardo Márquez-Gómez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ana-Maricela García-Gálvez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| |
Collapse
|
5
|
Mocking TAM, Bosma R, Rahman SN, Verweij EWE, McNaught-Flores DA, Vischer HF, Leurs R. Molecular Aspects of Histamine Receptors. HISTAMINE RECEPTORS 2016. [DOI: 10.1007/978-3-319-40308-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Gbahou F, Rouleau A, Arrang JM. The histamine autoreceptor is a short isoform of the H₃ receptor. Br J Pharmacol 2012; 166:1860-71. [PMID: 22356432 DOI: 10.1111/j.1476-5381.2012.01913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The histamine H(3) receptor was identified as the autoreceptor of brain histaminergic neurons. After its cloning, functional H(3) receptor isoforms generated by a deletion in the third intracellular loop were found in the brain. Here, we determined if this autoreceptor was the long or the short isoform. EXPERIMENTAL APPROACH We hypothesized that the deletion would affect H(3) receptor stereoselectivity. The effects of the enantiomers of two chiral ligands, N(α)-methyl-α-chloromethylhistamine (N(α) Me-αClMeHA) and sopromidine, were investigated on cAMP formation at the H(3(445)) and H(3(413)) receptor isoforms, common to all species. They were further compared with their effects at autoreceptors. They were also compared on [(35)S]GTPγ[S] binding to membranes of rat cerebral cortex, striatum and hypothalamus, the richest area in autoreceptors. KEY RESULTS The stereoselectivity of N(α) Me-αClMeHA enantiomers as agonists was similar at the H(3(413)) receptor isoform and autoreceptors, but lower at the long isoform. While (S) sopromidine did not discriminate between the isoforms, (R) sopromidine was an antagonist at the H(3(413)) receptor isoform and autoreceptors, but a full agonist at the long isoform. In rat brain, stereoselectivity of N(α) Me-αClMeHA was higher in the hypothalamus than in cerebral cortex or striatum, whereas the opposite pattern was found for sopromidine. CONCLUSIONS AND IMPLICATIONS The pharmacological profiles of H(3) receptor isoforms differed markedly, showing that the function of autoreceptors was fulfilled by a short isoform, such as the H(3(413)) receptor. Development of drugs selectively targeting autoreceptors might enhance their therapeutic efficacy and/or decrease incidence of side effects.
Collapse
Affiliation(s)
- F Gbahou
- Laboratoire de Neurobiologie et Pharmacologie Moléculaire, Centre de Psychiatrie et Neurosciences (CPN, U 894), INSERM, Paris, France
| | | | | |
Collapse
|
7
|
Kuhne S, Wijtmans M, Lim HD, Leurs R, de Esch IJP. Several down, a few to go: histamine H3 receptor ligands making the final push towards the market? Expert Opin Investig Drugs 2011; 20:1629-48. [PMID: 21992603 DOI: 10.1517/13543784.2011.625010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The histamine H(3) receptor (H(3)R) plays a pivotal role in a plethora of therapeutic areas. Blocking the H(3)R with antagonists/inverse agonists has been postulated to be of broad therapeutic use. Indeed, H(3)R antagonists/inverse agonists have been extensively evaluated in the clinic. AREAS COVERED Here, we address new developments, insights obtained and challenges encountered in the clinical evaluations. For recent H(3)R clinical candidates, the status and results of the corresponding clinical trial(s) will be discussed along with preclinical data. MAIN FINDINGS In all, it becomes evident that clinical evaluation of H(3)R antagonists/inverse agonists is characterized by mixed results. On one hand, Pitolisant has successfully passed several Phase II trials and seems to be the most advanced compound in the clinic now, being in Phase III. On the other hand, some compounds (e.g., PF-03654647 and MK-0249) failed at Phase II clinical level for several indications. EXPERT OPINION A challenging feature in H(3)R research is the multifaceted role of the receptor at a molecular/biochemical level, which can complicate targeting by small molecules at several (pre)clinical levels. Accordingly, H(3)R antagonists/inverse agonists require further testing to pinpoint the determinants for clinical efficacy and to aid in the final push towards the market.
Collapse
Affiliation(s)
- Sebastiaan Kuhne
- VU University Amsterdam, Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Tiligada E, Zampeli E, Sander K, Stark H. Histamine H3and H4receptors as novel drug targets. Expert Opin Investig Drugs 2009; 18:1519-31. [DOI: 10.1517/14728220903188438] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Kruszewski J. Leki przeciwhistaminowe w leczeniu alergicznego nieżytu nosa – uaktualnienie 2008/2009. Otolaryngol Pol 2009; 63:5-10. [DOI: 10.1016/s0030-6657(09)70180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Pierson PD, Fettes A, Freichel C, Gatti-McArthur S, Hertel C, Huwyler J, Mohr P, Nakagawa T, Nettekoven M, Plancher JM, Raab S, Richter H, Roche O, Rodríguez Sarmiento RM, Schmitt M, Schuler F, Takahashi T, Taylor S, Ullmer C, Wiegand R. 5-Hydroxyindole-2-carboxylic Acid Amides: Novel Histamine-3 Receptor Inverse Agonists for the Treatment of Obesity. J Med Chem 2009; 52:3855-68. [DOI: 10.1021/jm900409x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Alec Fettes
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Christian Freichel
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | | | - Cornelia Hertel
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Jörg Huwyler
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Peter Mohr
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Toshito Nakagawa
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Matthias Nettekoven
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Jean-Marc Plancher
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Susanne Raab
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Hans Richter
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Olivier Roche
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | | | - Monique Schmitt
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Franz Schuler
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Tadakatsu Takahashi
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Sven Taylor
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Christoph Ullmer
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Ruby Wiegand
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| |
Collapse
|