1
|
Rodríguez-Massó SR, Erickson MA, Banks WA, Ulrich H, Martins AH. The Bradykinin B2 Receptor Agonist (NG291) Causes Rapid Onset of Transient Blood-Brain Barrier Disruption Without Evidence of Early Brain Injury. Front Neurosci 2021; 15:791709. [PMID: 34975388 PMCID: PMC8715084 DOI: 10.3389/fnins.2021.791709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The blood-brain barrier (BBB) describes the brain's highly specialized capillaries, which form a dynamic interface that maintains central nervous system (CNS) homeostasis. The BBB supports the CNS, in part, by preventing the entry of potentially harmful circulating molecules into the brain. However, this specialized function is challenging for the development of CNS therapeutics. Several strategies to facilitate drug delivery into the brain parenchyma via disruption of the BBB have been proposed. Bradykinin has proven effective in disrupting mechanisms across the blood-tumor barrier. Unfortunately, bradykinin has limited therapeutic value because of its short half-life and the undesirable biological activity elicited by its active metabolites. Objective: To evaluate NG291, a stable bradykinin analog, with selective agonist activity on the bradykinin-B2 receptor and its ability to disrupt the BBB transiently. Methods: Sprague Dawley rats and CD-1 mice were subjected to NG291 treatment (either 50 or 100 μg/kg, intravenously). Time and dose-dependent BBB disruption were evaluated by histological analysis of Evans blue (EB) extravasation. Transcellular and paracellular BBB leakage were assessed by infiltration of 99mTc-albumin (66.5 KDa) and 14C-sucrose (340 Da) radiolabeled probes into the brains of CD-1 mice treated with NG291. NG291 influence on P-glycoprotein (P-gp) efflux pump activity was evaluated by quantifying the brain accumulation of 3H-verapamil, a known P-gp substrate, in CD-1 mice. Results: NG291-mediated BBB disruption was localized, dose-dependent, and reversible as measured by EB extravasation. 99mTc-albumin leakage was significantly increased by 50 μg/kg of NG291, whereas 100 μg/kg of NG291 significantly augmented both 14C-sucrose and 99mTc-albumin leakage. NG291 enhanced P-gp efflux transporter activity and was unable to increase brain uptake of the P-gp substrate pralidoxime. NG291 did not evoke significant short-term neurotoxicity, as it did not increase brain water content, the number of Fluoro-Jade C positive cells, or astrocyte activation. Conclusion: Our findings strongly suggest that NG291 increases BBB permeability by two different mechanisms in a dose-dependent manner and increases P-gp efflux transport. This increased permeability may facilitate the penetration into the brain of therapeutic candidates that are not P-gp substrates.
Collapse
Affiliation(s)
- Sergio R. Rodríguez-Massó
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| | - Michelle A. Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Henrique Martins
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
2
|
Lesage A, Gibson C, Marceau F, Ambrosi HD, Saupe J, Katzer W, Loenders B, Charest-Morin X, Knolle J. In Vitro Pharmacological Profile of a New Small Molecule Bradykinin B 2 Receptor Antagonist. Front Pharmacol 2020; 11:916. [PMID: 32636746 PMCID: PMC7316994 DOI: 10.3389/fphar.2020.00916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
We here report the discovery and early characterization of Compound 3, a representative of a novel class of small molecule bradykinin (BK) B2 receptor antagonists, and its superior profile to the prior art B2 receptor antagonists Compound 1 and Compound 2. Compound 3, Compound 2, and Compound 1 are highly potent antagonists of the human recombinant B2 receptor (Kb values 0.24, 0.95, and 1.24 nM, respectively, calcium mobilization assay). Compound 3 is more potent than the prior art compounds and icatibant in this assay (Kb icatibant 2.81 nM). The compounds also potently inhibit BK-induced contraction of endogenous B2 receptors in a