1
|
Wang Q, Zhang X, Suo Y, Chen Z, Wu M, Wen X, Lai Q, Yin X, Bao B. Normobaric hyperoxia therapy in acute ischemic stroke: A literature review. Heliyon 2024; 10:e23744. [PMID: 38223732 PMCID: PMC10787244 DOI: 10.1016/j.heliyon.2023.e23744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ischemic stroke is one of the most severe cerebrovascular diseases that leads to disability and death and seriously endangers health and quality of life. Insufficient oxygen supply is a critical factor leading to ischemic brain injury. However, effective therapies for ischemic stroke are lacking. Oxygen therapy has been shown to increase oxygen supply to ischemic tissues and improve prognosis after cerebral ischemia/reperfusion. Normobaric hyperoxia (NBHO) has been shown to have neuroprotective effects during ischemic stroke and is considered an appropriate neuroprotective therapy for ischemic stroke. Evidence indicates that NBHO plays a neuroprotective role through different mechanisms in acute ischemic stroke. Recent studies have also reported that combinations with other drug therapies can enhance the efficacy of NBHO in ischemic stroke. Here, we aimed to provide a summary of the potential mechanisms underlying the use of NBHO in ischemic stroke and an overview of the benefits of NBHO in ischemic stroke. Methods We screened 83 articles on PubMed and other websites. A quick review was conducted, including clinical trials, animal trials, and reviews of studies in the field of NBHO treatment published before July 1, 2023. The results were described and synthesized, and the bias risk and evidence quality of all included studies were assessed. Results The results were divided into four categories: the mechanism of NBHO, animal and clinical trials of NBHO, the clinical application and prospects of NBHO, and adverse reactions of NBHO. Conclusion NBHO is a simple, non-invasive therapy that may be delivered early after stroke onset, with promising potential for the treatment of acute ischemic stroke. However, the optimal therapeutic regimen remains uncertain. Further studies are needed to confirm its efficacy and safety.
Collapse
Affiliation(s)
| | | | | | - Zhiying Chen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Moxin Wu
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiaoqin Wen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Qin Lai
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiaoping Yin
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Bing Bao
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| |
Collapse
|
2
|
Ahmadi Somaghian S, Pajouhi N, Dezfoulian O, Pirnia A, Kaeidi A, Rasoulian B. The protective effects of hyperoxic pre-treatment in human-derived adipose tissue mesenchymal stem cells against in vitro oxidative stress and a rat model of renal ischaemia-reperfusion. Arch Physiol Biochem 2023:1-10. [PMID: 37506037 DOI: 10.1080/13813455.2023.2238918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Objective: Improvement of cell survival is essential for achieving better clinical outcomes in stem cell therapy. We investigated the effects of hyperoxic pre-treatment (HP) on the viability of human adipose stromal stem cells (ASCs).Materials and Methods: MTT and Western blot tests were used to assess cell viability and the expression of apoptosis-related proteins, respectively. For the in-vivo trial, the rats were subjected to renal ischaemia-reperfusion (IR).Results: The results showed that HP could significantly increase the viability of ASCs and decrease apoptotic markers (Bax/BCL-2 ratio and Caspase-3) compared with control cells. There were some additional effects with regard to the improvement of renal structure and function in the animal model. However, the difference between the treated and non-treated transplanted ASCs failed to reach significance.Conclusion: These results suggested that HP could increase the survival of ASCs against oxidative stress-induced damages in the in-vitro condition, but this strategy was not highly effective in renal IR.
Collapse
Affiliation(s)
- Shahram Ahmadi Somaghian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Naser Pajouhi
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Afshin Pirnia
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Science, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Bahram Rasoulian
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
3
|
Qi Z, Yuan S, Liu KJ, Ji X. Normobaric hyperoxia plays a neuroprotective role after cerebral ischemia by maintaining the redox homeostasis and the level of connexin43 in astrocytes. CNS Neurosci Ther 2022; 28:1509-1518. [PMID: 35698913 PMCID: PMC9437237 DOI: 10.1111/cns.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Acute cerebral ischemia is caused by an insufficient blood supply to brain tissue. Oxygen therapy, which is able to aid diffusion to reach the ischemic region, has been regarded as a possible treatment for cerebral ischemia. Recent animal and pilot clinical studies have reported that normobaric hyperoxia (NBO) showed neuroprotective effects if started soon after the onset of stroke. However, little is known about the role and mechanism of NBO treatment in astrocytes. Connexin43, one of the main gap junction proteins in astrocytes, is extremely sensitive to hypoxia and oxidative stress after cerebral ischemia. Aims In the present study, we used sutures to develop an ischemia/reperfusion model in rats to mimic clinical recanalization and investigated the role of connexin43 in NBO‐treated stroke rats, as well as the underlying mechanism of NBO therapy. Results Normobaric hyperoxia treatment maintained the homeostasis of oxidoreductases: glutathione peroxidase 4 (GPX4) and NADPH oxidase 4 (two important oxidoreductases) and rescued the ischemia/reperfusion‐induced downregulation of connexin43 protein in astrocytes. Furthermore, NBO treatment attenuated cerebral ischemia‐induced cytochrome c release from mitochondria and was involved in neuroprotective effects by regulating the GPX4 and connexin43 pathway, using Ferrostatin‐1 (an activator of GPX4) or Gap27 (an inhibitor of connexin43). Conclusions This study showed the neuroprotective effects of NBO treatment by reducing oxidative stress and maintaining the level of connexin43 in astrocytes, which could be used for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhifeng Qi
- Department of Neurology, Beijing Institute for Brain Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuhua Yuan
- Department of Neurology, Beijing Institute for Brain Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xunming Ji
- Department of Neurology, Beijing Institute for Brain Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Cheng Z, Geng X, Tong Y, Dornbos D, Hussain M, Rajah GB, Gao J, Ma L, Li F, Du H, Fisher M, Ding Y. Adjuvant High-Flow Normobaric Oxygen After Mechanical Thrombectomy for Anterior Circulation Stroke: a Randomized Clinical Trial. Neurotherapeutics 2021; 18:1188-1197. [PMID: 33410112 PMCID: PMC7787705 DOI: 10.1007/s13311-020-00979-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
