1
|
Zhang J, Liu YQ, Fang J. The biological activities of quinolizidine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 89:1-37. [PMID: 36731966 DOI: 10.1016/bs.alkal.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quinolizidine alkaloids isolated from various marine and terrestrial animals and plants are primarily composed of lupinine-, matrine-, and sparteine-type alkaloids. Matrine, phenanthroquinolizidines, bis-quinolizidines, and small molecules from amphibian skins are representative compounds of such alkaloids. Quinolizidine alkaloids harbor anticancer, antibacterial, antiinflammatory, antifibrosis, antiviral, and anti-arrhythmia. In this chapter, we comprehensively outline the biological activity and pharmacological action of quinolizidine alkaloids and discuss new avenues toward the discovery of novel and more efficient drugs based on these naturally occurring compounds. It is urgent for basic research and clinical practice to conduct more targeted comprehensive research based on the lead drugs of quinolizidine alkaloids with significant pharmacological activity.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Ying-Qian Liu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China; State Key Laboratory of Grassland Agroecosystems, Lanzhou University, Lanzhou, China.
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Di X, Oskarsson JT, Omarsdottir S, Freysdottir J, Hardardottir I. Lipophilic fractions from the marine sponge Halichondria sitiens decrease secretion of pro-inflammatory cytokines by dendritic cells and decrease their ability to induce a Th1 type response by allogeneic CD4 + T cells. PHARMACEUTICAL BIOLOGY 2017; 55:2116-2122. [PMID: 28876152 PMCID: PMC6130455 DOI: 10.1080/13880209.2017.1373832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Halichondria (Halichondriidae) marine sponges contain components possessing various biological activities, but immunomodulation is not among the ones reported. OBJECTIVE This study evaluated the immunomodulatory effects of fractions/compounds from Halichondria sitiens Schmidt. MATERIALS AND METHODS Crude dichloromethane/methanol extracts of H. sitiens were subjected to various chromatographic techniques to obtain fractions/compounds with immunomodulatory activity, using bioassay-guided isolation. The effects of the fractions/compounds were determined by measuring secretion of cytokines and expression of surface molecules by dendritic cells (DCs) and their ability to stimulate and modify cytokine secretion by allogeneic CD4+ T cells. The bioactive fractions were chemically analyzed to identify the immunomodulatory constituents by 1D, 2D NMR, and HRMS data. RESULTS Several lipophilic fractions from H. sitiens at 10 μg/mL decreased secretion of the pro-inflammatory cytokines IL-12p40 and IL-6 by the DCs, with maximum inhibition being 64% and 25%, respectively. In addition, fractions B3b3F and B3b3J decreased the ability of DCs to induce T cell secretion of IFN-γ. Fraction B3b3 induced morphological changes in DCs, characterized by extreme elongation of dendrites and cell clustering. Chemical screening revealed the presence of glycerides and some minor unknown constituents in the biologically active fractions. One new glyceride, 2,3-dihydroxypropyl 2-methylhexadecanoate (1), was isolated from one fraction and two known compounds, 3-[(1-methoxyhexadecyl)oxy]propane-1,2-diol (2) and monoheptadecanoin (3), were identified in another, but none of them had immunomodulatory activity. DISCUSSION AND CONCLUSIONS These results demonstrate that several lipophilic fractions from H. sitiens have anti-inflammatory effects on DCs and decrease their ability to induce a Th1 type immune response.
Collapse
Affiliation(s)
- Xiaxia Di
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
| | - Jon T. Oskarsson
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Centre for Rheumatology Research, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | | | - Jona Freysdottir
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Centre for Rheumatology Research, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
- CONTACT Ingibjorg HardardottirFaculty of Medicine, Biomedical Center, University of Iceland, Vatnsmyrarvegur 16, 101Reykjavik, Iceland
| |
Collapse
|
3
|
Boedtkjer DMB, Kim S, Jensen AB, Matchkov VM, Andersson KE. New selective inhibitors of calcium-activated chloride channels - T16A(inh) -A01, CaCC(inh) -A01 and MONNA - what do they inhibit? Br J Pharmacol 2015; 172:4158-72. [PMID: 26013995 DOI: 10.1111/bph.13201] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE T16A(inh)-A01, CaCC(inh)-A01 and MONNA are identified as selective inhibitors of the TMEM16A calcium-activated chloride channel (CaCC). The aim of this study was to examine the chloride-specificity of these compounds on isolated resistance arteries in the presence and absence (±) of extracellular chloride. EXPERIMENTAL APPROACH Isolated resistance arteries were maintained in a myograph and tension recorded, in some instances combined with microelectrode impalement for membrane potential measurements or intracellular calcium monitoring using fura-2. Voltage-dependent calcium currents (VDCC) were measured in A7r5 cells with voltage-clamp electrophysiology using barium as a charge carrier. KEY RESULTS Rodent arteries preconstricted with noradrenaline or U46619 were concentration-dependently relaxed by T16A(inh) -A01 (0.1-10 μM): IC50 and maximum relaxation were equivalent in ±chloride (30 min aspartate substitution) and the T16A(inh) -A01-induced vasorelaxation ±chloride were accompanied by membrane hyperpolarization and lowering of intracellular calcium. However, agonist concentration-response curves ±chloride, with 10 μM T16A(inh) -A01 present, achieved similar maximum constrictions although agonist-sensitivity decreased. Contractions induced by elevated extracellular potassium were concentration-dependently relaxed by T16A(inh)-A01 ±chloride. Moreover, T16A(inh) -A01 inhibited VDCCs in A7r5 cells in a concentration-dependent manner. CaCC(inh) -A01 and MONNA (0.1-10 μM) induced vasorelaxation ±chloride and both compounds lowered maximum contractility. MONNA, 10 μM, induced substantial membrane hyperpolarization under resting conditions. CONCLUSIONS AND IMPLICATIONS T16A(inh) -A01, CaCC(inh) -A01 and MONNA concentration-dependently relax rodent resistance arteries, but an equivalent vasorelaxation occurs when the transmembrane chloride gradient is abolished with an impermeant anion. These compounds therefore display poor selectivity for TMEM16A and inhibition of CaCC in vascular tissue in the concentration range that inhibits the isolated conductance.
