1
|
Damiescu R, Dawood M, Elbadawi M, Klauck SM, Bringmann G, Efferth T. Identification of Cytisine Derivatives as Agonists of the Human Delta Opioid Receptor by Supercomputer-Based Virtual Drug Screening and Transcriptomics. ACS Chem Biol 2024; 19:1963-1981. [PMID: 39167688 DOI: 10.1021/acschembio.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Delta opioid receptors (DORs) are rising as therapeutic targets, not only for the treatment of pain but also other neurological disorders (e.g., Parkinson's disease). The advantage of DOR agonists compared to μ-opioid receptor agonists is that they have fewer side effects and a lower potential to induce tolerance. However, although multiple candidates have been tested in the past few decades, none have been approved for clinical use. The current study focused on searching for new DOR agonists by screening a chemical library containing 40,000 natural and natural-derived products. The functional activity of the top molecules was evaluated in vitro through the cyclic adenosine monophosphate accumulation assay. Compound 3 showed promising results, and its activity was further investigated through transcriptomic methods. Compound 3 inhibited the expression of TNF-α, prevented NF-κB translocation to the nucleus, and activated the G-protein-mediated ERK1/2 pathway. Additionally, compound 3 is structurally different from known DOR agonists, making it a valuable candidate for further investigation for its anti-inflammatory and analgesic potential.
Collapse
Affiliation(s)
- Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership between DKFZ and University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| |
Collapse
|
2
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
3
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
4
|
Zhang G, Lai Z, Gu L, Xu K, Wang Z, Duan Y, Chen H, Zhang M, Zhang J, Zhao Z, Wang S. Delta Opioid Receptor Activation with Delta Opioid Peptide [d-Ala2, d-Leu5] Enkephalin Contributes to Synaptic Improvement in Rat Hippocampus against Global Ischemia. Cell Transplant 2021; 30:9636897211041585. [PMID: 34470528 PMCID: PMC8419564 DOI: 10.1177/09636897211041585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Global cerebral ischemia induced by cardiac arrest usually leads to poor neurological outcomes. Numerous studies have focused on ways to prevent ischemic damage in the brain, however clinical therapies are still limited. Our previous studies revealed that delta opioid receptor (DOR) activation with [d-Ala2, d-Leu5] enkephalin (DADLE), a DOR agonist, not only significantly promotes neuronal survival on day 3, but also improves spatial memory deficits on days 5-9 after ischemia. However, the neurological mechanism underlying DADLE-induced cognitive recovery remains unclear. This study first examined the changes in neuronal survival in the CA1 region at the advanced time point (day 7) after ischemia/reperfusion (I/R) injury and found a significant amelioration of damaged CA1 neurons in the rats treated with DADLE (2.5 nmol) when administered at the onset of reperfusion. The structure and function of CA1 neurons on days 3 and 7 post-ischemia showed significant improvements in both the density of the injured dendritic spines and the basic transmission of the impaired CA3-CA1 synapses following DADLE treatment. The molecular changes involved in DADLE-mediated synaptic modulation on days 3 and 7 post-ischemia implied the time-related differential regulation of PKCα-MARCKS on the dendritic spine structure and of BDNF- ERK1/2-synapsin I on synaptic function, in response to ischemic/reperfusion injury as well as to DADLE treatment. Importantly, all the beneficial effects of DADLE on ischemia-induced cellular, synaptic, and molecular deficits were eliminated by the DOR inhibitor naltrindole (2.5 nmol). Taken together, this study suggested that DOR activation-induced protective signaling pathways of PKCα-MARCKS involved in the synaptic morphology and BDNF-ERK-synapsin I in synaptic transmission may be engaged in the cognitive recovery in rats suffering from advanced cerebral ischemia.
Collapse
Affiliation(s)
- Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zelin Lai
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Lingling Gu
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Kejia Xu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhenlu Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yale Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital
| | - Min Zhang
- Tongji University School of Medicine, Shanghai 201204, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital.,Tongji University School of Medicine, Shanghai 201204, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
5
|
[D-Ala 2, D-Leu 5] Enkephalin Inhibits TLR4/NF- κB Signaling Pathway and Protects Rat Brains against Focal Ischemia-Reperfusion Injury. Mediators Inflamm 2021; 2021:6661620. [PMID: 33628116 PMCID: PMC7895595 DOI: 10.1155/2021/6661620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Cerebral ischemia-reperfusion (I/R) injury is the main cause of acute brain injury, which is a life-threatening disease due to the lack of effective treatments. [D-Ala2, D-Leu5] enkephalin (DADLE) is a synthetic delta-opioid receptor agonist that is reported to confer neuroprotective effect; however, the underlying mechanism is still being explored. The purpose of the present study is to determine whether DADLE administrated intracerebroventricularly could attenuate the cerebral I/R injury, to determine if this is through inhibiting the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway and therefore inhibiting neuroinflammation in an ischemic stroke model. Methods Rats were subjected to 120 minutes of ischemia by transient middle cerebral artery occlusion (MCAO). At 45 minutes after ischemia, DADLE or control vehicle (artificial cerebrospinal fluid, ACSF) was given to the rats intracerebroventricularly. Neurological deficit, cerebral infarct volume, and histopathological changes were assessed at 24 hours after reperfusion. Brain inflammation was assessed by measuring tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the ischemic penumbra by ELISA. The expression of TLR4 was determined by immunohistochemistry staining and western blotting. The expression of NF-κB was investigated by western blotting. Results Compared with the vehicle-treatment (ACSF), DADEL improved neurological deficit (9.6 ± 2.1 versus 13.8 ± 1.9), reduced cerebral infarct volume (18.74 ± 3.30% versus 10.57 ± 2.50%), and increased the number of normal neurons (29.72 ± 8.53% versus 51.37 ± 9.18%) after cerebral I/R injury in rats (all P < 0.05). Expressions of inflammatory molecules including TNF-α and IL-6 were highly expressed in the vehicle-treated rats, whereas treatment with DADLE downregulated these expressions (P < 0.05). Additionally, cerebral I/R injury significantly increased the TLR4 and NF-κB expression in vehicle-control group, which was markedly inhibited by DADLE (P < 0.05). Conclusions DADLE, administrated intracerebroventricularly at 45 minutes after cerebral ischemia, significantly ameliorated I/R-induced brain damage in rats. This kind of neuroprotective effect appears to be related to the downregulation of TLR4-mediated inflammatory responses.