Adjuvant neuroprotective therapies for acute ischemic stroke (AIS) have demonstrated benefit in animal studies, albeit without human translation. We investigated the safety and efficacy of high-flow normobaric oxygen (NBO) after endovascular recanalization in anterior circulation stroke. This is a prospective randomized controlled study. Eligible patients were randomized to receive high-flow NBO by a Venturi mask (FiO2 50%, flow 15 L/min) or routine low-flow oxygen supplementation by nasal cannula (flow 3 L/min) after vessel recanalization for 6 h. Patient demographics, procedural metrics, complications, functional outcomes, symptomatic intracranial hemorrhage (sICH), and infarct volume were assessed. A total of 91 patients were treated with high-flow NBO. NBO treatment revealed a common odds ratio of 2.2 (95% CI, 1.26 to 3.87) favoring the distribution of global disability scores on the mRS at 90 days. The mortality at 90 days was significantly lower in the NBO group than in the control group, with an absolute difference of 13.86% (rate ratio, 0.35; 95% CI, 0.13-0.93). A significant reduction of infarct volume as determined by MRI was noted in the NBO group. The median infarct volume was 9.4 ml versus 20.5 ml in the control group (beta coefficient, - 20.24; 95% CI, - 35.93 to - 4.55). No significant differences were seen in the rate of sICH, pneumonia, urinary infection, and seizures between the 2 groups. This study suggests that high-flow NBO therapy after endovascular recanalization is safe and effective in improving functional outcomes, decreasing mortality, and reducing infarct volumes in anterior circulation stroke patients within 6 h from stroke onset.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Xiaokun Geng
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China.
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, Michigan, 48201, USA.
| | - Yanna Tong
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - David Dornbos
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Neurosurgery, University of Tennessee Health Science Center and Semmes-Murphey Clinic, Memphis, Tennessee, USA
| | - Mohammed Hussain
- Department of Neurointerventional Surgery, Wesley Medical Center, Wichita, Kansas, USA
| | - Gary B Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, Michigan, 48201, USA
- Department of Neurosurgery, Munson Healthcare, Traverse City, Michigan, USA
| | - Jie Gao
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Linlin Ma
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Fenghai Li
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Huishan Du
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, Michigan, 48201, USA.
- John D. Dingell VA Medical Center, 4646 John R Street (11R), Detroit, Michigan, 48201, USA.
| |
Collapse
|
5
|
Wang Y, Yin CP, Tai YL, Zhao ZJ, Hou ZY, Wang QJ. Apoptosis inhibition is involved in improvement of sevoflurane-induced cognitive impairment following normobaric hyperoxia preconditioning in aged rats. Exp Ther Med 2021; 21:203. [PMID: 33500697 PMCID: PMC7818554 DOI: 10.3892/etm.2021.9636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Sevoflurane, a commonly used anesthetic agent has been confirmed to induce cognitive impairment in aged rats. Normobaric hyperoxia preconditioning has been demonstrated to induce neuroprotection in rats. The present study aimed to determine whether normobaric hyperoxia preconditioning could ameliorate cognitive deficit induced by sevoflurane and the possible mechanism by which it may exert its effect. A total of 66, 20-month-old male Sprague-Dawley rats were randomly divided into 3 groups (n=22 each): Rats in the control (C) and sevoflurane anesthesia (S) groups received no normobaric hyperoxia preconditioning before sevoflurane exposure, rats in the normobaric hyperoxia pretreatment (HO) group received normobaric hyperoxia preconditioning before sevoflurane exposure (95% oxygen for 4 continuous h daily for 6 consecutive days). The anesthesia rats (S and HO groups), were exposed to 2.5% sevoflurane for 5 h, while the sham anesthesia rats (C group) were exposed to no sevoflurane. The neurobehavioral assessment was performed using a Morris water maze test, the expressions of the apoptosis proteins were determined using western blot analysis, and the apoptosis rate and cytosolic calcium concentration were measured by flow cytometry. Normobaric hyperoxia preconditioning improved prolonged escape latency and raised the number of platform crossings induced by sevoflurane in the Morris water maze test, increased the level of bcl-2 protein, and decreased the level of bax and active caspase-3 protein, the apoptosis rate and cytosolic calcium concentration in the hippocampus 24 h after sevoflurane exposure. The findings of the present study may imply that normobaric hyperoxia preconditioning attenuates sevoflurane-induced spatial learning and memory impairment, and this effect may be partly related to apoptosis inhibition in the hippocampus. In conclusion, normobaric hyperoxia preconditioning may be a promising strategy against sevoflurane-induced cognitive impairment by inhibiting the hippocampal neuron apoptosis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China.,Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Chun-Ping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yan-Lei Tai
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zi-Jun Zhao
- Department of Anesthesiology, Hebei Chest Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhi-Yong Hou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qiu-Jun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
6
|
Ding J, Zhou D, Liu C, Pan L, Ya J, Ding Y, Ji X, Meng R. Normobaric oxygen: a novel approach for treating chronic cerebral circulation insufficiency. Clin Interv Aging 2019; 14:565-570. [PMID: 30936686 PMCID: PMC6421875 DOI: 10.2147/cia.s190984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic cerebral circulation insufficiency (CCCI) is viewed as an alarming state induced by long-term reduction in cerebral perfusion, which is associated with neurological deficits and high risk of stroke occurrence or recurrence. CCCI accounts for a large proportion of both outpatients and inpatients with cerebrovascular diseases, while management of CCCI remains a formidable challenge to clinicians. Normobaric oxygen (NBO) is an adjuvant hyperoxygenation intervention supplied with one atmosphere pressure (1 ATA =101.325 kPa). A plethora of studies have demonstrated the efficacy of NBO on the penumbra in acute stroke. NBO has been shown to increase the oxygen pressure, raise the intracranial blood flow, protect blood–brain barrier and enhance neuroprotective effects. As similar underlying mechanisms are shared by the penumbra in stroke and the ischemic–hypoxic brain tissues in CCCI, we speculate that NBO may serve as a promising therapeutic strategy for attenuating short-term symptoms or improving long-term clinical outcomes among patients with CCCI. Due to the scant research exploring the efficacy and safety of NBO for treating CCCI so far, both experimental and clinical studies are warranted to verify our hypothesis in the future.
