1
|
Xu J, Meng Y, Jia M, Jiang J, Yang Y, Ou Y, Wu Y, Yan X, Huang M, Adcock IM, Yao X. Epithelial expression and role of secreted STC1 on asthma airway hyperresponsiveness through calcium channel modulation. Allergy 2021; 76:2475-2487. [PMID: 33378582 DOI: 10.1111/all.14727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Asthma is characterized by airway hyperresponsiveness (AHR), inflammation, and airway remodeling. Airway hyperresponsiveness results from enhanced airway smooth muscle (ASM) contraction potentially under the control of an epithelium-derived relaxing factor (EpDRF). However, relatively rare is known about EpDRF. We aimed to elucidate the role of epithelium-derived stanniocalcin-1 (STC1) on AHR and ASM contraction. METHODS Stanniocalcin-1 levels in the serum of asthmatic patients and healthy volunteers and in bronchoalveolar lavage fluid (BALF) from ovalbumin (OVA)-challenged mice were measured by ELISA. The effects of exogenous STC1 on AHR and on inflammation were examined in mice. IL-13 modulation of STC1 mRNA and protein levels was studied in human bronchial epithelial cell lines (16HBE). The function of STC1 on Ca2+ influx and ASM contraction was examined ex vivo. RESULTS Serum STC1 was decreased in asthma (n = 93) compared with healthy volunteers (1071 ± 30.4 vs 1414 ± 75.1 pg/ml, p < 0.0001, n = 23) and correlated with asthma control (p = 0.0270), lung function (FEV1, p = 0.0130), and serum IL-13 levels (p = 0.0009). Treatment of ten asthmatic subjects with inhaled corticosteroids/long-acting beta2-agonists (ICS/LABA) for 1 year enhanced STC1 expression which correlated with improved asthma control (p = 0.022). STC1 was mainly expressed in bronchial epithelium and intranasal administration of recombinant human STC1 (rhSTC1) reduced AHR and inflammation in mice. IL-13 suppressed STC1 release from 16HBE, whereas rhSTC1 blocked store-operated Ca2+ entry (SOCE) by suppressing stromal interaction molecule 1 (STIM1) and further inhibited ASM cell contractility by suppressing Ca2+ -dependent myosin light chain (MLC) phosphorylation. CONCLUSION Our data indicate that STC1 deficiency in asthmatic airways promotes STIM1 hyperactivity, enhanced ASM contraction, and AHR. STC1 may be a candidate EpDRF.
Collapse
Affiliation(s)
- Jiayan Xu
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of Respiratory & Critical Care Medicine Northern Jiangsu People's Hospital Yangzhou China
| | - Yaqi Meng
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Man Jia
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jie Jiang
- Department of Respiratory & Critical Care Medicine Huai'an First People's Hospital Huai'an China
| | - Yi Yang
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yingwei Ou
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yunhui Wu
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiaoyi Yan
- Department of Respiratory & Critical Care Medicine Nanjing Jiangning People's Hospital Nanjing China
| | - Mao Huang
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ian M. Adcock
- Airway Disease Section Faculty of Medicine National Heart and Lung Institute Imperial College London London UK
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
2
|
Khadangi F, Forgues AS, Tremblay-Pitre S, Dufour-Mailhot A, Henry C, Boucher M, Beaulieu MJ, Morissette M, Fereydoonzad L, Brunet D, Robichaud A, Bossé Y. Intranasal versus intratracheal exposure to lipopolysaccharides in a murine model of acute respiratory distress syndrome. Sci Rep 2021; 11:7777. [PMID: 33833346 PMCID: PMC8032690 DOI: 10.1038/s41598-021-87462-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Due to frequent and often severe lung affections caused by COVID-19, murine models of acute respiratory distress syndrome (ARDS) are increasingly used in experimental lung research. The one induced by a single lipopolysaccharide (LPS) exposure is practical. However, whether it is preferable to administer LPS intranasally or intratracheally remains an open question. Herein, female C57Bl/6 J mice were exposed intranasally or intratracheally to one dose of either saline or 3 mg/kg of LPS. They were studied 24 h later. The groups treated with LPS, either intranasally or intratracheally, exhibited a pronounced neutrophilic inflammation, signs of lung tissue damage and protein extravasation into the alveoli, and mild lung dysfunction. The magnitude of the response was generally not different between groups exposed intranasally versus intratracheally. However, the variability of some the responses was smaller in the LPS-treated groups exposed intranasally versus intratracheally. Notably, the saline-treated mice exposed intratracheally demonstrated a mild neutrophilic inflammation and alterations of the airway epithelium. We conclude that an intranasal exposure is as effective as an intratracheal exposure in a murine model of ARDS induced by LPS. Additionally, the groups exposed intranasally demonstrated less variability in the responses to LPS and less complications associated with the sham procedure.