human isolated umbilical vein bioassay. The potencies of Compound 3, Compound 2, Compound 1, and icatibant are (pA2 values) 9.67, 9.02, 8.58, and 8.06 (i.e. 0.21, 0.95, 2.63, and 8.71 nM), respectively. Compound 3 and Compound 2 were further characterized. They inhibit BK-induced c-Fos signaling and internalization of recombinant human B2 receptors in HEK293 cells, and do not antagonize the venous effects mediated by other G protein-coupled receptors in the umbilical vein model, including the bradykinin B1 receptor. Antagonist potency of Compound 3 at cloned cynomolgus monkey, dog, rat, and mouse B2 receptors revealed species selectivity, with a high antagonist potency for human and monkey B2 receptors, but several hundred-fold lower potency for the other B2 receptors. The in vitro off-target profile of Compound 3 demonstrates a high degree of selectivity over a wide range of molecular targets, including the bradykinin B1 receptor. Compound 3 showed a lower intrinsic clearance in the microsomal stability assay than the prior art compounds. With an efflux ratio of 1.0 in the Caco-2 permeability assay Compound 3 is predicted to be not a substrate of efflux pumps. In conclusion, we discovered a novel chemical class of highly selective and very potent B2 receptor antagonists, as exemplified by Compound 3. The compound showed excellent absorption in the Caco-2 assay, predictive of good oral bioavailability, and favourable metabolic stability in liver microsomes. Compound 3 has provided a significant stepping stone towards the discovery of the orally bioavailable B2 antagonist PHA-022121, currently in phase 1 clinical development.
Collapse
Affiliation(s)
- Anne Lesage
- Pharvaris Netherlands B.V., Leiden, Netherlands
| | | | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - Jörn Saupe
- AnalytiCon Discovery GmbH, Potsdam, Germany
| | | | | | - Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC, Canada
| | | |
Collapse
|
3
|
Marceau F, Bawolak MT, Fortin JP, Morissette G, Roy C, Bachelard H, Gera L, Charest-Morin X. Bifunctional ligands of the bradykinin B 2 and B 1 receptors: An exercise in peptide hormone plasticity. Peptides 2018; 105:37-50. [PMID: 29802875 DOI: 10.1016/j.peptides.2018.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/24/2022]
Abstract
Kinins are the small and fragile hydrophilic peptides related to bradykinin (BK) and derived from circulating kininogens via the action of kallikreins. Kinins bind to the preformed and widely distributed B2 receptor (B2R) and to the inducible B1 receptor (B1R). B2Rs and B1Rs are related G protein coupled receptors that possess natural agonist ligands of nanomolar affinity (BK and Lys BK for B2Rs, Lys-des-Arg9-BK for B1R). Decades of structure-activity exploration have resulted in the production of peptide analogs that are antagonists, one of which is clinically used (the B2R antagonist icatibant), and also non-peptide ligands for both receptor subtypes. The modification of kinin receptor ligands has made them resistant to extracellular or endosomal peptidases and/or produced bifunctional ligands, defined as agonist or antagonist peptide ligands conjugated with a chemical fluorophore (emitting in the whole spectrum, from the infrared to the ultraviolet), a drug-like moiety, an epitope, an isotope chelator/carrier, a cleavable sequence (thus forming a pro-drug) and even a fused protein. Dual molecular targets for specific modified peptides may be a source of side effects or of medically exploitable benefits. Biotechnological protein ligands for either receptor subtype have been produced: they are enhanced green fluorescent protein or the engineered peroxidase APEX2 fused to an agonist kinin sequence at their C-terminal terminus. Antibodies endowed with pharmacological actions (agonist, antagonist) at B2R have been reported, though not monoclonal antibodies. These findings define classes of alternative ligands of the kinin receptor of potential therapeutic and diagnostic value.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Roy