Collapse
Affiliation(s)
- Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, .,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China, .,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China,
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, .,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China, .,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China,
| | - Cheng Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, .,Department of Neurology, Yongxin People's Hospital, Ji'an 343400, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, .,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China, .,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China,
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, .,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China, .,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China,
| | - Yuchuan Ding
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, .,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China, .,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, .,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, .,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China, .,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China,
| |
Collapse
|
7
|
Norouzirad R, Ghanbari M, Bahadoran Z, Abdollahifar MA, Rasouli N, Ghasemi A. Hyperoxia improves carbohydrate metabolism by browning of white adipocytes in obese type 2 diabetic rats. Life Sci 2019; 220:58-68. [DOI: 10.1016/j.lfs.2019.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/20/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
|
8
|
Ding J, Zhou D, Sui M, Meng R, Chandra A, Han J, Ding Y, Ji X. The effect of normobaric oxygen in patients with acute stroke: a systematic review and meta-analysis. Neurol Res 2018; 40:433-444. [PMID: 29600891 DOI: 10.1080/01616412.2018.1454091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Normobaric oxygen (NBO) has received considerable attention due to controversial data in brain protection in patients with acute stroke. This study aims to analyze current data of NBO on brain protection as used in the clinic. Methods We searched for and reviewed relevant articles and references from Pubmed, Medline, Embase, Cochrane, and Clincialtrials.gov that were published prior to October 2017. Data from prospective studies were processed using RevMan5.0 software, provided by Cochrane collaboration and transformed using relevant formulas. Results A total of 11 prospective RCT studies including 6366 patients with acute stroke (NBO group, 3207; control group, 3159) were enrolled in this analysis. △NIHSS represented the values of NIHSS at 4, 24 h, or 7 days post-stroke minus baseline NIHSS. Compared to controls, there was a minor trend toward NBO benefits in short-term prognostic indices, as indicated by decreased ΔNIHSS at our defined time points. By contrast, NBO decreased Barthel Index scores between 3 and 7 months, and increased death rates at 3, 6 months, and 1 year, whereas, modified Rankin Scale scores between 3 and 6 months were unchanged. Conclusions The existing trends toward benefits revealed in this meta-analysis help us appreciate the promising value of NBO, although current evidence of NBO on improving clinical outcomes of stroke is insufficient. Well-designed multi-center clinical trials are encouraged and urgently needed to further explore the efficacy of NBO on brain protection.
Collapse
Affiliation(s)
- Jiayue Ding
- a Department of Neurology , Xuanwu Hospital, Capital Medical University , Beijing , China.,b Beijing Institute for Brain Disorders , Beijing , China
| | - Da Zhou
- a Department of Neurology , Xuanwu Hospital, Capital Medical University , Beijing , China.,b Beijing Institute for Brain Disorders , Beijing , China
| | - Meng Sui
- c Department of Economics , Fordham University , Bronx , NY , USA
| | - Ran Meng
- a Department of Neurology , Xuanwu Hospital, Capital Medical University , Beijing , China.,b Beijing Institute for Brain Disorders , Beijing , China
| | - Ankush Chandra
- d Department of Neurosurgery , Wayne State University School of Medicine , Detroit , MI , USA.,e Department of Neurosurgery , University of California San Francisco , San Francisco, CA , USA
| | - Jie Han
- f Department of Neurology , The First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Yuchuan Ding
- d Department of Neurosurgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xunming Ji
- b Beijing Institute for Brain Disorders , Beijing , China.,g Department of Neurosurgery , Xuanwu Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
9
|
Rasoulian B, Kaeidi A, Rezaei M, Hajializadeh Z. Cellular Preoxygenation Partially Attenuates the Antitumoral Effect of Cisplatin despite Highly Protective Effects on Renal Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7203758. [PMID: 28298953 PMCID: PMC5337362 DOI: 10.1155/2017/7203758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/15/2017] [Indexed: 01/26/2023]
Abstract
Our previous in vitro studies demonstrated that oxygen pretreatment significantly protects human embryonic renal tubular cell against acute cisplatin- (CP-) induced cytotoxicity. The present study was designed to investigate whether this protective effect is associated with decreasing therapeutic effects of cisplatin on malignant cells. For this purpose, cultured human embryonic kidney epithelial-like (AD293), cervical carcinoma epithelial-like (Hela), and ovarian adenocarcinoma epithelial-like (OVCAR-3) cells were subjected to either 2-hour pretreatment with oxygen (≥90%) or normal air and then to a previously determined 50% lethal dose of cisplatin for 24 hours. Cellular viability was evaluated via MTT and Neutral Red assays. Also, activated caspase-3 and Bax/Bcl-2 ratio, as the biochemical markers of cell apoptosis, were determined using immunoblotting. The hyperoxic preexposure protocol significantly protects renal AD293 cells against cisplatin-induced toxicity. Oxygen pretreatment also partially attenuated the cisplatin-induced cytotoxic effects on Hela and OVCAR-3 cells. However, it did not completely protect these cells against the therapeutic cytotoxic effects of cisplatin. In summary, the protective methods for reducing cisplatin nephrotoxic side effects like oxygen pretreatment might be associated with concurrent reduction of the therapeutic cytotoxic effects of cisplatin on malignant cells like cervical carcinoma (Hela) and ovarian adenocarcinoma (OVCAR-3) cells.
