1
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
2
|
Short WD, Steen E, Kaul A, Wang X, Olutoye OO, Vangapandu HV, Templeman N, Blum AJ, Moles CM, Narmoneva DA, Crombleholme TM, Butte MJ, Bollyky PL, Keswani SG, Balaji S. IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3. FASEB J 2022; 36:e22298. [PMID: 35670763 PMCID: PMC9796147 DOI: 10.1096/fj.201901024rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to de novo angiogenesis, tissue regeneration, and remodeling. Interleukin 10 (IL-10), an anti-inflammatory cytokine that primarily signals via STAT3, has been shown to drive EPC recruitment to injured tissues. Our previous work demonstrated that overexpression of IL-10 in dermal wounds promotes regenerative tissue repair via STAT3-dependent regulation of fibroblast-specific hyaluronan synthesis. However, IL-10's role and specific mode of action on EPC recruitment, particularly in dermal wound healing and neovascularization in both normal and diabetic wounds, remain to be defined. Therefore, inducible skin-specific STAT3 knockdown mice were studied to determine IL-10's impact on EPCs, dermal wound neovascularization and healing, and whether it is STAT3-dependent. We show that IL-10 overexpression significantly elevated EPC counts in the granulating wound bed, which was associated with robust capillary lumen density and enhanced re-epithelialization of both control and diabetic (db/db) wounds at day 7. We noted increased VEGF and high C-X-C motif chemokine 12 (CXCL12) levels in wounds and a favorable CXCL12 gradient at day 3 that may support EPC mobilization and infiltration from bone marrow to wounds, an effect that was abrogated in STAT3 knockdown wounds. These findings were supported in vitro. IL-10 promoted VEGF and CXCL12 synthesis in primary murine dermal fibroblasts, with blunted VEGF expression upon blocking CXCL12 in the media by antibody binding. IL-10-conditioned fibroblast media also significantly promoted endothelial sprouting and network formation. In conclusion, these studies demonstrate that overexpression of IL-10 in dermal wounds recruits EPCs and leads to increased vascular structures and faster re-epithelialization.
Collapse
Affiliation(s)
- Walker D. Short
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Emily Steen
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Aditya Kaul
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Xinyi Wang
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Oluyinka O. Olutoye
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Hima V. Vangapandu
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Natalie Templeman
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Alexander J. Blum
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Chad M. Moles
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Daria A. Narmoneva
- Biomedical EngineeringDepartment of Biomedical, Chemical and Environmental EngineeringCollege of Engineering and Applied SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Timothy M. Crombleholme
- Division of Pediatric General Thoracic and Fetal SurgeryConnecticut Children’s HospitalUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA,Fetal Care Center DallasDallasTexasUSA
| | - Manish J. Butte
- Division of ImmunologyAllergy, and RheumatologyDepartments of Pediatrics and Microbiology, Immunology, and Molecular GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Paul L. Bollyky
- Division of Infectious DiseasesDepartment of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Sundeep G. Keswani
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Swathi Balaji
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| |
Collapse
|
3
|
VLA4-Enhanced Allogeneic Endothelial Progenitor Cell-Based Therapy Preserves the Aortic Valve Function in a Mouse Model of Dyslipidemia and Diabetes. Pharmaceutics 2022; 14:pharmaceutics14051077. [PMID: 35631662 PMCID: PMC9143616 DOI: 10.3390/pharmaceutics14051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The number and function of endothelial progenitor cells (EPCs) are reduced in diabetes, contributing to deteriorated vascular repair and the occurrence of cardiovascular complications. Here, we present the results of treating early diabetic dyslipidemic mice or dyslipidemic with disease-matched EPCs modified to overexpress VLA4 (VLA4-EPCs) as compared with the treatment of EPCs transfected with GFP (GFP-EPCs) as well as EPCs from healthy animals. Organ imaging of injected PKH26-stained cells showed little pulmonary first-pass effects and distribution in highly vascularized organs, with splenic removal from circulation, mostly in non-diabetic animals. Plasma measurements showed pronounced dyslipidemia in all animals and glycaemia indicative of diabetes in streptozotocin-injected animals. Echocardiographic measurements performed 3 days after the treatment showed significantly improved aortic valve function in animals treated with VLA4-overexpressing EPCs compared with GFP-EPCs, and similar results in the groups treated with healthy EPCs and VLA4-EPCs. Immunohistochemical analyses revealed active inflammation and remodelling in all groups but different profiles, with higher MMP9 and lower P-selectin levels in GFP-EPCs, treated animals. In conclusion, our experiments show that genetically modified allogeneic EPCs might be a safe treatment option, with bioavailability in the desired target compartments and the ability to preserve aortic valve function in dyslipidemia and diabetes.