Collapse
|
6
|
Lai Z, Gu L, Yu L, Chen H, Yu Z, Zhang C, Xu X, Zhang M, Zhang M, Ma M, Zhao Z, Zhang J. Delta opioid peptide [d-Ala2, d-Leu5] enkephalin confers neuroprotection by activating delta opioid receptor-AMPK-autophagy axis against global ischemia. Cell Biosci 2020; 10:79. [PMID: 32549974 PMCID: PMC7294676 DOI: 10.1186/s13578-020-00441-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Background Ischemic stroke poses a severe risk to human health worldwide, and currently, clinical therapies for the disease are limited. Delta opioid receptor (DOR)-mediated neuroprotective effects against ischemia have attracted increasing attention in recent years. Our previous studies revealed that DOR activation by [d-Ala2, d-Leu5] enkephalin (DADLE), a selective DOR agonist, can promote hippocampal neuronal survival on day 3 after ischemia. However, the specific molecular and cellular mechanisms underlying the DOR-induced improvements in ischemic neuronal survival remain unclear. Results We first detected the cytoprotective effects of DADLE in an oxygen–glucose deprivation/reperfusion (OGD/R) model and observed increased viability of OGD/R SH-SY5Y neuronal cells. We also evaluated changes in the DOR level following ischemia/reperfusion (I/R) injury and DADLE treatment and found that DADLE increased DOR levels after ischemia in vivo and vitro. The effects of DOR activation on postischemic autophagy were then investigated, and the results of the animal experiment showed that DOR activation by DADLE enhanced autophagy after ischemia, as indicated by elevated LC3 II/I levels and reduced P62 levels. Furthermore, the DOR-mediated protective effects on ischemic CA1 neurons were abolished by the autophagy inhibitor 3-methyladenine (3-MA). Moreover, the results of the cell experiments revealed that DOR activation not only augmented autophagy after OGD/R injury but also alleviated autophagic flux dysfunction. The molecular pathway underlying DOR-mediated autophagy under ischemic conditions was subsequently studied, and the in vivo and vitro data showed that DOR activation elevated autophagy postischemia by triggering the AMPK/mTOR/ULK1 signaling pathway, while the addition of the AMPK inhibitor compound C eliminated the protective effects of DOR against I/R injury. Conclusion DADLE-evoked DOR activation enhanced neuronal autophagy through activating the AMPK/mTOR/ULK1 signaling pathway to improve neuronal survival and exert neuroprotective effects against ischemia.
Collapse
Affiliation(s)
- Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Lingling Gu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Zhenhua Yu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Cheng Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Xiaoqing Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Mutian Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, 201508 China
| | - Mingliang Ma
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China.,Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, 201508 China
| |
Collapse
|
7
|
Chen YM, He XZ, Wang SM, Xia Y. δ-Opioid Receptors, microRNAs, and Neuroinflammation in Cerebral Ischemia/Hypoxia. Front Immunol 2020; 11:421. [PMID: 32269564 PMCID: PMC7109255 DOI: 10.3389/fimmu.2020.00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Hypoxia and ischemia are the main underlying pathogenesis of stroke and other neurological disorders. Cerebral hypoxia and/or ischemia (e.g., stroke) can lead to neuronal injury/death and eventually cause serious neurological disorders or even death in the patients. Despite knowing these serious consequences, there are limited neuroprotective strategies against hypoxic and ischemic insults in clinical settings. Recent studies indicate that microRNAs (miRNAs) are of great importance in regulating cerebral responses to hypoxic/ischemic stress in addition to the neuroprotective effect of the δ-opioid receptor (DOR). Moreover, new discovery shows that DOR can regulate miRNA expression and inhibit inflammatory responses to hypoxia/ischemia. We, therefore, summarize available data in current literature regarding the role of DOR and miRNAs in regulating the neuroinflammatory responses in this article. In particular, we focus on microglia activation, cytokine production, and the relevant signaling pathways triggered by cerebral hypoxia/ischemia. The intent of this review article is to provide a novel clue for developing new strategies against neuroinflammatory injury resulting from cerebral hypoxia/ischemia.