Collapse
Affiliation(s)
- Bahram Rasoulian
- Razi Herbal Medicines Research Center and Department of Physiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ayat Kaeidi
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Rezaei
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Hajializadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
10
|
Shi SH, Qi ZF, Luo YM, Ji XM, Liu KJ. Normobaric oxygen treatment in acute ischemic stroke: a clinical perspective. Med Gas Res 2016; 6:147-153. [PMID: 27867482 PMCID: PMC5110139 DOI: 10.4103/2045-9912.191360] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acute ischemic stroke is a common and serious neurological disease. Oxygen therapy has been shown to increase oxygen supply to ischemic tissues and improve outcomes after cerebral ischemia/reperfusion. Normobaric hyperoxia (NBO), an easily applicable and non-invasive method, shows protective effects on acute ischemic stroke animals and patients in pilot studies. However, many critical scientific questions are still unclear, such as the therapeutic time window of NBO, the long-term effects and the benefits of NBO in large clinic trials. In this article, we review the current literatures on NBO treatment of acute ischemic stroke in preclinical and clinical studies and try to analyze and identify the key gaps or unknowns in our understanding about NBO. Based on these analyses, we provide suggestions for future studies.
Collapse
Affiliation(s)
- Shu-Hai Shi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China; Pediatric Intensive Care, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Zhi-Feng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu-Min Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xun-Ming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
11
|
Gamdzyk M, Małek M, Bratek E, Koks A, Kaminski K, Ziembowicz A, Salinska E. Hyperbaric oxygen and hyperbaric air preconditioning induces ischemic tolerance to transient forebrain ischemia in the gerbil. Brain Res 2016; 1648:257-265. [PMID: 27431936 DOI: 10.1016/j.brainres.2016.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Ischemic preconditioning with sublethal stress triggers defensive mechanisms against ischemic brain damage; however, such manipulations are potentially dangerous and, therefore, safe stimuli have been sought. Hyperoxia preconditioning by administration of hyperbaric (HBO) or normobaric oxygen (NBO) may have neuroprotective potential. The aim of this study was to determine whether preconditioning with HBO and air (HBA) applied at 2.5 absolute pressure (ATA) or NBO preconditioning induces ischemic tolerance in the brain of gerbils subjected to 3min transient cerebral ischemia. Neuronal cell survival, changes in brain temperature, the generation of factors involved in neurodegeneration and basic behavior in nest building were all tested. Hyperoxic preconditioning prevented ischemia-induced neuronal cell loss, reduced the number of TUNEL positive cells in the CA1 region of the hippocampus and improved the nest building process compared to untreated ischemic animals. Preconditioning also suppressed the production of reactive oxygen species and increased Bax expression normally observed after an ischemic episode. Only HBO preconditioning inhibited ischemia-evoked increases in brain temperature. Our results show that hyperoxic preconditioning results in induction of ischemic tolerance and prevents ischemia-induced neuronal damage in the gerbil brain. Pressurized air preconditioning was as effective as HBO or NBO preconditioning in providing neuroprotection. The observed neuroprotection probably results from mild oxidative stress evoked by increased brain tissue oxidation and activation of antioxidant and antiapoptotic defenses.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Małek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Bratek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Koks
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Kaminski
- Department of Obstetrics and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
12
|
Weaver J, Liu KJ. Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke? A critical review of the literature. Med Gas Res 2015; 5:11. [PMID: 26306184 PMCID: PMC4547432 DOI: 10.1186/s13618-015-0032-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022] Open
Abstract
Stroke, one of the most debilitating cerebrovascular and nuerological diseases, is a serious life-threatening condition and a leading cause of long-term adult disability and brain damage, either directly or by secondary complications. Most effective treatments for stroke are time dependent such as the only FDA-approved therapy, reperfusion with tissue-type plasminogen activator; thus, improving tissue oxygenation with normobaric hyperoxia (NBO) has been considered a logical and potential important therapy. NBO is considered a good approach because of its potential clinical advantages, and many studies suggest that NBO is neuroprotective, reducing ischemic brain injury and infarct volume in addition to improving pathologic and neurobehavorial outcomes. However, increased reactive oxygen species (ROS) generation may occur when tissue oxygen level is too high or too low. Therefore, a major concern with NBO therapy in acute ischemic stroke is the potential increase of ROS, which could exacerbate brain injury. The purpose of this review is to critically review the current literature reports on the effect of NBO treatment on ROS and oxidative stress with respect to acute ischemic stroke. Considering the available data from relevant animal models, NBO does not increase ROS or oxidative stress if applied for a short duration; therefore, the potential that NBO is a viable neuroprotective strategy for acute ischemic stroke is compelling. The benefits of NBO may significantly outweigh the risks of potential increase in ROS generation for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- John Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