- CHU de Québec - Université Laval, Québec, QC, G1 V 4G2, Canada
| | | | - Lajos Gera
- Department of Biochemistry, University of Colorado Denver, Aurora, CO, 80045, USA
| | | |
Collapse
|
4
|
Charest-Morin X, Poubelle PE, Marceau F. Production and evaluation of parathyroid hormone receptor 1 ligands with intrinsic or assembled peroxidase domains. Sci Rep 2017; 7:13099. [PMID: 29026164 PMCID: PMC5638942 DOI: 10.1038/s41598-017-13548-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/26/2017] [Indexed: 12/28/2022] Open
Abstract
Parathyroid hormone (PTH) can be C-terminally extended without significant affinity loss for the PTH1 receptor (PTHR1). We developed fusion protein ligands with enzymatic activity to probe PTHR1s at the cell surface. Two fusion proteins were generated by linking PTH to the N-terminus of either horseradish peroxidase (PTH-HRP) or the genetically modified soybean peroxidase APEX2 (PTH-APEX2). Alternatively, myc-tagged PTH (PTH-myc) was combined with antibodies, some of which HRP-conjugated, in the extracellular fluid. The three PTH-fusion proteins were produced as conditioned mediums (CM) by transfected producer HEK 293a cells. Binding of receptor-bound enzymatic ligands was revealed using widely available substrate/co-substrate systems. The stimulation of recipient HEK 293a expressing PTHR1s with the PTH-myc/antibodies combination or with PTH-APEX2 supported the histochemical or luminescent detection of recombinant PTHR1s (TrueBlueTM or luminol-based reagent). The PTH-HRP construction was the most sensitive and supported all tested peroxidase co-substrates (TrueBlueTM, tetramethylbenzidine (TMB), luminol, biotin-phenol with streptavidin-Qdots); the 3 latter schemes identified endogenous PTHR1 in the osteoblastic HOS cell line. The specificity of the fusion protein binding to PTHR1 was determined by its competition with an excess of PTH1–34. Bifunctional ligands possessing enzymatic activity detect intact receptors with various possible applications, including the screening of drugs that compete for receptor binding.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Division of Infectious Disease and Immunity, CHU de Québec-Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Patrice E Poubelle
- Division of Infectious Disease and Immunity, CHU de Québec-Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - François Marceau
- Division of Infectious Disease and Immunity, CHU de Québec-Université Laval, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
5
|
Charest-Morin X, Raghavan A, Charles ML, Kolodka T, Bouthillier J, Jean M, Robbins MS, Marceau F. Pharmacological effects of recombinant human tissue kallikrein on bradykinin B2 receptors. Pharmacol Res Perspect 2015; 3:e00119. [PMID: 26038695 PMCID: PMC4448978 DOI: 10.1002/prp2.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022] Open
Abstract
Tissue kallikrein (KLK-1), a serine protease, initiates the release of bradykinin (BK)-related peptides from low-molecular weight kininogen. KLK-1 and the BK B2 receptor (B2R) mediate beneficial effects on the progression of type 2 diabetes and renal disease, but the precise role of KLK-1 independent of its kinin-forming activity remains unclear. We used DM199, a recombinant form of human KLK-1, along with the isolated human umbilical vein, a robust bioassay of the B2R, to address the previous claims that KLK-1 directly binds to and activates the human B2R, with possible receptor cleavage. DM199 (1–10 nmol/L) contracted the isolated vein via the B2R, but in a tachyphylactic, kinin-dependent manner, without desensitization of the tissue to exogenously added BK. In binding experiments with recombinant N-terminally tagged myc-B2Rs expressed in HEK 293a cells, DM199 displaced [3H]BK binding from the rabbit myc-B2R, but not from the human or rat myc-B2Rs. No evidence of myc-B2R degradation by immunoblot analysis was apparent following treatment