Collapse
Affiliation(s)
- Yi-Meng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shu-Ming Wang
- Department of Anesthesiology, University of Connecticut, Mansfield, CT, United States
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Abstract
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels. Despite having advancement in the use of thrombolytic and clot removal medicine, significant numbers of stroke patients are still left out without option for treatment. In this review, we summarize recent research work on the activation of δ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury. Moreover, as activation of δ-opioid receptor by a non-peptidic δ-opioid receptor agonist also modulates the expression, maturation and processing of amyloid precursor protein and β-secretase activity, the potential role of these effects on ischemic stroke caused dementia or Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
9
|
Fu D, Liu H, Liu H, Yao J. Effects of D‑Ala2, D‑Leu5‑Enkephalin pre‑ and post‑conditioning in a rabbit model of spinal cord ischemia and reperfusion injury. Mol Med Rep 2019; 20:4811-4820. [PMID: 31638217 PMCID: PMC6854538 DOI: 10.3892/mmr.2019.10729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 06/20/2019] [Indexed: 11/15/2022] Open
Abstract
It has recently been revealed that during the aorta-clamped period, D-Ala2, D-Leu5-Enkephalin (DADLE) infusion can protect the spinal cord against ischemia and reperfusion (I/R) injury. However, the protective effects of DADLE administration prior to ischemia or at the time of early reperfusion have not yet been investigated. Drug pre- or post-conditioning can serve as a more valuable clinical strategy. Therefore, the present study was designed to investigate the neuroprotective effect of DADLE infusion at different time intervals in order to determine the optimum time point for ischemic spinal cord protection. A total of 40 New Zealand white rabbits were randomly divided into 5 groups: Sham-operated (Sham), normal saline pre-conditioning (NS), DADLE per-conditioning (Dper), DADLE pre-conditioning (Dpre) and DADLE post-conditioning (Dpost). All animals were subjected to spinal cord ischemia for 30 min followed by 48 h reperfusion. Hind limb motor functions were assessed according to the Tarlov criterion when the animals regained consciousness, 6, 24 and 48 h after reperfusion. Histological analysis and the number of viable α-motor neurons were also used to assess the extent of spinal cord injury. Compared with the NS group, the Tarlov scores and the number of normal neurons were significantly higher in the Dper group (P<0.05), which were consistent with the results of a previous study. In addition, the paraplegia rate and loss of normal motor neurons were lower in the DADLE per- and post-conditioning groups compared with the DADLE pre-conditioning; however, these were not statistically significant. DADLE 0.05 mg/kg administration at three time points all mitigated normal motor neuron injury in the anterior horn and decreased the paraplegia rates in rabbits. The therapeutic benefits appeared best in the post-conditioning group with DADLE, and worst in the pre-conditioning group.
Collapse
Affiliation(s)
- Danyun Fu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Haitong Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Hua Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai 200080, P.R. China
| |
Collapse
|
10
|
Wang S, Cao X, Duan Y, Zhang G. Delta Opioid Peptide [d-Ala2, d-Leu5] Enkephalin (DADLE) Exerts a Cytoprotective Effect in Astrocytes Exposed to Oxygen-Glucose Deprivation by Inducing Autophagy. Cell Transplant 2019; 28:775-782. [PMID: 30666890 PMCID: PMC6686437 DOI: 10.1177/0963689719825619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Astrocytes protection and functional regulation are important strategies to protect against neuronal damage caused by ischemia. Activation of the delta opioid receptor (DOR) could reduce astrocytes damage, although the mechanism remains unclear. The present study aimed to test the effect of DOR activation on autophagy in astrocytes exposed to oxygen-glucose deprivation (OGD), and to further investigate whether this effect has a protective effect on astrocytes. Primary cultured rat cortical astrocytes were treated with various doses of [d-Ala2, d-Leu5]-Enkephalin (DADLE, a selective DOR agonist) followed by 6 h OGD. Cell viability was evaluated by CCK-8 assay and lactate dehydrogenase release. Autophagic vacuole was analyzed with LC3 immunofluorescent staining. The levels of autophagy and apoptosis-related proteins were analyzed by western blot. Results demonstrated that treatment with 10 nM DADLE was sufficient to increase cell viability and induced autophagy in astrocytes. The DADLE-induced autophagy displayed a cytoprotective effect on astrocytes. Inhibition of autophagy by 3-methyladenine (3-MA, an autophagy inhibitor) reversed the protective effect of DADLE. Naltrindole (a DOR antagonist) only partially antagonized the role of DADLE, which indicated that DADLE might have a cytoprotective mechanism independent of DOR. Further results showed that DADLE significantly enhanced the level of Bcl-2 protein and reduced the level of Bax protein in astrocytes exposed to OGD. Our results suggest a novel mechanism in which DADLE induces autophagy in astrocytes and exerts cytoprotective effects by inhibiting apoptosis.
Collapse
Affiliation(s)
- Shuyan Wang
- 1 Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoqiong Cao
- 1 Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yale Duan
- 2 Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, China
| | - Guangming Zhang
- 1 Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
11
|
