1
|
Belikov MY, Fedoseev SV, Ievlev MY, Ershov OV. New approach to the synthesis of 2,3-dihydrofuro[2,3-b]pyridine derivatives: double reduction and double heterocyclization of 2-(3-cyano-5-hydroxy-1,5-dihydro-2H-pyrrol-2-ylidene)malononitriles in the presence of sodium borohydride. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
2
|
Potential of α7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods 2017; 130:90-104. [PMID: 28602809 DOI: 10.1016/j.ymeth.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic events are usually acute and often strike otherwise asymptomatic patients. Although multiple clinical risk factors have been associated with atherosclerosis, as of yet no further individual prediction can be made as to who will suffer from its consequences based on biomarker analysis or traditional imaging methods like CT, MRI or angiography. Previously, non-invasive imaging with 18F-fluorodeoxyglucose (18F-FDG) PET was shown to potentially fill this niche as it offers high sensitive detection of metabolic processes associated with inflammatory changes in atherosclerotic plaques. However, 18F-FDG PET imaging of arterial vessels suffers from non-specificity and has still to be proven to reliably identify vulnerable plaques, carrying a high risk of rupture. Therefore, it may be regarded only as a secondary marker for monitoring treatment effects and it does not offer alternative treatment options or direct insight in treatment mechanisms. In this review, an overview is given of the current status and the potential of PET imaging of inflammation and angiogenesis in atherosclerosis in general and special emphasis is given to imaging of α7 nicotinic acetylcholine receptors (α7 nAChRs). Due to the gaps that still exist in our understanding of atherogenesis and the limitations of the available PET tracers, the search continues for a more specific radioligand, able to differentiate between stable atherosclerosis and plaques prone to rupture. The potential role of the α7 nAChR as imaging marker for plaque vulnerability is explored. Today, strong evidence exists that nAChRs are involved in the atherosclerotic disease process. They are suggested to mediate the deleterious effects of the major tobacco component, nicotine, a nAChR agonist. Mainly based on in vitro data, α7 nAChR stimulation might increase plaque burden via increased neovascularization. However, in animal studies, α7 nAChR manipulation appears to reduce plaque size due to its inhibitory effects on inflammatory cells. Thus, reliable identification of α7 nAChRs by in vivo imaging is crucial to investigate the exact role of α7 nAChR in atherosclerosis before any therapeutic approach in the human setting can be justified. In this review, we discuss the first experience with α7 nAChR PET tracers and developmental considerations regarding the "optimal" PET tracer to image vascular nAChRs.
Collapse
|
3
|
Yang X, Hu F, Wang Y, Yang C, Zou X, Liu J, Zhang Q. Base-catalyzed cascade synthesis of 2,3-dihydrofuro[2,3-b]pyridines and 2,3-dihydro-1H-pyrrolo[2,3-b]pyridines from N-propargylic β-enaminones. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc03308g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel protocol to prepare dihydrofuropyridine and dihydropyrrolopyridine derivatives from KOH-catalyzed reactions between N-propargylic β-enaminones and arylaldehydes or N-sulfonyl imines has been developed.
Collapse
Affiliation(s)
- Xiaobing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
- Department of Chemistry
| | - Fangzhong Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yang Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chiming Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
- Department of Chemistry
| | - Xiaomao Zou
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Jiahui Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Qichun Zhang
- School of Materials Science Engineering
- Nanyang Technological University
- Singapore
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
| |
Collapse
|
4
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
5
|
Magnussen JH, Ettrup A, Donat CK, Peters D, Pedersen MHF, Knudsen GM, Mikkelsen JD. Radiosynthesis and in vitro validation of (3)H-NS14492 as a novel high affinity alpha7 nicotinic receptor radioligand. Eur J Pharmacol 2015; 762:35-41. [PMID: 25941084 DOI: 10.1016/j.ejphar.2015.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
The neuronal α7 nicotinic acetylcholine receptor is a homo-pentameric ligand-gated ion channel that is a promising drug target for cognitive deficits in Alzheimer׳s disease and schizophrenia. We have previously described (11)C-NS14492 as a suitable agonist radioligand for in vivo positron emission tomography (PET) occupancy studies of the α7 nicotinic receptor in the pig brain. In order to investigate the utility of the same compound for in vitro studies, (3)H-NS14492 was synthesized and its binding properties were characterized using in vitro autoradiography and homogenate binding assays in pig frontal cortex. (3)H-NS14492 showed specific binding to α7 nicotinic receptors in autoradiography, revealing a dissociation constant (Kd) of 2.1±0.7nM and a maximum number of binding sites (Bmax) of 15.7±2.0fmol/mg tissue equivalent. Binding distribution was similar to that of another selective ligand (125)I-α-bungarotoxin ((125)I-BTX) in autoradiography, and unlabeled NS14492 displaced (125)I-BTX with an inhibition constant (Ki) of 23nM. (3)H-NS14492 bound to α7 nicotinic receptors in homogenized pig frontal cortex with a Kd of 0.8±0.3nM and a Bmax of 30.2±11.6fmol/mg protein. This binding assay further revealed the Ki rank order for a number of α7 nicotinic receptor agonists, and positive allosteric modulators (PAMs). Further, we saw increased binding of (3)H-NS14492 to pig frontal cortex membranes when co-incubated with PNU-120596, a type II PAM. Taken together, these findings show that (3)H-NS14492 is a useful new in vitro radioligand for the pig α7 nicotinic receptor.