of these 3 myc-B2R constructs with DM199 (30 min, ≤10 nmol/L). In HEK 293 cells stably expressing rabbit B2R-GFP, DM199 (11–108 pmol/L) elicited signaling-dependent endocytosis and reexpression, while a higher concentration (1.1 nmol/L) induced a partially irreversible endocytosis of the construct (microscopy), paralleled by the appearance of free GFP in cells (immunoblotting, indicative of incomplete receptor down-regulation). The pharmacology of DM199 at relevant concentrations (<10 nmol/L) is essentially based on the activity of locally generated kinins. Binding to and mild down-regulation of the B2R is possibly a species-dependent idiosyncratic response to DM199.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Arvind Raghavan
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Matthew L Charles
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Tadeusz Kolodka
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Johanne Bouthillier
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Mélissa Jean
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Mark S Robbins
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - François Marceau
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| |
Collapse
|
6
|
Charest-Morin X, Fortin JP, Lodge R, Allaeys I, Poubelle PE, Marceau F. A tagged parathyroid hormone derivative as a carrier of antibody cargoes transported by the G protein coupled PTH1 receptor. Peptides 2014; 60:71-9. [PMID: 25128082 DOI: 10.1016/j.peptides.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023]
Abstract
Based on the known fact that the parathyroid hormone (PTH) might be extended at its C-terminus with biotechnological protein cargoes, a vector directing the secretion of PTH1-84 C-terminally fused with the antigenic epitope myc (PTH-myc) was exploited. The functional properties and potential of this analog for imaging PTH1R-expressing cells were examined. The PTH-myc construct was recombinantly produced as a conditioned medium (CM) of transfected HEK 293a cells (typical concentrations of 187nM estimated with ELISAs for PTH). PTH-myc CM induced cyclic AMP formations (10min), with a minor loss of potency relative to authentic PTH1-84, and c-Fos expression (1-3h). Treatment of recipient HEK 293a cells transiently expressing PTH1R with PTH-myc CM (supplemented with a fluorescent monoclonal anti-myc tag antibody, either 4A6 or 9E10) allowed the labeling of endosomal structures positive for Rab5 and/or for β-arrestin1 (microscopy, cytofluorometry). Authentic PTH was inactive in this respect, ruling out a non-specific form of endocytosis like pinocytosis. Using a horseradish peroxidase-conjugated secondary antibody, the endocytosis of the PTH-myc-based antibody complex by endogenous PTH1R was evidenced in MG-63 osteoblastoid cells. The secreted construct PTH-myc represents a bona fide agonist that supports the feasibility of transporting cargoes of considerable molecular weight inside cells using arrestin and Rab5-mediated PTH1R endocytosis. PTH-myc is also transported into cells that express PTH1R at a physiological level. Such tagged peptide hormones may be part of a cancer chemotherapy scheme exploiting a modular cytotoxic secondary antibody and the receptor repertoire expressed in a given tumor.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de recherche en Rhumatologie et Immunologie, CHU de Québec, Québec, QC, Canada G1V 4G2
| | - Jean-Philippe Fortin
- Pfizer's Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA 02139, USA
| | - Robert Lodge
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal, Montreal, QC, Canada H2W 1R7
| | - Isabelle Allaeys
- Centre de recherche en Rhumatologie et Immunologie, CHU de Québec, Québec, QC, Canada G1V 4G2
| | - Patrice E Poubelle
- Centre de recherche en Rhumatologie et Immunologie, CHU de Québec, Québec, QC, Canada G1V 4G2
| | - François Marceau
- Centre de recherche en Rhumatologie et Immunologie, CHU de Québec, Québec, QC, Canada G1V 4G2.