Ou Y, Weber SG. Higher Aminopeptidase Activity Determined by Electroosmotic Push-Pull Perfusion Contributes to Selective Vulnerability of the Hippocampal CA1 Region to Oxygen Glucose Deprivation. ACS Chem Neurosci 2018; 9:535-544. [PMID: 29078045 DOI: 10.1021/acschemneuro.7b00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been known for over a century that the hippocampus, the center for learning and memory in the brain, is selectively vulnerable to ischemic damage, with the CA1 being more vulnerable than the CA3. It is also known that leucine enkephalin, or YGGFL, is neuroprotective. We hypothesized that the extracellular hydrolysis of YGGFL may be greater in the CA1 than the CA3, which would lead to the observed difference in susceptibility to ischemia. In rat organotypic hippocampal slice cultures, we estimated the Michaelis constant and the maximum velocity for membrane-bound aminopeptidase activity in the CA1 and CA3 regions. Using electroosmotic push-pull perfusion and offline capillary liquid chromatography, we inferred enzyme activity based on the production rate of GGFL, a natural and inactive product of the enzymatic hydrolysis of YGGFL. We found nearly 3-fold higher aminopeptidase activity in the CA1 than the CA3. The aminopeptidase inhibitor bestatin significantly reduced hydrolysis of YGGFL in both regions by increasing apparent Km. Based on propidium iodide cell death measurements 24 h after oxygen-glucose deprivation, we demonstrate that inhibition of aminopeptidase activity using bestatin selectively protected CA1 against delayed cell death due to oxygen-glucose deprivation and that this neuroprotection occurs through enkephalin-dependent pathways.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Moghal ETB, Venkatesh K, Sen D. The delta opioid peptide D-Alanine 2, Leucine 5 Enkephaline (DADLE)-induces neuroprotection through cross-talk between the UPR and pro-survival MAPK-NGF-Bcl2 signaling pathways via modulation of several micro-RNAs in SH-SY5Y cells subjected to ER stress. Cell Biol Int 2018; 42:543-569. [DOI: 10.1002/cbin.10923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Erfath Thanjeem Begum Moghal
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| | - Katari Venkatesh
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| |
Collapse
|
13
|
Min JW, Liu Y, Wang D, Qiao F, Wang H. The non-peptidic δ-opioid receptor agonist Tan-67 mediates neuroprotection post-ischemically and is associated with altered amyloid precursor protein expression, maturation and processing in mice. J Neurochem 2017; 144:336-347. [PMID: 29193080 DOI: 10.1111/jnc.14265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
Tan-67 is a selective non-peptidic δ-opioid receptor (DOR) agonist that confers neuroprotection against cerebral ischemia/reperfusion (I/R)-caused neuronal injury in pre-treated animals. In this study, we examined whether post-ischemic administration of Tan-67 in stroke mice is also neuroprotective and whether the treatment affects expression, maturation and processing of the amyloid precursor protein (APP). A focal cerebral I/R model in mice was induced by middle cerebral artery occlusion for 1 h and Tan-67 (1.5, 3 or 4.5 mg/kg) was administered via the tail vein at 1 h after reperfusion. Alternatively, naltrindole, a selective DOR antagonist (5 mg/kg), was administered 1 h before Tan-67 treatment. Our results showed that post-ischemic administration of Tan-67 (3 mg/kg or 4.5 mg/kg) was neuroprotective as shown by decreased infarct volume and neuronal loss following I/R. Importantly, Tan-67 improved animal survival and neurobehavioral outcomes. Conversely, naltrindole abolished Tan-67 neuroprotection in infarct volume. Tan-67 treatment also increased APP expression, maturation and processing in the ipsilateral penumbral area at 6 h but decreased APP expression and maturation in the same brain area at 24 h after I/R. Tan-67-induced increase in APP expression was also seen in the ischemic cortex at 24 h following I/R. Moreover, Tan-67 attenuated BACE-1 expression, β-secretase activity and the BACE cleavage of APP in the ischemic cortex at 24 h after I/R, which was abolished by naltrindole. Our data suggest that Tan-67 is a promising DOR-dependent therapeutic agent for treating I/R-caused disorder and that Tan-67-mediated neuroprotection may be mediated via modulating APP expression, maturation and processing, despite an uncertain causative relationship between the altered APP and the outcomes observed.
Collapse
Affiliation(s)
- Jia-Wei Min
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - David Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Fangfang Qiao
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
14
|
Simankova AA, Sazonova EN, Lebed’ko OA. Delayed Effects of Neonatal Administration of Non-Opioid Analog of Leu-Enkephalin on Cerebral Consequences of Antenal Hypoxia. Bull Exp Biol Med 2017; 163:594-598. [DOI: 10.1007/s10517-017-3856-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 10/18/2022]
|
15
|
Protective effect of delta opioid receptor agonist (D-Ala2, D-Leu5) enkephalin on permanent focal cerebral ischemia in rats. Neuroreport 2016; 27:749-54. [DOI: 10.1097/wnr.0000000000000604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Effect of delta opioid receptor activation on spatial cognition and neurogenesis in cerebral ischemic rats. Neurosci Lett 2016; 620:20-6. [DOI: 10.1016/j.neulet.2016.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 01/14/2023]
|
17
|
WANG ZHENRAN, TANG BO, TANG FANG, LI YANG, ZHANG GUANGYU, ZHONG LI, DONG CHENCHENG, HE SONGQING. Protection of rat intestinal epithelial cells from ischemia/reperfusion injury by (D-Ala2, D-Leu5)-enkephalin through inhibition of the MKK7-JNK signaling pathway. Mol Med Rep 2015; 12:4079-4088. [PMID: 26126577 PMCID: PMC4526098 DOI: 10.3892/mmr.2015.3991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that (D‑Ala2, D‑Leu5)‑enkephalin (DADLE) protects rats from hepatic ischemia/reperfusion (I/R) injury. In the present study, DADLE was also observed to alleviate IR‑induced intestinal epithelial cell injury in rats by inhibiting mitogen‑activated protein kinase kinase 7 (MKK7)‑c‑Jun N‑terminal kinase (JNK) pathway signaling. To investigate the protective effect of DADLE on hypoxia/reoxygenation injury in rat intestinal epithelial cells, rat intestinal epithelial cells were treated with different concentrations of DADLE, following which the cell survival rate was determined using a tetrazolium (MTT) colorimetric assay, and apoptosis was determined using flow cytometry. To confirm whether the protective effect of DADLE was due to its effect on MKK7‑JNK signaling, the phosphorylation levels of MKK7 and JNK were analyzed using western blot analysis following treatment with different concentrations of DADLE. The results demonstrated that, following treatment with DADLE, the survival rate of the rat intestinal cells subjected to I/R‑induced injury increased significantly and the apoptotic rate decreased in a concentration‑dependent manner. In addition, the levels of phosphorylated MKK7 and JNK decreased in a concentration‑dependent manner following treatment with DADLE. Silencing the gene expression of MKK7 using small interfering RNA prior to DADLE treatment resulted in a reduction in the protective effects of DADLE on the rat intestinal epithelial cells subjected to I/R injury. Collectively, the results of the present study demonstrated that the protective effects of DADLE in I/R injury in rat intestinal cells occurred through inhibition of the MKK7‑JNK pathway.