Collapse
|
4
|
Zhu H, Luo H, Lin M, Li Y, Chen A, He H, Sheng F, Wu J. Methacrylated gelatin shape-memorable cryogel subcutaneously delivers EPCs and aFGF for improved pressure ulcer repair in diabetic rat model. Int J Biol Macromol 2022; 199:69-76. [PMID: 34973992 DOI: 10.1016/j.ijbiomac.2021.12.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
Abstract
Pressure ulcer (PU) in patients with diabetes mellitus (DM) is still a clinical intractable issue due to the complicated physiological characteristics by the prolonged high glucose level and impaired angiogenesis. The PU treatment includes surgical debridement, stem cell therapy and growth factors, leading to high cost and repeated professional involvement. Developing effective wound dressing combining the therapeutic cells and growth factors has become highly demanded. Herein, we reported the direct subcutaneous administration of endothelial progenitor cells (EPCs) and acid fibroblast growth factor (aFGF) with a shape-memorable methacrylated gelatin cryogel (EPCs/aFGF@GelMA) for the therapy of PU in rats with DM. This EPCs/aFGF@GelMA cryogel system presented microporous structure, elastic mechanical strength and enhanced cell migration property with controlled release of aFGF. Moreover, compared with EPCs/aFGF and GelMA alone, in vivo results showed that this EPCs/aFGF@GelMA system exhibited accelerated wound closure rate, enhanced granulation formation, collagen deposition as well as re-epithelization. Importantly, we found that the excellent positive performance of EPCs/aFGF@GelMA is due to its up-regulation of HIF-ɑ upon the wound site, modulating the microenvironment of wound site to initiate the impaired local angiogenesis. Collectively, this hybrid gelatin cryogels show great promise for biomedical applications, especially in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Hangqi Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Minjie Lin
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Yuan Li
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Anqi Chen
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, PR China.
| | - Feixia Sheng
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Jiang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Wu L, Chen W, Chen Z, Cao J, Dai X, Chen H, Tan X, Yu M. Protocol update for late endothelial progenitor cells identified by double-positive staining. J Cell Mol Med 2022; 26:306-311. [PMID: 34904385 PMCID: PMC8743663 DOI: 10.1111/jcmm.17079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/10/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs), which are precursors of endothelial cells (ECs), have the capacity to circulate, proliferate and differentiate into mature ECs. EPCs are primarily identified by the uptake of 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labelled acetylated low-density lipoprotein (Dil-acLDL) and the binding of fluorescein-isothiocyanate (FITC)-conjugated Ulex europaeus agglutinin lectin (FITC-UEA-I). However, the cytoplasm and nucleus are usually stained by FITC-UEA-I via a typical method to double-stain late EPCs. It is necessary to explore a new method to improve the quality of fluorescence photomicrographs of late EPCs stained with FITC-UEA-I. Here, we described an updated protocol for double-staining late EPCs with Dil-acLDL and FITC-UEA-I, with the cells more optimally stained with FITC-UEA-I.