| |
Collapse
|
7
|
Charest-Morin X, Fortin JP, Bawolak MT, Lodge R, Marceau F. Green fluorescent protein fused to peptide agonists of two dissimilar G protein-coupled receptors: novel ligands of the bradykinin B2 (rhodopsin family) receptor and parathyroid hormone PTH1 (secretin family) receptor. Pharmacol Res Perspect 2013; 1:e00004. [PMID: 25505558 PMCID: PMC4184569 DOI: 10.1002/prp2.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 01/27/2023] Open
Abstract
We hypothesized that peptide hormone sequences that stimulate and internalize G protein-coupled receptors (GPCRs) could be prolonged with a functional protein cargo. To verify this, we have selected two widely different pairs of peptide hormones and GPCRs that nevertheless share agonist-induced arrestin-mediated internalization. For the parathyroid hormone (PTH) PTH1 receptor (PTH1R) and the bradykinin (BK) B2 receptor (B2R), we have designed fusion proteins of the agonists PTH1-34 and maximakinin (MK, a BK homologue) with the enhanced green fluorescent protein (EGFP), thus producing candidate high molecular weight ligands. According to docking models of each hormone to its receptor, EGFP was fused either at the N-terminus (MK) or C-terminus (PTH1-34) of the ligand; the last construction is also secretable due to inclusion of the preproinsulin signal peptide and has been produced as a conditioned medium. EGFP-MK has been produced as a lysate of transfected cells. Using an enzyme-linked immunosorbent assay (ELISA) for GFP, average concentrations of 1.5 and 1670 nmol/L, respectively, of ligand were found in these preparations. The functional properties and potential of these analogs for imaging receptor-expressing cells were examined. Microscopic and cytofluorometric evidence of specific binding and internalization of both fusion proteins was obtained using recipient HEK 293a cells that expressed the cognate recombinant receptor. Endosomal colocalization studies were conducted (Rab5, Rab7, β-arrestin1). Evidence of agonist signaling was obtained (expression of c-Fos, cyclic AMP responsive element (CRE) reporter gene for PTH1-34-EGFP). The constructs PTH1-34-EGFP and EGFP-MK represent bona fide agonists that support the feasibility of transporting protein cargoes inside cells using GPCRs.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, Université Laval Québec, Canada, G1V 4G2
| | - Jean-Philippe Fortin
- Pfizer's Cardiovascular and Metabolic Diseases Research Unit Cambridge, Massachusetts, 02139
| | - Marie-Thérèse Bawolak
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, Université Laval Québec, Canada, G1V 4G2
| | - Robert Lodge
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal Montreal, Québec, Canada, H2W 1R7
| | - François Marceau
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, Université Laval Québec, Canada, G1V 4G2
| |
Collapse
|
8
|
Charest-Morin X, Pépin R, Gagné-Henley A, Morissette G, Lodge R, Marceau F. C-C chemokine receptor-7 mediated endocytosis of antibody cargoes into intact cells. Front Pharmacol 2013; 4:122. [PMID: 24068998 PMCID: PMC3781320 DOI: 10.3389/fphar.2013.00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023] Open
Abstract
The C–C chemokine receptor-7 (CCR7) is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503) labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination). CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry). The immune complexes were apparent in endosomal structures, co-localized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked) inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for β-arrestin2, but rarely for β-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Charest-Morin X, Fortin S, Lodge R, Roy C, Gera L, Gaudreault RC, Marceau F. Inhibitory effects of cytoskeleton disrupting drugs and GDP-locked Rab mutants on bradykinin B₂ receptor cycling. Pharmacol Res 2013; 71:44-52. [PMID: 23454239 DOI: 10.1016/j.phrs.2013.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/25/2022]
Abstract