13
|
Gui Y, Li H, Zhao M, Yang Q, Kuang X. Effect of intermittent normobaric hyperoxia for treatment of neuropathic pain in Chinese patients with spinal cord injury. Spinal Cord 2014; 53:238-242. [PMID: 25288038 DOI: 10.1038/sc.2014.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 12/24/2022]
Abstract
STUDY DESIGN Prospective, randomized and controlled study. OBJECTIVES The aim of the study was to investigate the effect of intermittent normobaric hyperoxia (InHO) for treatment of neuropathic pain in patients with spinal cord injury (SCI). SETTING The First Affiliated Hospital of Nanhua University, Hengyang, Hunan Province, China. METHODS Patients with SCI from Hunan Province were recruited from the First Affiliated Hospital of Nanhua University. History, duration, localization and characteristics of pain were recorded. Visual analog scale (VAS), the Patient Global Impression of Change (PGIC) and Short Form-36 walk-wheel (SF-36ww) was used to investigate the effect of InHO. Patients were randomly assigned to study and control groups. In study group, patients were exposed to pure oxygen via non-rebreathing reservoir mask, which increased the provided oxygen at a rate of 7 l min-1 for 1 or 4 h daily in 2 weeks. While in control group, patients breathed air via non-rebreathing reservoir mask at the same rate. RESULTS A total of 62 SCI patients with neuropathic pain were included in the study. The mean age of the patients was 36.85±10.71 years. Out of 62 patients, 21 were tetraplegic and 41 were paraplegic. Overall, 14 patients had complete SCI while 48 patients had incomplete injuries. Three groups were similar with respect to age, gender, duration, smoker or not, level and severity of injury. In the 4 h per day InHO groups, a statistically significant reduction of the VAS values was observed (P<0.05). Significant difference was also found in SF-36ww pain scores and PGIC (P<0.05). However, such an effect was not evident in the control group. CONCLUSION This study revealed that in treatment of neuropathic pain of SCI patients, InHO may be effective. PERSPECTIVE This article presents InHO may effectively complement pharmacological treatment in patients with SCI and neuropathic pain.
Collapse
Affiliation(s)
- Y Gui
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - H Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - M Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - Q Yang
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - X Kuang
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| |
Collapse
|
14
|
Rasoulian B, Kaeidi A, Pourkhodadad S, Dezfoulian O, Rezaei M, Wahhabaghai H, Alirezaei M. Effects of pretreatment with single-dose or intermittent oxygen on Cisplatin-induced nephrotoxicity in rats. Nephrourol Mon 2014; 6:e19680. [PMID: 25695032 PMCID: PMC4318017 DOI: 10.5812/numonthly.19680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/29/2014] [Accepted: 06/14/2014] [Indexed: 02/04/2023] Open
Abstract
Background: Renal injury is the main side effect of cisplatin (CP), an anticancer drug. It has been shown that pretreatment with single-dose oxygen (0.5 to six hours) could reduce CP-induced renal toxicity in rats. Objectives: The present study aimed to compare the effects of pretreatment with single-dose and intermittent O2 on CP-induced nephrotoxicity. Materials and Methods: Adult male rats were allocated to seven groups (eight rats in each group). The rats were kept in normal air or hyperoxic environment (O2, 80%) for either a single six-hour period or intermittent six hours per day for seven days and then were subjected to intraperitoneal injection of saline or CP (5 mg/kg) at 48 hours, 72 hours, or seven days after exposure to O2. Three days after CP (or Saline) injection, renal function tests, renal tissue injury scores, and cleaved Caspase-3 and Bax/Bcl-2 genes expression (as markers of renal cell apoptosis) were assessed. Results: Treatment with the 6-hour single-dose O2 reduced renal injury significantly when CP was administrated 48 hours after O2 pretreatment. Pretreatment with intermittent seven days of six hours per day had no protective effects and even relatively worsened renal injury when CP was injected 48 hours or 72 hours after the last session of O2 pretreatment. The beneficial effects of pretreatment with O2 on renal structure and function were seen if CP was administrates seven days after pretreatment with intermittent O2. Conclusions: The pattern of pretreatment with O2 could change this potential and highly protective strategy against CP-induced nephropathy to an ineffective or even mildly deteriorating one. Therefore, O2 administration before CP injection to patients with cancer, for therapeutic purposes or as a preconditioning approach, should be performed and investigated with caution until exact effects of different protocols has been determined in human.
