1
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
2
|
Pouokam E. Effects of the gaseous signalling molecule nitroxyl (HNO) on myenteric neurons governing intestinal motility. J Basic Clin Physiol Pharmacol 2023; 34:683-687. [PMID: 36455291 DOI: 10.1515/jbcpp-2022-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 09/21/2023]
Abstract
OBJECTIVES The main function of myenteric neurons is the control of gut motility. As we recently showed that nitroxyl (HNO) induces intestinal smooth muscle relaxation, it was of interest to evaluate the effects of this signalling molecule on myenteric neurons in order to distinguish its properties in regard to myocytes. METHODS Myenteric neurons isolated from the ileum of 4-10 days old rats were used. HNO-induced changes in intracellular concentration of Ca2+ or membrane potential and ion currents were measured using the Ca2+-sensitive fluorescent dye fura-2 AM or by electrophysiological whole-cell recordings, respectively. Changes in intracellular thiol groups pool were evaluated using thiol tracker violet. Angeli's salt was used as HNO donor. RESULTS The HNO donor Angeli's salt induced a significant increase in the cytosolic Ca2+ concentration at the concentration 50 µM and a membrane hyperpolarization from a resting membrane potential of -56.1 ± 8.0 mV to -63.1 ± 8.7 mV (n=7). Although potassium channels primarily drive membrane potential changes in these cells, outwardly rectifying potassium currents were not significantly affected by 50 µM Angeli's salt. Fast inward sodium currents were slightly but not significantly reduced by HNO. In more sensitive cells, HNO tended to reduce the pool of thiol groups. CONCLUSIONS As in the case of smooth muscle cells, HNO causes hyperpolarization of myenteric neurons, an effect also associated with an increase in intracellular Ca2+ concentration. Pathways other than activation of potassium currents appear to drive the hyperpolarization evoked by HNO.
Collapse
Affiliation(s)
- Ervice Pouokam
- Department of Human medicine, MSB Medical School Berlin, Berlin, Germany
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Oxidative Stress as a Potential Mechanism Underlying Membrane Hyperexcitability in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11081511. [PMID: 36009230 PMCID: PMC9405356 DOI: 10.3390/antiox11081511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative diseases are characterized by gradually progressive, selective loss of anatomically or physiologically related neuronal systems that produce brain damage from which there is no recovery. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear to be similar, suggesting common neurodegenerative pathways. It is well known that oxidative stress and the production of reactive oxygen radicals plays a key role in neuronal cell damage. It has been proposed that this stress, among other mechanisms, could contribute to neuronal degeneration and might be one of the factors triggering the development of these pathologies. Another common feature in most neurodegenerative diseases is neuron hyperexcitability, an aberrant electrical activity. This review, focusing mainly on primary motor cortex pyramidal neurons, critically evaluates the idea that oxidative stress and inflammation may be involved in neurodegeneration via their capacity to increase membrane excitability.
Collapse
|
4
|
Abstract
In the enteric nervous system, there exist a huge number of local intrinsic neurons, which control the gastrointestinal functions. Culture of enteric neurons provides a good model system for physiological, electrophysiological, and pharmacological studies. Here, we describe two methods to obtain sufficient enteric neurons from mouse myenteric plexuses by directly culturing primary neurons or inducing neuronal differentiation of enteric neural stem/progenitor cells.
Collapse
|
5
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Carrascal L, Gorton E, Pardillo-Díaz R, Perez-García P, Gómez-Oliva R, Castro C, Nunez-Abades P. Age-Dependent Vulnerability to Oxidative Stress of Postnatal Rat Pyramidal Motor Cortex Neurons. Antioxidants (Basel) 2020; 9:antiox9121307. [PMID: 33352810 PMCID: PMC7766683 DOI: 10.3390/antiox9121307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress is one of the main proposed mechanisms involved in neuronal degeneration. To evaluate the consequences of oxidative stress on motor cortex pyramidal neurons during postnatal development, rats were classified into three groups: Newborn (P2-P7); infantile (P11-P15); and young adult (P20-P40). Oxidative stress was induced by 10 µM of cumene hydroperoxide (CH) application. In newborn rats, using the whole cell patch-clamp technique in brain slices, no significant modifications in membrane excitability were found. In infantile rats, the input resistance increased and rheobase decreased due to the blockage of GABAergic tonic conductance. Lipid peroxidation induced by CH resulted in a noticeable increase in protein-bound 4-hidroxynonenal in homogenates in only infantile and young adult rat slices. Interestingly, homogenates of newborn rat brain slices showed the highest capacity to respond to oxidative stress by dramatically increasing their glutathione and free thiol content. This increase correlated with a time-dependent increase in the glutathione reductase activity, suggesting a greater buffering capacity of newborn rats to resist oxidative stress. Furthermore, pre-treatment of the slices with glutathione monoethyl ester acted as a neuroprotector in pyramidal neurons of infantile rats. We conclude that during maturation, the vulnerability to oxidative stress in rat motor neurons increases with age.