The bradykinin (BK) B₂ receptor (B₂R) is G protein coupled and phosphorylated upon agonist stimulation; its endocytosis and recycling are documented. We assessed the effect of drugs that affect the cytoskeleton on B2R cycling. These drugs were targeted to tubulin (paclitaxel, or the novel combretastatin A-4 mimetic 3,4,5-trimethoxyphenyl-4-(2-oxoimidazolidin-1-yl)benzenesulfonate [IMZ-602]) and actin (cytochalasin D). Tubulin ligands did not alter agonist-induced receptor endocytosis, as shown using antibodies reactive with myc-tagged B₂Rs (microscopy, cytofluorometry), but rather reduced the progression of the ligand-receptor-β-arrestin complex from the cell periphery to the interior. The 3 fluorescent probes of this complex (B2R-green fluorescent protein [B2R-GFP], the fluorescent agonist fluorescein-5-thiocarbamoyl-D-Arg-[Hyp³, Igl⁵, Oic⁷, Igl⁸]-BK and β-arrestin2-GFP) were condensed in punctuate structures that remained close to the cell surface in the presence of IMZ-602. Cytochalasin D selectively inhibited the recycling of endocytosed B₂R-GFP (B₂R-GFP imaging, [³H]BK binding). Dominant negative (GDP-locked)-Rab5 and -Rab11 reproduced the effects of inhibitors of tubulin and actin, respectively, on the cycling of B₂R-GFP. GDP-locked-Rab4 also inhibited B₂R-GFP recycling to the cell surface. Consistent with the displacement of cargo along specific cytoskeletal elements, Rab5-associated progression of the endocytosed BK B₂R follows microtubules toward their (-) end, while its recycling progresses along actin fibers to the cell surface. However, tubulin ligands do not suppress the tested desensitization or resensitization mechanisms of the B₂R.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Gera L, Roy C, Bawolak MT, Charest-Morin X, Marceau F. N-terminal extended conjugates of the agonists and antagonists of both bradykinin receptor subtypes: structure-activity relationship, cell imaging using ligands conjugated with fluorophores and prospect for functionally active cargoes. Peptides 2012; 34:433-46. [PMID: 22349904 DOI: 10.1016/j.peptides.2012.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022]
Abstract
Peptide agonists and antagonists of both bradykinin (BK) B(1) and B(2) receptors (B(1)R, B(2)R) are known to tolerate to a certain level N-terminal sequence extensions. Using this strategy, we produced and characterized the full set of fluorescent ligands by extending both agonists and antagonist peptides at both receptor subtypes with 5(6)-carboxyfluorescein (CF) and the ε-aminocaproyl (ε-ACA) optional spacer. Alternatively, kinin receptor ligands were extended with another carboxylic acid cargo (chlorambucil, biotinyl, pentafluorocinnamoyl, AlexaFluor-350 (AF350), ferrocenoyl, cetirizine) or with fluorescein isothiocyanate. N-terminal extension always reduced receptor affinity, more importantly for bulkier substituents and more so for the agonist version compared to the antagonist. This loss was generally alleviated by the presence of the spacer and modulated by the species of origin for the receptor. We report and review the pharmacological properties of these N-terminally extended peptides and the use of fluorophore-conjugated ligands in imaging of cell receptors and of angiotensin converting enzyme (ACE) in intact cells. Antagonists (B(1)R: B-10376: CF-ε-ACA-Lys-Lys-[Hyp(3), CpG(5), D-Tic(7), CpG(8)]des-Arg(9)-BK; B(2)R: B-10380: CF-ε-ACA-D-Arg-[Hyp(3), Igl(5), D-Igl(7), Oic(8)]-BK and fluorescein-5-thiocarbamoyl (FTC)-B-9430) label the plasma membrane of cells expressing the cognate receptors. The B(2)R agonists CF-ε-ACA-BK, AF350-ε-ACA-BK and FTC-B-9972 are found in endosomes and model the endosomal degradation of BK in a complementary manner. The uneven surface fluorescence associated to the B(1)R agonist B-10378 (CF-ε-ACA-Lys-des-Arg(9)-BK) is compatible with a particular form of agonist-induced receptor translocation. CF-ε-ACA-BK binds to the carboxydipeptidase ACE with an affinity identical to that of BK. Metal- or drug-containing cargoes further show the prospect of ligands that confer special signaling to kinin receptors.
Collapse
Affiliation(s)
- Lajos Gera
- Department of Biochemistry, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
11
|
Prolonged signalling and trafficking of the bradykinin B2 receptor stimulated with the amphibian peptide maximakinin: Insight into the endosomal inactivation of kinins. Pharmacol Res 2012; 65:247-53. [DOI: 10.1016/j.phrs.2011.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
|