Collapse
Affiliation(s)
- ZHENRAN WANG
- Departments of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - BO TANG
- Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - FANG TANG
- Pathology, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - YANG LI
- Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - GUANGYU ZHANG
- Departments of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - LI ZHONG
- Departments of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - CHENCHENG DONG
- Departments of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - SONGQING HE
- Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
18
|
Headrick JP, See Hoe LE, Du Toit EF, Peart JN. Opioid receptors and cardioprotection - 'opioidergic conditioning' of the heart. Br J Pharmacol 2015; 172:2026-50. [PMID: 25521834 PMCID: PMC4386979 DOI: 10.1111/bph.13042] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or 'developed' countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia-reperfusion (I-R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I-R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Louise E See Hoe
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Eugene F Du Toit
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| |
Collapse
|
19
|
Gabrielová E, Křen V, Jabůrek M, Modrianský M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol Res 2014; 64:79-91. [PMID: 25194130 DOI: 10.33549/physiolres.932703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ischemic postconditioning and remote conditioning are potentially useful tools for protecting ischemic myocardium. This study tested the hypothesis that 2,3-dehydrosilybin (DHS), a flavonolignan component of Silybum marianum, could attenuate cardiomyocyte damage following hypoxia/reoxygenation by decreasing the generation of reactive oxygen species (ROS). After 5-6 days of cell culture in normoxic conditions the rat neonatal cardiomyocytes were divided into four groups. Control group (9 h at normoxic conditions), hypoxia/reoxygenation group (3 h at 1 % O₂, 94 % N₂and 5 % CO₂followed by 10 min of 10 micromol·l⁻¹DHS and 6 h of reoxygenation in normoxia) and postconditioning group (3 h of hypoxia, three cycles of 5 min reoxygenation and 5 min hypoxia followed by 6 h of normoxia). Cell viability assessed by propidium iodide staining was decreased after DHS treatment consistent with increased levels of lactatedehydrogenase (LDH) after reoxygenation. LDH leakage was significantly reduced when cardiomyocytes in the H/Re group were exposed to DHS. DHS treatment reduced H₂O₂production and also decreased the generation of ROS in the H/Re group as evidenced by a fluorescence indicator. DHS treatment reduces reoxygenation-induced injury in cardiomyocytes by attenuation of ROS generation, H₂O₂and protein carbonyls levels. In addition, we found that both the postconditioning protocol and the DHS treatment are associated with restored ratio of phosphorylated/total protein kinase C epsilon, relative to the H/Re group. In conclusion, our data support the protective role of DHS in hypoxia/reperfusion injury and indicate that DHS may act as a postconditioning mimic.
Collapse
Affiliation(s)
- E Gabrielová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
20
|
Zhang M, Wang H, Zhao J, Chen C, Leak RK, Xu Y, Vosler P, Chen J, Gao Y, Zhang F. Drug-induced hypothermia in stroke models: does it always protect? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:371-80. [PMID: 23469851 DOI: 10.2174/1871527311312030010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is a common neurological disorder lacking a cure. Recent studies show that therapeutic hypothermia is a promising neuroprotective strategy against ischemic brain injury. Several methods to induce therapeutic hypothermia have been established; however, most of them are not clinically feasible for stroke patients. Therefore, pharmacological cooling is drawing increasing attention as a neuroprotective alternative worthy of further clinical development. We begin this review with a brief introduction to the commonly used methods for inducing hypothermia; we then focus on the hypothermic effects of eight classes of hypothermia-inducing drugs: the cannabinoids, opioid receptor activators, transient receptor potential vanilloid, neurotensins, thyroxine derivatives, dopamine receptor activators, hypothermia-inducing gases, adenosine, and adenine nucleotides. Their neuroprotective effects as well as the complications associated with their use are both considered. This article provides guidance for future clinical trials and animal studies on pharmacological cooling in the setting of acute stroke.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jia K, Sun D, Ling S, Tian Y, Yang X, Sui J, Tang B, Wang L. Activated δ‑opioid receptors inhibit hydrogen peroxide‑induced apoptosis in liver cancer cells through the PKC/ERK signaling pathway. Mol Med Rep 2014; 10:839-47. [PMID: 24912447 DOI: 10.3892/mmr.2014.2301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Apoptotic liver cancer cells have important roles in liver tumorigenesis and liver cancer progression. Recent studies have shown that δ‑opioid receptors are highly expressed in human liver and liver cancer cells. The present study aimed to investigate the role of activated δ‑opioid receptors on human liver cancer cell apoptosis and its interrelation with the mitochondria and the protein kinase C/extracellular‑signal‑regulated kinase (PKC/ERK) signaling pathway. H2O2 was used to induce apoptosis in human liver cancer cells. During apoptosis, mitochondrial transmembrane potentials were observed to decrease, cytochrome c expression was found to increase and B cell lymphoma 2 (Bcl‑2) expression decreased. These findings suggested that H2O2‑induced apoptosis was mediated through the mitochondrial pathway. Of note, activated δ‑opioid receptors were observed to inhibit H2O2‑induced apoptosis in human liver cancer cells. Following δ‑opioid receptor activation, the number of apoptotic liver cancer cells decreased, mitochondrial transmembrane potentials were restored, cytoplasmic cytochrome c and Bcl‑2‑associated X protein expression decreased and Bcl‑2 expression increased. These data suggested that δ‑opioid receptor activation inhibited mitochondria‑mediated apoptosis. In addition, activation of δ‑opioid receptors was observed to increase the expression of PKC and ERK in human liver cancer cells. Furthermore, upon inhibition of the PKC/ERK signaling pathway, the protective effect associated with the δ‑opioid receptor on liver cancer cell apoptosis was inhibited, which was not associated with the status of δ‑opioid receptor activation. These findings suggested that the PKC/ERK signaling pathway has an important role in δ‑opioid receptor‑mediated inhibition of apoptosis in human liver cancer cells.