Collapse
Affiliation(s)
- Lishan Wu
- Department of Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Weijie Chen
- The First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Zeliang Chen
- Department of CardiologyThe First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Jing Cao
- Department of CardiologyThe First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Xiaoqing Dai
- Department of CardiologyThe First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Hongjuan Chen
- Department of CardiologyThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Xuerui Tan
- Department of CardiologyThe First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Min Yu
- Department of Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Neovascularization and tissue regeneration by endothelial progenitor cells in ischemic stroke. Neurol Sci 2021; 42:3585-3593. [PMID: 34216308 DOI: 10.1007/s10072-021-05428-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/19/2021] [Indexed: 12/26/2022]
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) capable of proliferating and differentiating into mature ECs. These progenitor cells migrate from bone marrow (BM) after vascular injury to ischemic areas, where they participate in the repair of injured endothelium and new blood vessel formation. EPCs also secrete a series of protective cytokines and growth factors that support cell survival and tissue regeneration. Thus, EPCs provide novel and promising potential therapies to treat vascular disease, including ischemic stroke. However, EPCs are tightly regulated during the process of vascular repair and regeneration by numerous endogenous cytokines that are associated closely with the therapeutic efficacy of the progenitor cells. The regenerative capacity of EPCs also is affected by a range of exogenous factors and drugs as well as vascular risk factors. Understanding the functional properties of EPCs and the factors related to their regenerative capacity will facilitate better use of these progenitor cells in treating vascular disease. Here, we review the current knowledge of EPCs in cerebral neovascularization and tissue regeneration after cerebral ischemia and the factors associated with their regenerative function to better understand the underlying mechanisms and provide more effective strategies for the use of EPCs in treating ischemic stroke.
Collapse
|
7
|
Jiang C, Li R, Ma X, Hu H, Wei L, Zhao J. Plerixafor stimulates adhesive activity and endothelial regeneration of endothelial progenitor cells via elevating CXCR7 expression. J Diabetes Complications 2020; 34:107654. [PMID: 32741660 DOI: 10.1016/j.jdiacomp.2020.107654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 01/28/2023]
Abstract
AIMS To assess the effects of plerixafor on function and endothelial regeneration of endothelial progenitor cells (EPCs). METHODS The proliferation and adhesion capacity of EPCs were evaluated in vitro. Furthermore, the expression levels of CXC chemokine receptor-7 (CXCR7) were detected before and after treatment with plerixafor. The CXCR7 expression of EPCs was knocked-down by RNA interference to evaluate the role of CXCR7 in regulating function of EPCs. A rat carotid artery injury model was established to assess the influences of plerixafor on endothelial regeneration. RESULTS Plerixafor stimulated adhesion capacity of EPCs, associating with upregulation of CXCR7 and activation of LFA-1 and VLA-4 molecules. Knockdown of CXCR7 slightly impaired proliferation capacity but significantly attenuated adhesion capacity of EPCs. Plerixafor facilitated endothelial repair at 7 days, while reduced neointimal hyperplasia at 7 and 14 days via recruiting more EPCs participating in endothelial reparation. CONCLUSIONS Plerixafor can positively regulate adhesion capacity of EPCs to HUVECs via elevating the expression level of CXCR7 and stimulating LFA-1 and VLA-4 molecules activation. Treatment with plerixafor accelerated re-endothelialization and inhibited neointimal hyperplasia after endoth elial injury, indicating that it can to be used for endothelial regeneration.
Collapse
Affiliation(s)
- Chunyu Jiang
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Ruiting Li
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Xu Ma
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Hui Hu
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Liming Wei
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Jungong Zhao
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China..