Collapse
Affiliation(s)
- Livia Carrascal
- Departament of Physiology, Pharmacy School, University of Seville, 41012 Seville, Spain; (L.C.); (E.G.); (P.P.-G.)
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
| | - Ella Gorton
- Departament of Physiology, Pharmacy School, University of Seville, 41012 Seville, Spain; (L.C.); (E.G.); (P.P.-G.)
| | - Ricardo Pardillo-Díaz
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
- Area of Physiology, School of Medicine, University of Cádiz, 11003 Cadiz, Spain
| | - Patricia Perez-García
- Departament of Physiology, Pharmacy School, University of Seville, 41012 Seville, Spain; (L.C.); (E.G.); (P.P.-G.)
| | - Ricardo Gómez-Oliva
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
- Area of Physiology, School of Medicine, University of Cádiz, 11003 Cadiz, Spain
| | - Carmen Castro
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
- Area of Physiology, School of Medicine, University of Cádiz, 11003 Cadiz, Spain
| | - Pedro Nunez-Abades
- Departament of Physiology, Pharmacy School, University of Seville, 41012 Seville, Spain; (L.C.); (E.G.); (P.P.-G.)
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
- Correspondence:
| |
Collapse
|
7
|
Picollo F, Tomagra G, Bonino V, Carabelli V, Mino L, Olivero P, Pasquarelli A, Truccato M. Triggering Neurotransmitters Secretion from Single Cells by X-ray Nanobeam Irradiation. NANO LETTERS 2020; 20:3889-3894. [PMID: 32227961 PMCID: PMC7997629 DOI: 10.1021/acs.nanolett.0c01046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The employment of ionizing radiation is a powerful tool in cancer therapy, but beyond targeted effects, many studies have highlighted the relevance of its off-target consequences. An exhaustive understanding of the mechanisms underlying these effects is still missing, and no real-time data about signals released by cells during irradiation are presently available. We employed a synchrotron X-ray nanobeam to perform the first real-time simultaneous measurement of both X-ray irradiation and in vitro neurotransmitter release from individual adrenal phaeochromocytoma (PC12) cells plated over a diamond-based multielectrode array. We have demonstrated that, in specific conditions, X-rays can alter cell activity by promoting dopamine exocytosis, and such an effect is potentially very attractive for a more effective treatment of tumors.
Collapse
Affiliation(s)
- Federico Picollo
- Department
of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125 Torino, Italy
| | - Giulia Tomagra
- Department
of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Valentina Bonino
- Department
of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125 Torino, Italy
| | - Valentina Carabelli
- Department
of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Lorenzo Mino
- Department
of Chemistry, NIS Interdepartmental Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
| | - Paolo Olivero
- Department
of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125 Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, University
of Ulm, 89069 Ulm, Germany
| | - Marco Truccato
- Department
of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125 Torino, Italy
| |
Collapse
|
8
|
Abstract
BACKGROUND H2O2 has a variety of actions in skin wounds but has been rarely studied in deep muscle tissue. Based on response to the transient receptor potential ankyrin 1 antagonists after plantar incision, we hypothesized that H2O2 exerts nociceptive effects via the transient receptor potential ankyrin 1 in muscle. METHODS Nociceptive behaviors in rats (n = 269) and mice (n = 16) were evaluated after various concentrations and volumes of H2O2 were injected into the gastrocnemius muscle or subcutaneous tissue. The effects of H2O2 on in vivo spinal dorsal horn neuronal activity and lumbar dorsal root ganglia neurons in vitro were evaluated from 26 rats and 6 mice. RESULTS Intramuscular (mean ± SD: 1,436 ± 513 s) but not subcutaneous (40 ± 58 s) injection of H2O2 (100 mM, 0.6 ml) increased nociceptive time. Conditioned place aversion was evident after intramuscular (-143 ± 81 s) but not subcutaneous (-2 ± 111 s) injection of H2O2. These H2O2-induced behaviors were blocked by transient receptor potential ankyrin 1 antagonists. Intramuscular injection of H2O2 caused sustained in vivo activity of dorsal horn neurons, and H2O2 activated a subset of dorsal root ganglia neurons in vitro. Capsaicin nerve block decreased guarding after plantar incision and reduced nociceptive time after intramuscular H2O2. Nociceptive time after intramuscular H2O2 in transient receptor potential ankyrin 1 knockout mice was shorter (173 ± 156 s) compared with wild-type mice (931 ± 629 s). CONCLUSIONS The greater response of muscle tissue to H2O2 may help explain why incision that includes deep muscle but not skin incision alone produces spontaneous activity in nociceptive pathways.