Collapse
Affiliation(s)
- Janus H Magnussen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Ettrup
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cornelius K Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Martin H F Pedersen
- The Hevesy Laboratory, DTU Nutech, The Technical University of Denmark, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
6
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ligand-gated ion channels. Br J Pharmacol 2014; 170:1582-606. [PMID: 24528238 PMCID: PMC3892288 DOI: 10.1111/bph.12446] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ligand-gated ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Molgó J, Aráoz R, Benoit E, Iorga BI. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Expert Opin Drug Discov 2013; 8:1203-23. [DOI: 10.1517/17460441.2013.822365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Ravert HT, Dorff P, Foss CA, Mease RC, Fan H, Holmquist CR, Phillips E, McCarthy DJ, Heys JR, Holt DP, Wang Y, Endres CJ, Dannals RF, Pomper MG. Radiochemical synthesis and in vivo evaluation of [18F]AZ11637326: an agonist probe for the α7 nicotinic acetylcholine receptor. Nucl Med Biol 2013; 40:731-9. [PMID: 23680470 DOI: 10.1016/j.nucmedbio.2013.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The alpha-7 nicotinic acetylcholine receptor (α7 nAChR) is key in brain communication and has been implicated in the pathophysiology of diseases of the central nervous system. A positron-emitting radioligand targeting the α7 nAChR would enable better understanding of a variety of neuropsychiatric illnesses, including schizophrenia and Alzheimer's disease, and could enhance the development of new drugs for these and other conditions. We describe our attempt to synthesize an α7 nAChR-selective radiotracer for positron emission tomography (PET). METHODS We prepared the high-affinity (K(d) = 0.2 nM) α7 nAChR agonist, 5'-(2-[(18)F]fluorophenyl)spiro[1-azabicyclo-[2.2.2]octane]-3,2'-(3'H)furo[2,3-b]pyridine, [(18)F]AZ11637326, in two steps, a nucleophilic fluorination followed by decarbonylation. We studied [(18)F]AZ11637326 in rodents, including mice lacking α7 nAChR, and in non-human primates. RESULTS [(18)F]AZ11637326 was synthesized in a non-decay-corrected radiochemical yield of 3% from the end of synthesis (90 min) with a radiochemical purity >90% and average specific radioactivity of 140GBq/μmol (3,781 mCi/μmol). Modest rodent brain uptake was observed (2-5% injected dose per gram of tissue, depending on specific activity), with studies comparing CD-1 and α7 nAChR null mice indicating an element of target-specific binding. Blocking studies in non-human primates did not reveal specific binding within the brain. CONCLUSION Despite the high affinity and target selectivity of AZ11637326 for α7 nAChR in vitro and encouraging rodent studies, receptor-mediated binding could not be demonstrated in non-human primates. Further structural optimization of compounds of this class will be required for them to serve as suitable radiotracers for PET.
Collapse
Affiliation(s)
- Hayden T Ravert
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287-0014, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Virtual screening for alpha7 nicotinic acetylcholine receptor for treatment of Alzheimer's disease. J Mol Graph Model 2013; 39:98-107. [DOI: 10.1016/j.jmgm.2012.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022]
|
10
|
Nirogi R, Kandikere V, Bhyrapuneni G, Saralaya R, Muddana N, Komarneni P. Methyllycaconitine: a non-radiolabeled ligand for mapping α7 neuronal nicotinic acetylcholine receptors - in vivo target localization and biodistribution in rat brain. J Pharmacol Toxicol Methods 2012; 66:22-8. [PMID: 22609758 DOI: 10.1016/j.vascn.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Reduction of cerebral cortical and hippocampal α7 neuronal nicotinic acetylcholine receptor (nAChR) density was observed in the Alzheimer's disease (AD) and other neurodegenerative diseases. Mapping the subtypes of nAChRs with selective ligand by viable, quick and consistent method in preclinical drug discovery may lead to rapid development of more effective therapeutic agents. The objective of this study was to evaluate the use of methyllycaconitine (MLA) in non-radiolabeled form for mapping α7 nAChRs in rat brain. METHODS MLA pharmacokinetic and brain penetration properties were assessed in male Wistar rats. The tracer properties of MLA were evaluated in rat brain by dose and time dependent differential regional distribution studies. Target specificity was validated after blocking with potent α7 nAChR agonists ABBF, PNU282987 and nicotine. High performance liquid chromatography combined with triple quad mass spectral detector (LC-MS/MS) was used to measure the plasma and brain tissue concentrations of MLA. RESULTS MLA has shown rapid brain uptake followed by a 3-5 fold higher specific binding in regions containing the α7 nAChRs (hypothalamus - 1.60 ng/g), when compared to non-specific regions (striatum - 0.53 ng/g, hippocampus - 0.46 ng/g, midbrain - 0.37 ng/g, frontal cortex - 0.35 ng/g and cerebellum - 0.30 ng/g). Pretreatment with potent α7 nAChR agonists significantly blocked the MLA uptake in hypothalamus. The non-radiolabeled MLA binding to brain region was comparable with the α7 mRNA localization and receptor distribution reported for [(3)H] MLA in rat brain. DISCUSSION The rat pharmacokinetic, brain penetration and differential brain regional distribution features favor that MLA is suitable to use in preclinical stage for mapping α7 nAChRs. Hence, this approach can be employed as an essential tool for quicker development of novel selective ligand to map variation in the α7 receptor densities, as well as to evaluate potential new chemical entities targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Pharmacokinetics and Drug Metabolism, Discovery Research, Suven Life Sciences Ltd, Serene Chambers, Banjara Hills, Hyderabad 500034, India.