| |
Collapse
|
8
|
Jiang C, Li R, Ma X, Hu H, Guo J, Zhao J. AMD3100 and SDF‑1 regulate cellular functions of endothelial progenitor cells and accelerate endothelial regeneration in a rat carotid artery injury model. Mol Med Rep 2020; 22:3201-3212. [PMID: 32945467 PMCID: PMC7453604 DOI: 10.3892/mmr.2020.11432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/22/2020] [Indexed: 11/12/2022] Open
Abstract
The present study was conducted to assess the effects of AMD3100 and stromal cell-derived factor 1 (SDF-1) on cellular functions and endothelial regeneration of endothelial progenitor cells (EPCs). The cell proliferation and adhesion capacity of EPCs were evaluated in vitro following treatment with AMD3100 and SDF-1 using a Cell Counting Kit-8 assay. Furthermore, the expression levels of C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine receptor 7 (CXCR7) were detected before and after treatment with AMD3100 and SDF-1 to elucidate their possible role in regulating the cellular function of EPCs. A rat carotid artery injury model was established to assess the influences of AMD3100 and SDF-1 on endothelial regeneration. AMD3100 reduced the proliferation and adhesion capacity of EPCs to fibronectin (FN), whereas it increased the adhesion capacity of EPCs to human umbilical vein endothelial cells (HUVECs). However, SDF-1 stimulated the proliferation and cell adhesion capacity of EPCs to HUVECs and FN. Additionally, the expression levels of CXCR7 but not CXCR4 were upregulated following AMD3100 treatment, whereas the expression levels of both CXCR4 and CXCR7 were upregulated after SDF-1 treatment. In vivo results demonstrated that AMD3100 increased the number of EPCs in the peripheral blood and facilitated endothelial repair at 7 days after treatment. However, local administration of SDF-1 alone did not enhance reendothelialization 7 and 14 days after treatment. Importantly, the combination of AMD3100 with SDF-1 exhibited superior therapeutic effects compared with AMD3100 treatment alone, accelerated reendothelialization 7 days after treatment, and attenuated neointimal hyperplasia at day 7 and 14 by recruiting more EPCs to the injury site. In conclusion, AMD3100 could positively regulate the adhesion capacity of EPCs to HUVECs via elevation of the expression levels of CXCR7 but not CXCR4, whereas SDF-1 could stimulate the proliferation and adhesion capacity of EPCs to FN and HUVECs by elevating the expression levels of CXCR4 and CXCR7. AMD3100 combined with SDF-1 outperformed AMD3100 alone, promoted early reendothelialization and inhibited neointimal hyperplasia, indicating that early reendothelialization attenuated neointimal hypoplasia following endothelial injury.
Collapse
Affiliation(s)
- Chunyu Jiang
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Ruiting Li
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xu Ma
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Hui Hu
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Juan Guo
- Department of Hematology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Jungong Zhao
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
9
|
Tian D, Xiang Y, Tang Y, Ge Z, Li Q, Zhang Y. Circ-ADAM9 targeting PTEN and ATG7 promotes autophagy and apoptosis of diabetic endothelial progenitor cells by sponging mir-20a-5p. Cell Death Dis 2020; 11:526. [PMID: 32661238 PMCID: PMC7359341 DOI: 10.1038/s41419-020-02745-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Dysfunction of endothelial progenitor cells (EPCs) is a key factor in vascular complications of diabetes mellitus. Although the roles of microRNAs and circular RNAs in regulating cell functions have been thoroughly studied, their role in regulating autophagy and apoptosis of EPCs remains to be elucidated. This study investigated the roles of mir-20a-5p and its predicted target circ-ADAM9 in EPCs treated with high glucose (30 mM) and in a diabetic mouse hind limb ischemia model. It is found that Mir-20a-5p inhibited autophagy and apoptosis of EPCs induced by high-concentration glucose. Further, mir-20a-5p could inhibit the expression of PTEN and ATG7 in EPCs, and promote the phosphorylation of AKT and mTOR proteins under high-glucose condition. Investigation of the underlying mechanism revealed that circ-ADAM9, as a miRNA sponges of mir-20a-5p, promoted autophagy and apoptosis of EPCs induced by high-concentration glucose. Circ-ADAM9 upregulated PTEN and ATG7 in interaction with mir-20a-5p, and inhibited the phosphorylation of AKT and mTOR to aggravate autophagy and apoptosis of EPCs under high glucose. In addition, silencing of circ-ADAM9 increased microvessel formation in the hind limbs of diabetic mice. Our findings disclose a novel autophagy/apoptosis-regulatory pathway that is composed of mir-20a-5p, circ-ADAM9, PTEN, and ATG7. Circ-ADAM9 is a potential novel target for regulating the function of diabetic EPCs and angiogenesis.