Collapse
Affiliation(s)
- Kaiqi Jia
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Deguang Sun
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Sunbin Ling
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yu Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xuejun Yang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Jidong Sui
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Liming Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
22
|
Tian J, Gu Y, Sun K, Wang B, Chen J, Wang X, Su D. [D-Ala2, D-Leu5] encephalin (DADLE) reversibly inhibits cellular transcription in neurons without causing cell injury. Brain Res 2014; 1565:1-7. [PMID: 24735650 DOI: 10.1016/j.brainres.2014.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
[d-Ala(2)-d-Leu(5)]-Enkephalin (DADLE) has shown promising results in protecting neurons from damages. However, the mechanism for this protection is still under investigation. The current study was carried out to test the hypothesis that DADLE may regulate cellular transcription in neurons. SH-SY5Y cells and primary cortical neurons were treated with various doses of DADLE for 24-72h. Results demonstrated that DADLE, at all doses and time points examined, significantly inhibited cellular transcription in both cells without causing cell injury. Following recovery for 72h without DADLE in primary neurons, the transcriptional activity fully resumed. Delta opioid receptor (DOR) is not involved in this process, as Naltrindole could not abolish DADLE׳s transcriptional inhibitory effects. Further studies in primary cortical neurons show that DADLE significantly inhibited phosphorylation of Ser2 and Ser5 of the C-terminal domain (CTD) of RNA polymerase II. These data indicate that DADLE is able to decrease cellular transcription through inhibiting phosphorylation of RNA polymerase II in neurons, which may provide mechanistic insight into its reported neuroprotective effects, and suggests that it warrants further exploration as a potential therapeutic strategy for neuroprotection.
Collapse
Affiliation(s)
- Jie Tian
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Yang Gu
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Ke Sun
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Beilei Wang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Jie Chen
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Xiangrui Wang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China.
| | - Diansan Su
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China.
| |
Collapse
|
23
|
Malatesta M, Galimberti V, Cisterna B, Costanzo M, Biggiogera M, Zancanaro C. Chitosan nanoparticles are efficient carriers for delivering biodegradable drugs to neuronal cells. Histochem Cell Biol 2013; 141:551-8. [DOI: 10.1007/s00418-013-1175-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2013] [Indexed: 12/23/2022]
|
24
|
Suo C, Sun L, Yang S. Alpinetin activates the δ receptor instead of the κ and μ receptor pathways to protect against rat myocardial cell apoptosis. Exp Ther Med 2013; 7:109-116. [PMID: 24348774 PMCID: PMC3861512 DOI: 10.3892/etm.2013.1359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/07/2013] [Indexed: 01/26/2023] Open
Abstract
Alpinetin is a natural flavonoid that protects cells against fatal injury in ischemia-reperfusion. δ receptor activation protects myocardial cells from trauma; however, the mechanism is unknown. The aim of this study was to explore the function of alpinetin in δ receptor-mediated myocardial apoptosis. The myocardial cells of newly born rats were cultivated and myocardial apoptosis was induced by serum deprivation. The MTT method was used to evaluate cell viability and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining was used to analyze apoptosis. The expression levels of opioid receptor mRNA and protein were tested using reverse transcription-polymerase reaction (RT-PCR) and western blot assays. In addition, an opioid receptor antagonist, as well as protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) inhibitors, were used to determine the inferred signaling pathway. The results showed that that alpinetin reduced the myocardial apoptosis induced by serum deprivation in a concentration-dependent manner. However, the protection conferred to the myocardial cells by alpinetin was blocked by the δ opioid receptor antagonist naltrindole, as well as by PKC and ERK inhibitors (GF109203X and U0126, respectively). In addition, it was shown that alpinetin was able to maintain the stability of the mitochondrial membrane potential, lower the level of intracytoplasmic cytochrome c and reduce Bax displacement from the cytoplasm to the mitochondria. It was concluded that alpinetin was able to activate δ receptors to induce the endogenous protection of myocardial cells via the PKC/ERK signaling pathway.
Collapse
Affiliation(s)
- Chuantao Suo
- Department of Cardiology, Daqing General Hospital Group Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Libo Sun
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
25
|
Bissonnette S, Vaillancourt M, Hébert SS, Drolet G, Samadi P. Striatal pre-enkephalin overexpression improves Huntington's disease symptoms in the R6/2 mouse model of Huntington's disease. PLoS One 2013; 8:e75099. [PMID: 24040390 PMCID: PMC3770591 DOI: 10.1371/journal.pone.0075099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/09/2013] [Indexed: 12/25/2022] Open
Abstract
The reduction of pre-enkephalin (pENK) mRNA expression might be an early sign of striatal neuronal dysfunction in Huntington’s disease (HD), due to mutated huntingtin protein. Indeed, striatopallidal (pENK-containing) neurodegeneration occurs at earlier stage of the disease, compare to the loss of striatonigral neurons. However, no data are available about the functional role of striatal pENK in HD. According to the neuroprotective properties of opioids that have been recognized recently, the objective of this study was to investigate whether striatal overexpression of pENK at early stage of HD can improve motor dysfunction, and/or reduce striatal neuronal loss in the R6/2 transgenic mouse model of HD. To achieve this goal recombinant adeno-associated-virus (rAAV2)-containing green fluorescence protein (GFP)-pENK was injected bilaterally in the striatum of R6/2 mice at 5 weeks old to overexpress opioid peptide pENK. Striatal injection of rAAV2-GFP was used as a control. Different behavioral tests were carried out before and/or after striatal injections of rAAV2. The animals were euthanized at 10 weeks old. Our results demonstrate that striatal overexpression of pENK had beneficial effects on behavioral symptoms of HD in R6/2 by: delaying the onset of decline in muscular force; reduction of clasping; improvement of fast motor activity, short-term memory and recognition; as well as normalization of anxiety-like behavior. The improvement of behavioral dysfunction in R6/2 mice having received rAAV2-GFP-pENK associated with upregulation of striatal pENK mRNA; the increased level of enkephalin peptide in the striatum, globus pallidus and substantia nigra; as well as the slight increase in the number of striatal neurons compared with other groups of R6/2. Accordingly, we suggest that at early stage of HD upregulation of striatal enkephalin might play a key role at attenuating illness symptoms.