| | | | | | | | | | | |
Collapse
|
11
|
Ding M, Ghanekar S, Elmore CS, Zysk JR, Werkheiser JL, Lee CM, Liu J, Chhajlani V, Maier DL. [3H]Chiba-1001(methyl-SSR180711) has low in vitro binding affinity and poor in vivo selectivity to nicotinic alpha-7 receptor in rodent brain. Synapse 2011; 66:315-22. [DOI: 10.1002/syn.21513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 10/28/2011] [Indexed: 01/02/2023]
|
12
|
Maier DL, Hill G, Ding M, Tuke D, Einstein E, Gurley D, Gordon JC, Bock MJ, Smith JS, Bialecki R, Eisman M, Elmore CS, Werkheiser JL. Pre-clinical validation of a novel alpha-7 nicotinic receptor radiotracer, [3H]AZ11637326: Target localization, biodistribution and ligand occupancy in the rat brain. Neuropharmacology 2011; 61:161-71. [DOI: 10.1016/j.neuropharm.2011.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/03/2011] [Accepted: 03/30/2011] [Indexed: 11/15/2022]
|
13
|
Werkheiser JL, Sydserff S, Hubbs SJ, Ding M, Eisman MS, Perry D, Williams AJ, Smith JS, Mrzljak L, Maier DL. Ultra-low exposure to α-7 nicotinic acetylcholine receptor partial agonists elicits an improvement in cognition that corresponds with an increase in α-7 receptor expression in rodents: implications for low dose clinical efficacy. Neuroscience 2011; 186:76-87. [PMID: 21550383 DOI: 10.1016/j.neuroscience.2011.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/16/2022]
Abstract
Αlpha-7 neuronal nicotinic receptors (NNRs) are considered targets for cognitive enhancement in schizophrenia and Alzheimer's disease. AZD0328 is an alpha-7 NNR partial agonist that enhances cognition in rodents and nonhuman primates at sub-microgram to microgram doses. We hypothesized that increased expression of the alpha-7 receptor contributes to this beneficial activity at low doses and tested this by examining the effect of AZD0328 using in vivo and ex vivo binding, RT-PCR and cognitive function in rodents. AZD0328 (0.00178 mg/kg) was subcutaneously administered to mice 4, 24, 48 and 72 hours prior to testing in novel object recognition and produced a significant increase in cognition at 4, 24 and 48 h post-dosing. In vivo binding was examined in rat brain using [(3)H]AZ11637326 and there was a dose-dependent reduction in receptor binding at higher doses of AZD0328 (0.001-3 mg/kg), and a second alpha-7 partial agonist, SSR180711 (0.01-30 mg/kg). Lower doses of both compounds (0.0001 mg/kg) produced a significant increase in binding of [(3)H]AZ11637326. Ex vivo binding using [(125)I]-α-bungarotoxin, showed a significant increase in receptor number (B(max.)) in the frontal cortex or hippocampus with no significant effect on receptor affinity (K(d)) 2 h post administration of AZD0328. [(3)H]AZ11637326 administered 1.5 h following AZD0328 produced a significant increase in specific binding in rat brain regions. We found that the effect on receptor number was long-lasting, with [(125)I]-α-bungarotoxin binding increased in rats given AZD0328 for 2-48 h, but this was not accompanied by increased mRNA synthesis. SSR180711 produced a similar increase in B(max.) and specific binding with no effect on K(d). Therefore, trace dose of alpha-7 partial agonists has rapid onset and produces a profound, sustained effect on novel object recognition in mice that corresponds by dose to an increase in receptor number in rat brain. These findings provide an explanation for the acute and sustained benefit of alpha-7 receptor activation in working memory in nonhuman primates and guidance for drug development initiatives and treatment regimens for nicotinic partial agonists.
Collapse
Affiliation(s)
- J L Werkheiser
- Neuroscience Biology, AstraZeneca Pharmaceuticals, Wilmington, DE 19850, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|