Collapse
Affiliation(s)
- D M B Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Skejby, Denmark.,Department of Gynaecology and Obstetrics, Aarhus University Hospital, Skejby, Denmark
| | - S Kim
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - A B Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - V M Matchkov
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - K E Andersson
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Gynaecology and Obstetrics, Aarhus University Hospital, Skejby, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Abstract
This review covers the isolation, chemical structure, biological activity, structure activity relationships including synthesis of chemical probes, and pharmacological characterization of neuroactive marine natural products; 302 references are cited.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | |
Collapse
|
5
|
Xu S, Unabara D, Uemura D, Arimoto H. Enantioselective Total Synthesis of Pinnaic Acid and Halichlorine. Chem Asian J 2013; 9:367-75. [DOI: 10.1002/asia.201301248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Indexed: 01/17/2023]
|
6
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 2013; 11:2510-73. [PMID: 23880931 PMCID: PMC3736438 DOI: 10.3390/md11072510] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-630-515-6951; Fax: +1-630-971-6414
| | - Abimael D. Rodríguez
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, USA; E-Mail:
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, I-80131 Napoli, Italy; E-Mail:
| | | |
Collapse
|
7
|
Abstract
This contribution contains a representative sampling from the Padwa laboratory of the conjugate addition of oximes with 2,3-bis(phenylsulfonyl)-1,3-butadiene followed by a subsequent dipolar cycloaddition cascade to produce a variety of alkaloids. The resulting cycloadducts are cleaved reductively to provide azapolycyclic scaffolds with strategically placed functionality for further manipulation of the target compounds.
Collapse
Affiliation(s)
- Albert Padwa
- 1Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Gignoux C, Newton AF, Barthelme A, Lewis W, Alcaraz ML, Stockman RA. Combining two-directional synthesis and tandem reactions: a short formal synthesis of halichlorine. Org Biomol Chem 2012; 10:67-9. [DOI: 10.1039/c1ob06380d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Ohno O, Suenaga K, Uemura D. Secondary metabolites with new medicinal functions from marine organisms. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:185-93. [PMID: 22361187 DOI: 10.1016/b978-0-12-416003-3.00011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
We have focused on the identification of natural key compounds that possess biologically and medicinally intriguing functions. Some of bioactive naturally occurring compounds isolated from marine organisms were found to possess unique biological activities. Halichlorine from the marine sponge Halichondria okadai was shown to inhibit the activity of nuclear factor-κB in endothelial cells and block L-type Ca²⁺ channels. Thus, it may have therapeutic potentials for diseases such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Osamu Ohno
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan.
| | | | | |
Collapse
|
10
|
Abstract
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
11
|
Prawat H, Mahidol C, Wittayalai S, Intachote P, Kanchanapoom T, Ruchirawat S. Nitrogenous sesquiterpenes from the Thai marine sponge Halichondria sp. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Xu S, Yoshimura H, Maru N, Ohno O, Arimoto H, Uemura D. Pinnarine, another member of the halichlorine family. Isolation and preparation from pinnaic acid. JOURNAL OF NATURAL PRODUCTS 2011; 74:1323-1326. [PMID: 21410164 DOI: 10.1021/np200031d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pinnarine (1), a new macrocyclic alkaloid, was isolated from the black marine sponge Halichondria okadai. The structure was elucidated on the basis of 2D NMR and comparison with the spectra of the co-isolated known halichlorine. Further confirmation of the structure and the absolute configuration was validated by a synthetic method from authentic pinnaic acid and CD analysis. The isolation of pinnarine also suggested a biogenetic pathway from pinnaic acid to halichlorine.
Collapse
Affiliation(s)
- Shu Xu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Tsubosaka Y, Murata T, Yamada K, Uemura D, Hori M, Ozaki H. Halichlorine Reduces Monocyte Adhesion to Endothelium Through the Suppression of Nuclear Factor-κB Activation. J Pharmacol Sci 2010; 113:208-13. [DOI: 10.1254/jphs.10065fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|