Collapse
Affiliation(s)
| | - Mylène Vaillancourt
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, Québec, Canada
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, Québec, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, Canada
| | - Guy Drolet
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, Québec, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, Canada
| | - Pershia Samadi
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, Québec, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
26
|
Fuardo M, Lemoine S, Lo Coco C, Hanouz JL, Massetti M. [D-Ala2,D-Leu5]-enkephalin (DADLE) and morphine-induced postconditioning by inhibition of mitochondrial permeability transition pore, in human myocardium. Exp Biol Med (Maywood) 2013; 238:426-32. [PMID: 23436882 DOI: 10.1177/1535370212474602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of the study was to examine the cardioprotective effect of morphine and Delta 2 opioid D-Ala2-Leu5 enkephalin(DADLE) administered, at early reoxygenation, in isolated human myocardium exposed to hypoxia–reoxygenation. Then,we tested the involvement of mitochondrial permeability transition pore in morphine and DADLE-induced postconditioning.Human right atrial trabeculae were obtained during cardiac surgery (coronary artery bypass and aortic valve replacement).Isometrically contracting isolated human right atrial trabeculae were exposed to 30-min hypoxia and 60-min reoxygenation(control group). In treatment groups, morphine 0.5 mmol, DADLE 10 nmol, DADLE 50 nmol and DADLE 100 nmol were administered during the first 15 min of reoxygenation. In two additional groups, morphine and DADLE 100 nmol were administered in the presence of atractyloside 50 mmol, the mitochondrial permeability transition pore opener. The force of contraction at the end of 60-min reoxygenation period (FoC60 expressed as % of baseline) was compared (mean+standard deviation) between the groups by an analysis of variance. Morphine (FoC60: 81+9% of baseline), DADLE50 nmol (FoC60: 76+11% of baseline) and DADLE 100 nmol (FoC60: 81+4% of baseline) increased significantly (P,0.001) the FoC60 as compared with the control group (FoC60: 53+3% of baseline). DADLE 10 nmol did not modify the FoC60 (50+9% of baseline; P ¼ 0.60 versus control group). The enhanced recovery of FoC60 induced by morphine and DADLE 100 nmol were abolished in the presence of atractyloside (FoC60: respectively 57+6% and 44+7% of baseline;P, 0.001). In conclusion, the administration of morphine and DADLE, in early reoxygenation period, protected human myocardium, in vitro, against hypoxia–reoxygenation injury, at least in part, by the inhibition of mitochondrial permeability transition pore opening.
Collapse
Affiliation(s)
- Marinella Fuardo
- Department of Surgery, Chirurgia Epatopancreatica, Fondazione IRCCS San Matteo Hospital, University of Pavia
| | | | | | | | | |
Collapse
|
27
|
He X, Sandhu HK, Yang Y, Hua F, Belser N, Kim DH, Xia Y. Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cell Mol Life Sci 2013; 70:2291-303. [PMID: 23014992 PMCID: PMC11113157 DOI: 10.1007/s00018-012-1167-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 12/24/2022]
Abstract
Hypoxic/ischemic injury remains the most dreaded cause of neurological disability and mortality. Despite the humbling experiences due to lack of promising therapy, our understanding of the complex cascades underlying the neuronal insult has led to advances in basic science research. One of the most noteworthy has been the effect of opioid receptors, especially the delta-opioid receptor (DOR), on hypoxic/ischemic neurons. Our recent studies, and those of others worldwide, present strong evidence that sheds light on DOR-mediated neuroprotection in the brain, especially in the cortex. The mechanisms of DOR neuroprotection are broadly categorized as: (1) stabilization of the ionic homeostasis, (2) inhibition of excitatory transmitter release, (3) attenuation of disrupted neuronal transmission, (4) increase in antioxidant capacity, (5) regulation of intracellular pathways-inhibition of apoptotic signals and activation of pro-survival signaling, (6) regulation of specific gene and protein expression, and (7) up-regulation of endogenous opioid release and/or DOR expression. Depending upon the severity and duration of hypoxic/ischemic insult, the release of endogenous opioids and DOR expression are regulated in response to the stress, and DOR signaling acts at multiple levels to confer neuronal tolerance to harmful insult. The phenomenon of DOR neuroprotection offers a potential clue for a promising target that may have significant clinical implications in our quest for neurotherapeutics.
Collapse
Affiliation(s)
- Xiaozhou He
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Harleen K. Sandhu
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Yilin Yang
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Fei Hua
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Nathalee Belser
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Dong H. Kim
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Ying Xia
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| |
Collapse
|
28
|
Fujii H, Takahashi T, Nagase H. Non-peptidic δ opioid receptor agonists and antagonists (2000 – 2012). Expert Opin Ther Pat 2013; 23:1181-208. [DOI: 10.1517/13543776.2013.804066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Zheng YJ, Wang XR, Chen HZ, Wu XJ, Zhao YH, Su DS. Protective effects of the delta opioid peptide [D-Ala2, D-Leu5]enkephalin in an ex vivo model of ischemia/reperfusion in brain slices. CNS Neurosci Ther 2013; 18:762-6. [PMID: 22943142 DOI: 10.1111/j.1755-5949.2012.00360.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The delta opioid peptide [D-Ala2, D-Leu5]enkephalin (DADLE) plays a key role in neuronal protection against both hypoxic and ischemic conditions. However, the cellular mechanisms of action of DADLE under these conditions remain unclear. METHODS Ischemia was simulated with perfusing the brain slices with glucose-free artificial cerebrospinal fluid. Apoptosis was examined using an in situ cell death detection kit and expressed as the percentage of positively labeled neurons relative to total number of neurons. PCR was performed by adding cDNA, 5 pm dNTP, 1 μL Taqase, and primers. PCR products were separated with electrophoresis, stained with ethidium bromide, and visualized under ultraviolet light. AIMS To investigate the potential effects of DADLE in an ex vivo model of cerebral ischemia/reperfusion. RESULTS DADLE attenuated lactic dehydrogenase release and neuronal apoptosis in a concentration-dependent manner. The protective effects of DADLE were attenuated by representative selective delta2, but not delta1 opioid antagonists. Treatment with PD98059, a selective inhibitor of ERK kinase (MEK), also blocked the protective effect of DADLE as well as ERK phosphorylation induced by DADLE. CONCLUSIONS Endogenous opioid peptides could promote cell survival via delta2 opioid receptors, possibly through the downstream MEK-ERK pathway.