Collapse
Affiliation(s)
- Bahram Rasoulian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, IR Iran
- Department of Physiology and Pharmacology, Lorestan University of Medical Sciences, Khorramabad, IR Iran
| | - Ayat Kaeidi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, IR Iran
| | - Soheila Pourkhodadad
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, IR Iran
- Corresponding author: Soheila Pourkhodadad, Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences, Khorramabad, IR Iran. Tel/Fax: +98-6613204005,
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, IR Iran
| | - Maryam Rezaei
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, IR Iran
| | | | - Masoud Alirezaei
- Division of Biochemistry, School of Veterinary Medicine, Lorestan University, Khorramabad, IR Iran
| |
Collapse
|
15
|
The Effects of Olive Leaf Extract on Antioxidant Enzymes Activity and Tumor Growth in Breast Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.5812/thrita.12914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Liu W, Liu K, Tao H, Chen C, Zhang JH, Sun X. Hyperoxia preconditioning: the next frontier in neurology? Neurol Res 2013; 34:415-21. [DOI: 10.1179/1743132812y.0000000034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wenwu Liu
- Department of Diving MedicineThe Second Military Medical University, Shanghai, China
| | - Kan Liu
- Department of Diving MedicineThe Second Military Medical University, Shanghai, China
| | - Hengyi Tao
- Department of Diving MedicineThe Second Military Medical University, Shanghai, China
| | - Chunhua Chen
- Department of Anatomy and EmbryologyPeking University Health Science Center, Beijing, China
| | - John H Zhang
- Department of AnesthesiologyLoma Linda Medical Center, Loma Linda, CA, USA
| | - Xuejun Sun
- Department of Diving MedicineThe Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Saadat A, Shariat Maghani SS, Rostami Z, Davoudi A, Davoudi F, Shafie A, Eynollahi B. Normobaric hyperoxia preconditioning ameliorates cisplatin nephrotoxicity. Ren Fail 2013; 36:5-8. [PMID: 24059271 DOI: 10.3109/0886022x.2013.832604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cisplatin is a potent anticancer drug, but its nephrotoxicity limits the clinical use of it. To reduce the Cisplatin-induced nephrotoxicity, various interventions have been implicated. The aim of this study was to examine whether preconditioning with normobaric hyperoxia would prevent Cisplatin-induced nephrotoxicity in patient with solid tumor. METHODS In a prospective study, 80 adult patients with solid tumor who were treated with Cisplatin between February 2011 and December 2011 were included. Forty-three patients were exposed to pure oxygen via non-rebreathing reservoir mask which increased the provided oxygen rate to 60% oxygen for 2 hours at 48, 24, and 6 hours before intravenous administration of Cisplatin and 37 patients received only Cisplatin as a control group. Estimated glomerular filtration rate (eGFR) calculated in all patients on day 1 before and on days 1, 3, 6, 30 after Cisplatin exposures. RESULTS Patients treated with Cisplatin and 60% oxygen showed a mild improvement in eGFR and mild reduction of serum creatinine after 30 days with statistically mild significant differences (p = 0.048). CONCLUSION This study showed that normobaric and intermittent precondition of 60% oxygen prior to Cisplatin treatment had an acute transient adverse effect on renal function; however, the improvement of renal function will be seen after 30 days. Thus, it may help to prevent Cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Alireza Saadat
- Department of Hematology & Oncology, Baghiyatallah University of Medical Sciences , Tehran , Iran
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang H, Bower KA, Frank JA, Xu M, Luo J. Hypoxic preconditioning alleviates ethanol neurotoxicity: the involvement of autophagy. Neurotox Res 2013; 24:472-7. [PMID: 23568540 DOI: 10.1007/s12640-013-9390-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 12/11/2022]
Abstract
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. A sublethal preconditioning has been proposed as a neuroprotective strategy against several central nervous system neurodegenerative diseases. We have recently demonstrated that autophagy is a protective response to alleviate ethanol toxicity. A modest hypoxic preconditioning (1 % oxygen) did not cause neurotoxicity but induced autophagy (Tzeng et al. Free Radic Biol Med 49: 839-846, 2010). We, therefore, hypothesize that the modest hypoxic preconditioning may offer a protection against ethanol-induced neurotoxicity. We showed here that the modest hypoxic preconditioning (1 % oxygen) for 8 h significantly alleviated ethanol-induced death of SH-SY5Y neuroblastoma cells. Under the normoxia condition, cell viability in ethanol-exposed cultures (316 mg/dl for 48 h) was 49 ± 6 % of untreated controls; however, with hypoxic preconditioning, cell viability in the ethanol-exposed group increased to 78 ± 7 % of the controls (p < 0.05; n = 3). Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, blocked hypoxic preconditioning-mediated protection. Similarly, inhibition of autophagic initiation by wortmannin also eliminated hypoxic preconditioning-mediated protection. In contrast, activation of autophagy by rapamycin further enhanced neuroprotection caused by hypoxic preconditioning. Taken together, the results confirm that autophagy is a protective response against ethanol neurotoxicity and the modest hypoxic preconditioning can offer neuroprotection by activating autophagic pathways.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | | | | | | | | |
Collapse
|
19
|
Bigdeli MR, Asheghabadi M, Khalili A. Time course of neuroprotection induced by normobaric hyperoxia in focal cerebral ischemia. Neurol Res 2012; 34:439-46. [PMID: 22449485 DOI: 10.1179/1743132812y.0000000013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The purpose of this study was to determine if normobaric hyperoxia (HO) preconditioning offers durable neuroprotection against cerebral ischemia and the role of reactive oxygen species in the ischemic tolerance mechanism. MATERIALS AND METHODS Rats were divided into four experimental main groups. First main group which was comprised four subgroups, were exposed to 90% HO for 6 days, 4 hours per day and subjected to 60 minutes of right middle cerebral artery occlusion (MCAO) after 2, 5, 10, and 15 days. Second group acted as control, was exposed to 21% oxygen (RA; room air) in the same chamber, and subjected to 60 minutes of right MCAO. Third main group comprised two subgroups, were exposed to 90% HO for 6 days, 4 hours per day, received normal saline (NS; 2HO+NS) and dimethylthiourea (DT) just before inhaling 90% HO (2HO+DT). Forth main group was exposed to 21% oxygen (2RA) in the same chamber and received normal saline (2RA+NS) and DT just before inhaling 21% oxygen (2RA+DT). Last two main groups were subjected to 60 minutes of right MCAO after 2 days. After 24-hour reperfusion, neurological deficit score (NDS), infarct volume, brain water content, and Evans blue extravasations were assessed in all animals. RESULTS First main group compared with the RA group, NDS, infarct volume, Brain water content, and Evans blue extravasations were reduced in 2, 5, and 10 days significantly, whereas there was no difference among groups 2HO+DT, 2RA+DT, and 2RA+NS. CONCLUSIONS In the model of transient focal cerebral ischemia, hyperoxia preconditioning induced effective but transient neuroprotective effects.