Collapse
Affiliation(s)
- Ding Tian
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qianhui Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Huang HT, Liu ZC, Wu KQ, Gu SR, Lu TC, Zhong CJ, Zhou YX. MiR-92a regulates endothelial progenitor cells (EPCs) by targeting GDF11 via activate SMAD2/3/FAK/Akt/eNOS pathway. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:563. [PMID: 31807544 DOI: 10.21037/atm.2019.09.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background The effects of miR-92a on EPCs are still poorly elucidated. This study aimed to investigate the effects of miR-92a on EPCs (Endothelial progenitor cells) in a model of hypoxia (HO) or high glucose (HG)-induced EPCs injury by targeting GDF11 (Differentiation growth factor 11). Methods The effects of miR-92a on EPCs subjected to HO or HG were investigated firstly. Subsequently, the action mechanism of miR-92a on EPCs by targeting GDF11 was elucidated. Proliferation, apoptosis, migration, angiogenesis was measured with MTT, flow cytometry, transwell, tube formation respectively. After 24 h, levels of reactive oxygen species (ROS) were measured by fluorescence intensity. LDH and NO (nitric oxide) levels were determined by ELISA. The expression of FLK-1 (fetal liver kinase 1) and vWF (von Willebrand factor) was detected by immunofluorescence. mRNA and protein expression levels were examined using PCR and western blotting respectively. The interaction between miR-92a and GDF11 was evaluated by dual-luciferase reporter assay. Results Our results showed that HO or HG increased apoptosis, production of LDH and generation of ROS, but decreased the ability of migration and tube formation and generation of NO in EPCs; inhibiting of miR-92a decreased HO or HG-induced injury of EPCs, whereas miR-92a over-expression had the opposite effect; the protective effects induced by inhibiting of miR-92a on EPCs could be reversed by GDF11 siRNA and the harmful effects induced by over-expression of miR-92a could be rescued by over-expression of GDF11, which showed that the harmful effects of miR-92a be related to its inhibition of GDF11 and subsequent inactivation of the SMAD2/3/FAK/Akt/eNOS signaling pathway. Conclusions Inhibiting miR-92a can protect EPCs from HO or HG-induced injury. The effect of miR-92a on EPCs are mediated by regulating of GDF11 and downstream SMAD2/3/FAK/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Hai-Tao Huang
- Department of Thoracic and Cardiovascular Surgery, Nantong First People's Hospital, Nantong 226001, China
| | - Zhen-Chuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Kai-Qin Wu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shao-Rui Gu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Tian-Cheng Lu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Chong-Jun Zhong
- Department of Thoracic and Cardiovascular Surgery, Nantong First People's Hospital, Nantong 226001, China
| | - Yong-Xin Zhou
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
11
|
Xiao Q, Zhao XY, Jiang RC, Chen XH, Zhu X, Chen KF, Chen SY, Zhang XL, Qin Y, Liu YH, Luo JD. Increased expression of Sonic hedgehog restores diabetic endothelial progenitor cells and improves cardiac repair after acute myocardial infarction in diabetic mice. Int J Mol Med 2019; 44:1091-1105. [PMID: 31524224 PMCID: PMC6657988 DOI: 10.3892/ijmm.2019.4277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Damaged endothelial progenitor cells (EPCs) are associated with poor prognosis in diabetic myocardial infarction (DMI). Our previous studies revealed that an impaired Sonic hedgehog (Shh) pathway contributes to insufficient function in diabetic EPCs; however, the roles of the Shh pathway in diabetic EPC apoptosis under basal and hypoxic/ischemic conditions remain unknown. Therefore, the present study investigated whether Shh revitalized diabetic EPCs and consequently improved the deteriorative status of DMI. For this purpose, streptozotocin injection was used in male C57/BL6 mice to induce type-1 diabetes, and diabetic EPCs were isolated from the bone marrow. Apoptosis, cell function, and protein expression were investigated in EPCs in vitro. Mouse hearts were injected with adenovirus Shh-modified diabetic EPCs (DM-EPCShh) or control DM-EPCNull immediately after coronary artery ligation in vivo. Cardiac function, capillary numbers, fibrosis, and cell apoptosis were then detected. First, the in vitro results demonstrated that the apoptosis of diabetic EPCs was reduced following treatment with Shh protein for 24 h, under normal or hypoxic conditions. BMI1 proto-oncogene (Bmi1), an antiapoptotic protein found in several cells, was reduced in diabetic EPCs under normal or hypoxic conditions, but was upregulated after Shh protein stimulation. When Bmi1-siRNA was administered, the antiapoptotic effect of Shh protein was significantly reversed. In addition, p53, a Bmi1-targeted gene, was demonstrated to mediate the antiapoptotic effect of the Shh/Bmi1 pathway in diabetic EPCs. The Shh/Bmi1/p53 axis also enhanced the diabetic EPC function. In vivo, Shh-modified diabetic EPCs exhibited increased EPC retention and decreased apoptosis at 3 days post-DMI. At 14 days post-DMI, these cells presented enhanced capillary density, reduced myocardial fibrosis and improved cardiac function. In conclusion, the present results demonstrated that the Shh pathway restored diabetic EPCs through the Shh/Bmi1/p53 axis, suppressed myocardial apoptosis and improved myocardial angiogenesis, thus reducing cardiac fibrosis and finally restoring myocardial repair and cardiac function in DMI. Thus, the Shh pathway may serve as a potential target for autologous cell therapy in diabetic myocardial ischemia.