Collapse
Affiliation(s)
- Yong-Jun Zheng
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | | | | | | | | | | |
Collapse
|
30
|
δ-opioid receptor activation and microRNA expression of the rat cortex in hypoxia. PLoS One 2012; 7:e51524. [PMID: 23272113 PMCID: PMC3521741 DOI: 10.1371/journal.pone.0051524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Prolonged hypoxic/ischemic stress may cause cortical injury and clinically manifest as a neurological disability. Activation of the δ-opioid receptor (DOR) may induce cortical protection against hypoxic/ischemic insults. However, the mechanisms underlying DOR protection are not clearly understood. We have recently found that DOR activation modulates the expression of microRNAs (miRNAs) in the kidney exposed to hypoxia, suggesting that DOR protection may involve a miRNA mechanism. To determine if the miRNAs expressed in the cortex mediated DOR neuroprotection, we examined 19 miRNAs that were previously identified as hypoxia- and DOR-regulated miRNAs in the kidney, in the rat cortex treated with UFP-512, a potent and specific DOR agonist under hypoxic condition. Of the 19 miRNAs tested, 17 were significantly altered by hypoxia and/or DOR activation with the direction and amplitude varying depending on hypoxic duration and times of DOR treatment. Expression of several miRNAs such as miR-29b, -101b, -298, 324-3p, -347 and 466b was significantly depressed after 24 hours of hypoxia. Similar changes were seen in normoxic condition 24 hours after DOR activation with one-time treatment of UFP-512. In contrast, some miRNAs were more tolerant to hypoxic stress and showed significant reduction only with 5-day (e.g., miR-31 and -186) or 10-day (e.g., miR-29a, let-7f and -511) exposures. In addition, these miRNAs had differential responses to DOR activation. Other miRNAs like miRs-363* and -370 responded only to the combined exposure to hypoxia and DOR treatment, with a notable reduction of >70% in the 5-day group. These data suggest that cortical miRNAs are highly yet differentially sensitive to hypoxia. DOR activation can modify, enhance or resolve the changes in miRNAs that target HIF, ion transport, axonal guidance, free radical signaling, apoptosis and many other functions.
Collapse
|
31
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
32
|
Neuroprotective Effects of Remifentanil Against Transient Focal Cerebral Ischemia in Rats. J Neurosurg Anesthesiol 2012; 24:51-7. [DOI: 10.1097/ana.0b013e3182368d70] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Duan YL, Wang SY, Zeng QW, Su DS, Li W, Wang XR, Zhao Z. Astroglial reaction to delta opioid peptide [D-Ala2, D-Leu5] enkephalin confers neuroprotection against global ischemia in the adult rat hippocampus. Neuroscience 2011; 192:81-90. [PMID: 21745540 DOI: 10.1016/j.neuroscience.2011.06.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/14/2011] [Accepted: 06/23/2011] [Indexed: 01/19/2023]
Abstract
Delta opioid receptor (DOR) is essential for neuronal survival against hypoxic/ischemic damages. However, current understanding on how DOR activation affects astrocytic functions under ischemia remains incomplete. The present study investigated the astroglial responses to [d-Ala2, d-Leu5] enkephalin (DADLE) (a selective DOR agonist)-induced DOR activation after global cerebral ischemia. Adult male rats were preimplanted with intracerebral cannula and subjected to global ischemia for 10 min. The rats were divided into four groups: normal group (without any procedure), sham group (sham procedure with intracerebroventricular injection of ACSF), I/R group (ischemia procedure with intracerebroventricular injection of ACSF) and DAD-treated group (ischemia procedure with intracerebroventricular injection of DADLE). Hippocampal CA1 neuronal survival and activation of astrocytes were measured in the animals at 72 h post-ischemia. The distribution and phenotypes of p-Akt and active caspase-3 were also determined. The ischemic injury resulted in a significant neuronal loss and an increase in the dying astrocytes in the hippocampal CA1 region as compared with those in the sham animals (200.7±22.7/mm(2) vs. 6.6±3.1/mm(2), P<0.001). Improved neuronal survival in the DAD-treated animals was evident, which was accompanied by less dying astrocytes and enhanced astrocytes reaction with more active astrocytes than that in the I/R group (267.6±13.2/mm(2) vs. 157.0±18.1/mm(2), P<0.01) and a significantly increased immunoreactivity of p-Akt. However, the active caspase-3 positive cells were also evident in DAD-treated group (313.0±23.1/mm(2)) and significantly increased as compared with those of the sham group (159.0±15.8/mm(2), P<0.001) or I/R group (193.6±26.2/mm(2), P<0.01). Most of the active caspase-3-expressing cells were colabeled with glial fibrillary acidic protein (GFAP), an astrocytes marker. We conclude that the post-ischemic treatment with DADLE promotes beneficial astrocytes activation and induces astroglial apoptosis 72 h after reperfusion which may be involved in reducing their harmful effect to neurons survival.
Collapse
Affiliation(s)
- Y-L Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | | | | | | | | | | | | |
Collapse
|