Collapse
|
20
|
β2-adrenergic receptor antagonist butoxamine partly abolishes the protection of 100% oxygen treatment against zymosan-induced generalized inflammation in mice. Shock 2012; 36:272-8. [PMID: 21617579 DOI: 10.1097/shk.0b013e31822413a4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have demonstrated that 100% oxygen inhalation is beneficial to zymosan-induced generalized inflammation, and reactive oxygen species may be involved in the protection of oxygen treatment. Other investigators suggest that reactive oxygen species may modulate the sympathetic nervous system activity and β2-adrenergic receptor (β2AR)-mediated pathway. Moreover, studies have demonstrated that β2AR agonists are beneficial to sepsis. Therefore, we assessed the effects of β2AR antagonist butoxamine on the protection of oxygen treatment against zymosan-induced generalized inflammation in mice. Mice were given oxygen treatment by exposure to 100% oxygen for 3 h starting at 4 and 12 h after zymosan injection, respectively. In the mortality study, survival was monitored for 7 days after zymosan injection in mice. At 24 h after zymosan injection, mice were killed, and blood sample and organs were harvested for analysis. We observed that 100% oxygen treatment prevented the abnormal changes in organ histopathology, lactate dehydrogenase and C-reactive protein in serum, inflammatory cytokines in serum and tissue, and arterial blood gas analysis and improved the survival rate in zymosan-challenged mice. We found that pretreatment with β2AR antagonist butoxamine partly abolished the protection of 100% oxygen inhalation. We also showed that zymosan induced the increase in serum 3'-5'-cyclic adenosine monophosphate (cAMP) and the decrease in tissue cAMP. However, oxygen treatment increased the cAMP levels in both serum and tissue, which were partly abolished by pretreatment with butoxamine. Thus, 100% oxygen inhalation may protect against zymosan-induced generalized inflammation in mice partly through activation of β2AR pathway and subsequently enhance cAMP levels in both serum and tissue.
Collapse
|
21
|
Zhang Z, Bai X, Du K, Huang Y, Wang W, Zhao Y, Pei Y, Mu J, Han H, Hu S, Li S, Dong H, Lu Y, Hou L, Xiong L. Activation of cholinergic anti-inflammatory pathway contributes to the protective effects of 100% oxygen inhalation on zymosan-induced generalized inflammation in mice. J Surg Res 2011; 174:e75-83. [PMID: 22261596 DOI: 10.1016/j.jss.2011.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND The 100% oxygen inhalation has been demonstrated to have a protective effect on mice with zymosan-induced generalized inflammation. However, the underlying mechanism is largely unknown. The present study was designed to explore the role of the cholinergic anti-inflammatory pathway in this animal model. METHODS Oxygen inhalation was given to mice at 4 and 12 h after zymosan injection. One group of mice underwent vagotomy 7 d before zymosan injection. The other two groups of mice either received nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, or α7 nicotinic acetylcholine receptor (α7nAChR) antagonist methyllycaconitine 30 min before oxygen was given. RESULTS The 100% oxygen treatment significantly decreased the serum level of TNF-α and increased the serum level of IL-10. The pathologic changes of the heart, lung, liver, and kidney were attenuated, as well as the dysfunction of liver and kidney. The 7-d survival rate of zymosan-challenged mice was also improved. Conversely, all these protective effects caused by pure oxygen treatment were abolished in those animals that received anti-cholinergic treatments. CONCLUSIONS The cholinergic anti-inflammatory pathway may be involved in the 100% oxygen protective mechanism against zymosan-induced generalized inflammation in mice.
Collapse
Affiliation(s)
- Zishen Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Oxygen (O(2)) is the most frequently used pharmaceutical in anesthesiology and intensive care medicine: Every patient receives O(2) during surgery or during a stay in the intensive care unit. Hypoxia and hypoxemia of various origins are the most typical indications which are mentioned in the prescribing information of O(2): the goal of the administration of O(2) is either an increase of arterial O(2) partial pressure in order to treat hypoxia, or an increase of arterial O(2) content in order to treat hypoxemia. Most of the indications for O(2) administration were developed in former times and have seldom been questioned from that time on as the short-term side-effects of O(2) are usually considered to be of minor importance. As a consequence only a small number of controlled randomized studies exist, which can demonstrate the efficacy of O(2) in terms of evidence-based medicine. However, there is an emerging body of evidence that specific side-effects of O(2) result in a deterioration of the microcirculation. The administration of O(2) induces arteriolar constriction which will initiate a decline of regional O(2) delivery and subsequently a decline of tissue oxygenation. The aim of the manuscript presented is to discuss the significance of O(2) as a pharmaceutical in the clinical setting.
Collapse
|
23
|
Liu W, Khatibi N, Sridharan A, Zhang JH. Application of medical gases in the field of neurobiology. Med Gas Res 2011; 1:13. [PMID: 22146102 PMCID: PMC3231869 DOI: 10.1186/2045-9912-1-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/27/2011] [Indexed: 12/11/2022] Open
Abstract
Medical gases are pharmaceutical molecules which offer solutions to a wide array of medical needs. This can range from use in burn and stroke victims to hypoxia therapy in children. More specifically however, gases such as oxygen, helium, xenon, and hydrogen have recently come under increased exploration for their potential theraputic use with various brain disease states including hypoxia-ischemia, cerebral hemorrhages, and traumatic brain injuries. As a result, this article will review the various advances in medical gas research and discuss the potential therapeutic applications and mechanisms with regards to the field of neurobiology.