Collapse
Affiliation(s)
- Qing Xiao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Ya Zhao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ru-Chao Jiang
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiu-Hui Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiang Zhu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Kai-Feng Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Sheng-Ying Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Ling Zhang
- Maternal and Children Hospital of Guangdong Province, Guangzhou, Guangdong 510260, P.R. China
| | - Yuan Qin
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ying-Hua Liu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jian-Dong Luo
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
12
|
Shi Y, Lv X, Liu Y, Li B, Liu M, Yan M, Liu Y, Li Q, Zhang X, He S, Zhu M, He J, Zhu Y, Zhu Y, Ai D. Elevating ATP‐binding cassette transporter G1 improves re‐endothelialization function of endothelial progenitor cells
via
Lyn/Akt/eNOS in diabetic mice. FASEB J 2018; 32:6525-6536. [DOI: 10.1096/fj.201800248rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Shi
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Xue Lv
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yanan Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Bochuan Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Mingming Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Meng Yan
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Qi Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Shuang He
- Tianjin Institute of Cardiovascular DiseaseTianjin Chest HospitalTianjinChina
| | - Mason Zhu
- Department of Molecular BiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yan Zhu
- Tianjin Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| |
Collapse
|
13
|
Kim JH, Kim KA, Shin YJ, Kim H, Majid A, Bae ON. Methylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:266-277. [PMID: 29473788 DOI: 10.1080/15287394.2018.1440185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endothelial cells (ECs) maintain the structure and function of blood vessels and are readily exposed to exogenous and endogenous toxic substances in the circulatory system. Bone marrow-derived endothelial progenitor cells (EPCs) circulate in the blood and differentiate to EC, which are known to participate in angiogenesis and regeneration of injured vessels. Dysfunction in EPC contributes to cardiovascular complications in patients with diabetes, but the precise molecular mechanisms underlying diabetic EPC abnormalities are not completely understood. The aim of this study was to investigate the mechanisms underlying diabetic EPC dysfunction using methylglyoxal (MG), an endogenous toxic diabetic metabolite. Data demonstrated that MG decreased cell viability and protein expression of vascular endothelial growth factor receptor (VEGFR)-2 associated with functional impairment of tube formation in EPC. The generation of advanced glycation end (AGE) products was increased in EPC following exposure to MG. Blockage of receptor for AGE (RAGE) by FPS-ZM1, a specific antagonist for RAGE, significantly reversed the decrease of VEGFR-2 protein expression and angiogenic dysfunction in MG-incubated EPC. Taken together, data demonstrated that MG induced angiogenic impairment in EPC via alterations in the AGE/RAGE-VEGFR-2 pathway which may be utilized in the development of potential therapeutic and preventive targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Jeong-Hyeon Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Kyeong-A Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Young-Jun Shin
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Haram Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Arshad Majid
- b Sheffield Institute for Translational Neuroscience , University of Sheffield , Sheffield , England
| | - Ok-Nam Bae
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| |
Collapse
|
14
|