Collapse
Affiliation(s)
- Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Anne-Sophie Forgues
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Marie-Josée Beaulieu
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Mathieu Morissette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | | | - David Brunet
- SCIREQ - Scientific Respiratory Equipment Inc., Montreal, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Pavillon Mallet, M2694, 2725, chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|
5
|
Fedan JS, Thompson JA, Ismailoglu UB, Jing Y. Tracheal epithelium cell volume responses to hyperosmolar, isosmolar and hypoosmolar solutions: relation to epithelium-derived relaxing factor (EpDRF) effects. Front Physiol 2013; 4:287. [PMID: 24130533 PMCID: PMC3795350 DOI: 10.3389/fphys.2013.00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/21/2013] [Indexed: 11/16/2022] Open
Abstract
In asthmatic patients, inhalation of hyperosmolar saline or D-mannitol (D-M) elicits bronchoconstriction, but in healthy subjects exercise causes bronchodilation. Hyperventilation causes drying of airway surface liquid (ASL) and increases its osmolarity. Hyperosmolar challenge of airway epithelium releases epithelium-derived relaxing factor (EpDRF), which relaxes the airway smooth muscle. This pathway could be involved in exercise-induced bronchodilation. Little is known of ASL hyperosmolarity effects on epithelial function. We investigated the effects of osmolar challenge maneuvers on dispersed and adherent guinea-pig tracheal epithelial cells to examine the hypothesis that EpDRF-mediated relaxation is associated with epithelial cell shrinkage. Enzymatically-dispersed cells shrank when challenged with ≥10 mOsM added D-M, urea or NaCl with a concentration-dependence that mimics relaxation of the of isolated perfused tracheas (IPT). Cells shrank when incubated in isosmolar N-methyl-D-glucamine (NMDG) chloride, Na gluconate (Glu), NMDG-Glu, K-Glu and K2SO4, and swelled in isosmolar KBr and KCl. However, isosmolar challenge is not a strong stimulus of relaxation in IPTs. In previous studies amiloride and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) inhibited relaxation of IPT to hyperosmolar challenge, but had little effect on shrinkage of dispersed cells. Confocal microscopy in tracheal segments showed that adherent epithelium is refractory to low hyperosmolar concentrations that induce dispersed cell shrinkage and relaxation of IPT. Except for gadolinium and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), actin and microtubule inhibitors and membrane permeabilizing agents did not affect on ion transport by adherent epithelium or shrinkage responses of dispersed cells. Our studies dissociate relaxation of IPT from cell shrinkage after hyperosmolar challenge of airway epithelium.
Collapse
Affiliation(s)
- Jeffrey S. Fedan
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and HealthMorgantown, WV, USA
| | | | | | | |
Collapse
|
6
|
Dodrill MW, Beezhold DH, Meighan T, Kashon ML, Fedan JS. Lipopolysaccharide increases Na+,K+-pump, but not ENaC, expression in guinea-pig airway epithelium. Eur J Pharmacol 2011; 651:176-86. [DOI: 10.1016/j.ejphar.2010.10.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
|
7
|
Dodrill MW, Fedan JS. Lipopolysaccharide hyperpolarizes guinea pig airway epithelium by increasing the activities of the epithelial Na(+) channel and the Na(+)-K(+) pump. Am J Physiol Lung Cell Mol Physiol 2010; 299:L550-8. [PMID: 20639350 DOI: 10.1152/ajplung.00123.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Earlier, we found that systemic administration of lipopolysaccharide (LPS; 4 mg/kg) hyperpolarized the transepithelial potential difference (V(t)) of tracheal epithelium in the isolated, perfused trachea (IPT) of the guinea pig 18 h after injection. As well, LPS increased the hyperpolarization component of the response to basolateral methacholine, and potentiated the epithelium-derived relaxing factor-mediated relaxation responses to hyperosmolar solutions applied to the apical membrane. We hypothesized that LPS stimulates the transepithelial movement of Na(+) via the epithelial sodium channel (ENaC)/Na(+)-K(+) pump axis, leading to hyperpolarization of V(t). LPS increased the V(t)-depolarizing response to amiloride (10 μM), i.e., offset the effect of LPS, indicating that Na(+) transport activity was increased. The functional activity of ENaC was measured in the IPT after short-circuiting the Na(+)-K(+) pump with basolateral amphotericin B (7.5 μM). LPS had no effect on the hyperpolarization response to apical trypsin (100 U/ml) in the Ussing chamber, indicating that channel-activating proteases are not involved in the LPS-induced activation of ENaC. To assess Na(+)-K(+) pump activity in the IPT, ENaC was short-circuited with apical amphotericin B. The greater V(t) in the presence of amphotericin B in tracheas from LPS-treated animals compared with controls revealed that LPS increased Na(+)-K(+) pump activity. This finding was confirmed in the Ussing chamber by inhibiting the Na(+)-K(+) pump via extracellular K(+) removal, loading the epithelium with Na(+), and observing a greater hyperpolarization response to K(+) restoration. Together, the findings of this study reveal that LPS hyperpolarizes the airway epithelium by increasing the activities of ENaC and the Na(+)-K(+) pump.
Collapse
Affiliation(s)
- Michael W Dodrill
- Department of Basic Pharmaceutical Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, USA
| | | |
Collapse
|