Collapse
Affiliation(s)
- Wenwu Liu
- Department of Anesthesiology, Loma Linda Medical Center, Loma Linda, California, USA.
| | | | | | | |
Collapse
|
24
|
Short-time intermittent preexposure of living human donors to hyperoxia improves renal function in early posttransplant period: a double-blind randomized clinical trial. J Transplant 2011; 2011:204843. [PMID: 21559250 PMCID: PMC3087885 DOI: 10.1155/2011/204843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/05/2011] [Accepted: 01/26/2011] [Indexed: 11/17/2022] Open
Abstract
The purpose of this human study was to investigate the effect of oxygen pretreatment in living kidney donors on early renal function of transplanted kidney. Sixty living kidney donor individuals were assigned to receive either 8-10 L/min oxygen (Group I) by a non-rebreather mask with reservoir bag intermittently for one hour at four times (20, 16, 12, and 1 hours before transplantation) or air (Group II). After kidney transplantation, urine output, blood urea nitrogen (BUN), serum creatinine, need to additional diuretics (NTADs) in the first 24 hours after transplantation, delayed graft function (DGF), the creatinine clearance (CrCL) on 10th day, and duration of hospital stay from the first posttransplant day till normalization of renal function was recorded and compared in two groups. Mean CrCL in posttransplant day 10, NTAD after 24 hours of transplantation, and urine output during 6 hours after operation were significantly better in Group I compared with Group II (P < .05). Also, DGF during the first week after operation and duration of hospital stay was less in Group I compared with Group II. Intermittent exposure of human living kidney donor to hyperoxic environment may improve renal function following kidney transplantation.
Collapse
|
25
|
Michalski D, Härtig W, Schneider D, Hobohm C. Use of normobaric and hyperbaric oxygen in acute focal cerebral ischemia - a preclinical and clinical review. Acta Neurol Scand 2011; 123:85-97. [PMID: 20456243 DOI: 10.1111/j.1600-0404.2010.01363.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High socioeconomic burden is attributed to acute ischemic stroke, but treatment strategies are still limited. Normobaric (NBO) and hyperbaric oxygen therapy (HBO) were frequently investigated in preclinical studies following acute focal cerebral ischemia with predominantly beneficial effects in different outcome measurements. Best results were achieved in transient cerebral ischemia, starting HBO early after artery occlusion, and by using relatively high pressures. On molecular level, oxygen application leads to blood-brain barrier stabilization, reduction of excitotoxic metabolites, and inhibition of inflammatory processes. Therefore, NBO and HBO appear excessively hopeful in salvaging impaired brain cells during ischemic stroke. However, harmful effects have been noted contributing to damaging properties, for example, vasoconstriction and free oxygen radicals. In the clinical setting, NBO provided positive results in a single clinical trial, but HBO failed to show efficacy in three randomized trials. To date, the translation of numerous evidentiary experimental results into clinical implementation remains open. Recently, oxygen became interesting as an additional therapy to neuroprotective or recanalization drugs to combine positive effects. Further preclinical research is needed exploring interactions between NBO, HBO, and key factors with multiphasic roles in acute damaging and delayed inflammatory processes after cerebral ischemia, for example, matrix-metalloproteinases and hypoxia-inducible factor-1α.
Collapse
Affiliation(s)
- D Michalski
- Department of Neurology, University of Leipzig, Germany.
| | | | | | | |
Collapse
|
26
|
Abstract
The current practice of mechanical ventilation comprises the use of the least inspiratory O2 fraction associated with an arterial O2 tension of 55 to 80 mm Hg or an arterial hemoglobin O2 saturation of 88% to 95%. Early goal-directed therapy for septic shock, however, attempts to balance O2 delivery and demand by optimizing cardiac function and hemoglobin concentration, without making use of hyperoxia. Clearly, it has been well-established for more than a century that long-term exposure to pure O2 results in pulmonary and, under hyperbaric conditions, central nervous O2 toxicity. Nevertheless, several arguments support the use of ventilation with 100% O2 as a supportive measure during the first 12 to 24 hrs of septic shock. In contrast to patients without lung disease undergoing anesthesia, ventilation with 100% O2 does not worsen intrapulmonary shunt under conditions of hyperinflammation, particularly when low tidal volume-high positive end-expiratory pressure ventilation is used. In healthy volunteers and experimental animals, exposure to hyperoxia may cause pulmonary inflammation, enhanced oxidative stress, and tissue apoptosis. This, however, requires long-term exposure or injurious tidal volumes. In contrast, within the timeframe of a perioperative administration, direct O2 toxicity only plays a negligible role. Pure O2 ventilation induces peripheral vasoconstriction and thus may counteract shock-induced hypotension and reduce vasopressor requirements. Furthermore, in experimental animals, a redistribution of cardiac output toward the kidney and the hepato-splanchnic organs was observed. Hyperoxia not only reverses the anesthesia-related impairment of the host defense but also is an antibiotic. In fact, perioperative hyperoxia significantly reduced wound infections, and this effect was directly related to the tissue O2 tension. Therefore, we advocate mechanical ventilation with 100% O2 during the first 12 to 24 hrs of septic shock. However, controlled clinical trials are mandatory to test the safety and efficacy of this approach.
Collapse
|
27
|
Bigdeli MR. Preconditioning with prolonged normobaric hyperoxia induces ischemic tolerance partly by upregulation of antioxidant enzymes in rat brain tissue. Brain Res 2009; 1260:47-54. [DOI: 10.1016/j.brainres.2008.12.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/14/2008] [Accepted: 12/17/2008] [Indexed: 11/24/2022]
|