Collapse
|
9
|
Hydrogen peroxide modulates neuronal excitability and membrane properties in ventral horn neurons of the rat spinal cord. Neuroscience 2016; 331:206-20. [DOI: 10.1016/j.neuroscience.2016.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 01/29/2023]
|
10
|
Chen XH, Zhou X, Yang XY, Zhou ZB, Lu DH, Tang Y, Ling ZM, Zhou LH, Feng X. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca(2+)-Dependent NADPH Oxidase. Cell Mol Neurobiol 2016; 36:541-51. [PMID: 26162968 DOI: 10.1007/s10571-015-0235-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022]
Abstract
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91(phox) (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca(2+) channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca(2+)-dependent NADPH oxidase.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Xiao-Yu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Zhi-Bin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Di-Han Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
11
|
Jovanovic ZD, Stanojevic MB, Nedeljkov VB. The neurotoxic effects of hydrogen peroxide and copper in Retzius nerve cells of the leech Haemopis sanguisuga. Biol Open 2016; 5:381-8. [PMID: 26935393 PMCID: PMC4890660 DOI: 10.1242/bio.014936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and the generation of reactive oxygen species (ROS) play an important role in cellular damage. Electrophysiological analyses have shown that membrane transport proteins are susceptible to ROS. In the present study, oxidative stress was induced in Retzius nerve cells of the leechHaemopis sanguisugaby bath application of 1 mM of hydrogen peroxide (H2O2) and 0.02 mM of copper (Cu) for 20 min. The H2O2/Cu(II) produced considerable changes in the electrical properties of the Retzius nerve cells. Intracellular recording of the resting membrane potential revealed that the neuronal membrane was depolarized in the presence of H2O2/Cu(II). We found that the amplitude of action potentials decreased, while the duration augmented in a progressive way along the drug exposure time. The combined application of H2O2and Cu(II) caused an initial excitation followed by depression of the spontaneous electrical activity. Voltage-clamp recordings revealed a second effect of the oxidant, a powerful inhibition of the outward potassium channels responsible for the repolarization of action potentials. The neurotoxic effect of H2O2/Cu(II) on the spontaneous spike electrogenesis and outward K(+)current of Retzius nerve cells was reduced in the presence of hydroxyl radical scavengers, dimethylthiourea and dimethyl sulfoxide, but not mannitol. This study provides evidence for the oxidative modification of outward potassium channels in Retzius nerve cells. The oxidative mechanism of the H2O2/Cu(II) system action on the electrical properties of Retzius neurons proposed in this study might have a wider significance, referring not only to leeches but also to mammalian neurons.
Collapse
Affiliation(s)
- Zorica D Jovanovic
- Department of Pathological Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija B Stanojevic
- Institute for Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladimir B Nedeljkov
- Institute for Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
In situ monitoring of myenteric neuron activity using acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors. Biosens Bioelectron 2016; 77:1048-54. [DOI: 10.1016/j.bios.2015.10.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022]
|
13
|
Oxidative stress induced by cumene hydroperoxide evokes changes in neuronal excitability of rat motor cortex neurons. Neuroscience 2015; 289:85-98. [PMID: 25592424 DOI: 10.1016/j.neuroscience.2014.12.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 01/12/2023]
Abstract
Oxidative stress and the production of reactive oxygen radicals play a key role in neuronal cell damage. This paper describes an in vitro study that explores the neuronal responses to oxidative stress focusing on changes in neuronal excitability and functional membrane properties. This study was carried out in pyramidal cells of the motor cortex by applying whole-cell patch-clamp techniques on brain slices from young adult rats. Oxygen-derived free radical formation was induced by bath application of 10μM cumene hydroperoxide (CH) for 30min. CH produced marked changes in the electrophysiological properties of neurons (n=30). Resting membrane potential became progressively depolarized, as well as depolarization voltage, with no variations in voltage threshold. Membrane resistance showed a biphasic behavior, increasing after 5min of drug exposure and then it started to decrease, even under control values, after 15 and 30min. At the same time, changes in membrane resistance produced compensatory variations in the rheobase. The amplitude of the action potentials diminished and the duration increased progressively over time. Some of the neurons under study also lost their ability to discharge action potentials in a repetitive way. Most of the neurons, however, kept their repetitive discharge even though their maximum frequency and gain decreased. Furthermore, cancelation of the repetitive firing discharge took place at intensities that decreased with time of exposure to CH, which resulted in a narrower working range. We can conclude that oxidative stress compromises both neuronal excitability and the capability of generating action potentials, and so this type of neuronal functional failure could precede the neuronal death characteristics of many neurodegenerative diseases.
Collapse
|
14
|
Ostrowski TD, Hasser EM, Heesch CM, Kline DD. H₂O₂ induces delayed hyperexcitability in nucleus tractus solitarii neurons. Neuroscience 2014; 262:53-69. [PMID: 24397952 DOI: 10.1016/j.neuroscience.2013.12.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Hydrogen peroxide (H₂O₂) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H₂O₂ is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H₂O₂ modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10-500 μM H₂O₂. However, 500 μM H₂O₂ modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance (R(i)), hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H₂O₂ increased conductance of barium-sensitive potassium currents, and block of these currents ablated H₂O₂-induced changes in RMP, Ri and AP discharge. Following washout of H₂O₂ AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H₂O₂ exposure. H₂O₂ effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H₂O₂ initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes.
Collapse
Affiliation(s)
- T D Ostrowski
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - E M Hasser
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - C M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - D D Kline
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. JOURNAL OF BIOPHOTONICS 2013; 6:829-38. [PMID: 23281261 PMCID: PMC3651776 DOI: 10.1002/jbio.201200157] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/13/2012] [Accepted: 11/26/2012] [Indexed: 05/18/2023]
Abstract
Low-level laser (light) therapy (LLLT) involves absorption of photons being in the mitochondria of cells leading to improvement in electron transport, increased mitochondrial membrane potential (MMP), and greater ATP production. Low levels of reactive oxygen species (ROS) are produced by LLLT in normal cells that are beneficial. We exposed primary cultured murine cortical neurons to oxidative stressors: hydrogen peroxide, cobalt chloride and rotenone in the presence or absence of LLLT (3 J/cm², CW, 810 nm wavelength laser, 20 mW/cm²). Cell viability was determined by Prestoblue™ assay. ROS in mitochondria was detected using Mito-sox, while ROS in cytoplasm was detected with CellRox™. MMP was measured with tetramethylrhodamine. In normal neurons LLLT elevated MMP and increased ROS. In oxidatively-stressed cells LLLT increased MMP but reduced high ROS levels and protected cultured cortical neurons from death. Although LLLT increases ROS in normal neurons, it reduces ROS in oxidatively-stressed neurons. In both cases MMP is increased. These data may explain how LLLT can reduce clinical oxidative stress in various lesions while increasing ROS in cells in vitro.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston MA, USA
- Department of Pathology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kazuya Nagata
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Graduate School of Medicine, University of Tokyo, Japan
| | | | | | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
16
|
Abstract
In the enteric nervous system, there exist a lot of local intrinsic neurons which control the gastrointestinal functions. Culture of enteric neurons provides a good model system for physiological, electrophysiological, and pharmacological studies. Here, we describe two methods to obtain sufficient enteric neurons from mouse myenteric plexuses by directly culturing primary neurons or inducing neuronal differentiation of enteric neural stem/progenitor cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
17
|
Barsukova AG, Bourdette D, Forte M. Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur J Neurosci 2011; 34:437-47. [PMID: 21722208 PMCID: PMC3221651 DOI: 10.1111/j.1460-9568.2011.07760.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A proposed mechanism of neuronal death associated with a variety of neurodegenerative diseases is the response of neurons to oxidative stress and consequent cytosolic Ca(2+) overload. One hypothesis is that cytosolic Ca(2+) overload leads to mitochondrial Ca(2+) overload and prolonged opening of the permeability transition pore (PTP), resulting in mitochondrial dysfunction. Elimination of cyclophilin D (CyPD), a key regulator of the PTP, results in neuroprotection in a number of murine models of neurodegeneration in which oxidative stress and high cytosolic Ca(2+) have been implicated. However, the effects of oxidative stress on the interplay between cytosolic and mitochondrial Ca(2+) in adult neurons and the role of the CyPD-dependent PTP in these dynamic processes have not been examined. Here, using primary cultured cerebral cortical neurons from adult wild-type (WT) mice and mice missing cyclophilin D (CyPD-KO), we directly assess cytosolic and mitochondrial Ca(2+) , as well as ATP levels, during oxidative stress. Our data demonstrate that during acute oxidative stress mitochondria contribute to neuronal Ca(2+) overload by release of their Ca(2+) stores. This result contrasts with the prevailing view of mitochondria as a buffer of cytosolic Ca(2+) under stress conditions. In addition, we show that CyPD deficiency reverses the release of mitochondrial Ca(2+) , leading to lower of cytosolic Ca(2+) levels, attenuation of the decrease in cytosolic and mitochondrial ATP, and a significantly higher viability of adult CyPD-knockout neurons following exposure of neurons oxidative stress. The study offers a first insight into the mechanism underlying CyPD-dependent neuroprotection during oxidative stress.
Collapse
Affiliation(s)
| | - Dennis Bourdette
- Dept. of Neurology, Oregon Health & Science University
- Neurology Service, VA Medical Center, Portland, OR 97239
| | - Michael Forte
- Vollum Institute, Oregon Health & Science University
| |
Collapse
|
18
|
The native copper- and zinc-binding protein metallothionein blocks copper-mediated Abeta aggregation and toxicity in rat cortical neurons. PLoS One 2010; 5:e12030. [PMID: 20711450 PMCID: PMC2920313 DOI: 10.1371/journal.pone.0012030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 07/15/2010] [Indexed: 11/30/2022] Open
Abstract
Background A major pathological hallmark of AD is the deposition of insoluble extracellular β-amyloid (Aβ) plaques. There are compelling data suggesting that Aβ aggregation is catalysed by reaction with the metals zinc and copper. Methodology/Principal Findings We now report that the major human-expressed metallothionein (MT) subtype, MT-2A, is capable of preventing the in vitro copper-mediated aggregation of Aβ1–40 and Aβ1–42. This action of MT-2A appears to involve a metal-swap between Zn7MT-2A and Cu(II)-Aβ, since neither Cu10MT-2A or carboxymethylated MT-2A blocked Cu(II)-Aβ aggregation. Furthermore, Zn7MT-2A blocked Cu(II)-Aβ induced changes in ionic homeostasis and subsequent neurotoxicity of cultured cortical neurons. Conclusions/Significance These results indicate that MTs of the type represented by MT-2A are capable of protecting against Aβ aggregation and toxicity. Given the recent interest in metal-chelation therapies for AD that remove metal from Aβ leaving a metal-free Aβ that can readily bind metals again, we believe that MT-2A might represent a different therapeutic approach as the metal exchange between MT and Aβ leaves the Aβ in a Zn-bound, relatively inert form.
Collapse
|
19
|
Dyavanapalli J, Rimmer K, Harper AA. Reactive oxygen species alters the electrophysiological properties and raises [Ca2+]i in intracardiac ganglion neurons. Am J Physiol Regul Integr Comp Physiol 2010; 299:R42-54. [PMID: 20445155 PMCID: PMC2917765 DOI: 10.1152/ajpregu.00053.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the effects of the reactive oxygen species (ROS) donors hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) on the intrinsic electrophysiological characteristics: ganglionic transmission and resting [Ca2+]i in neonate and adult rat intracardiac ganglion (ICG) neurons. Intracellular recordings were made using sharp microelectrodes filled with either 0.5 M KCl or Oregon Green 488 BAPTA-1, allowing recording of electrical properties and measurement of [Ca2+]i. H2O2 and t-BHP both hyperpolarized the resting membrane potential and reduced membrane resistance. In adult ICG neurons, the hyperpolarizing action of H2O2 was reversed fully by Ba2+ and partially by tetraethylammonium, muscarine, and linopirdine. H2O2 and t-BHP reduced the action potential afterhyperpolarization (AHP) amplitude but had no impact on either overshoot or AHP duration. ROS donors evoked an increase in discharge adaptation to long depolarizing current pulses. H2O2 blocked ganglionic transmission in most ICG neurons but did not alter nicotine-evoked depolarizations. By contrast, t-BHP had no significant action on ganglionic transmission. H2O2 and t-BHP increased resting intracellular Ca2+ levels to 1.6 ( ± 0.6, n = 11, P < 0.01) and 1.6 ( ± 0.3, n = 8, P < 0.001), respectively, of control value (1.0, ∼60 nM). The ROS scavenger catalase prevented the actions of H2O2, and this protection extended beyond the period of application. Superoxide dismutase partially shielded against the action of H2O2, but this was limited to the period of application. These data demonstrate that ROS decreases the excitability and ganglionic transmission of ICG neurons, attenuating parasympathetic control of the heart.
Collapse
Affiliation(s)
- Jhansi Dyavanapalli
- Division of Molecular Physiology, James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | | | | |
Collapse
|