Kwon YW, Heo SC, Lee TW, Park GT, Yoon JW, Jang IH, Kim SC, Ko HC, Ryu Y, Kang H, Ha CM, Lee SC, Kim JH. N-Acetylated Proline-Glycine-Proline Accelerates Cutaneous Wound Healing and Neovascularization by Human Endothelial Progenitor Cells. Sci Rep 2017; 7:43057. [PMID: 28230162 PMCID: PMC5322356 DOI: 10.1038/srep43057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Human endothelial progenitor cells (hEPCs) are promising therapeutic resources for wound repair through stimulating neovascularization. However, the hEPCs-based cell therapy has been hampered by poor engraftment of transplanted cells. In this study, we explored the effects of N-acetylated Proline-Glycine-Proline (Ac-PGP), a degradation product of collagen, on hEPC-mediated cutaneous wound healing and neovascularization. Treatment of hEPCs with Ac-PGP increased migration, proliferation, and tube-forming activity of hEPCs in vitro. Knockdown of CXCR2 expression in hEPCs abrogated the stimulatory effects of Ac-PGP on migration and tube formation. In a cutaneous wound healing model of rats and mice, topical application of Ac-PGP accelerated cutaneous wound healing with promotion of neovascularization. The positive effects of Ac-PGP on wound healing and neovascularization were blocked in CXCR2 knockout mice. In nude mice, the individual application of Ac-PGP treatment or hEPC injection accelerated wound healing by increasing neovascularization. Moreover, the combination of Ac-PGP treatment and hEPC injection further stimulated wound healing and neovascularization. Topical administration of Ac-PGP onto wound bed stimulated migration and engraftment of transplanted hEPCs into cutaneous dermal wounds. Therefore, these results suggest novel applications of Ac-PGP in promoting wound healing and augmenting the therapeutic efficacy of hEPCs.
Collapse
Affiliation(s)
- Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Soon Chul Heo
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Tae Wook Lee
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Il Ho Jang
- Department of Oral Biochemistry and Molecular Biology, Pusan National University School of Dentistry, Yangsan 50612, Republic of Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Hyun-Chang Ko
- Department of Dermatology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Youngjae Ryu
- Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Hyeona Kang
- Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Chang Man Ha
- Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
15
|
Dai X, Yan X, Zeng J, Chen J, Wang Y, Chen J, Li Y, Barati MT, Wintergerst KA, Pan K, Nystoriak MA, Conklin DJ, Rokosh G, Epstein PN, Li X, Tan Y. Elevating CXCR7 Improves Angiogenic Function of EPCs via Akt/GSK-3β/Fyn-Mediated Nrf2 Activation in Diabetic Limb Ischemia. Circ Res 2017; 120:e7-e23. [PMID: 28137917 DOI: 10.1161/circresaha.117.310619] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Endothelial progenitor cells (EPCs) respond to stromal cell-derived factor 1 (SDF-1) through chemokine receptors CXCR7 and CXCR4. Whether SDF-1 receptors involves in diabetes mellitus-induced EPCs dysfunction remains unknown. OBJECTIVE To determine the role of SDF-1 receptors in diabetic EPCs dysfunction. METHODS AND RESULTS CXCR7 expression, but not CXCR4 was reduced in EPCs from db/db mice, which coincided with impaired tube formation. Knockdown of CXCR7 impaired tube formation of EPCs from normal mice, whereas upregulation of CXCR7 rescued angiogenic function of EPCs from db/db mice. In normal EPCs treated with oxidized low-density lipoprotein or high glucose also reduced CXCR7 expression, impaired tube formation, and increased oxidative stress and apoptosis. The damaging effects of oxidized low-density lipoprotein or high glucose were markedly reduced by SDF-1 pretreatment in EPCs transduced with CXCR7 lentivirus but not in EPCs transduced with control lentivirus. Most importantly, EPCs transduced with CXCR7 lentivirus were superior to EPCs transduced with control lentivirus for therapy of ischemic limbs in db/db mice. Mechanistic studies demonstrated that oxidized low-density lipoprotein or high glucose inhibited protein kinase B and glycogen synthase kinase-3β phosphorylation, nuclear export of Fyn and nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), blunting Nrf2 downstream target genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone 1) and catalase, and inducing an increase in EPC oxidative stress. This destructive cascade was blocked by SDF-1 treatment in EPCs transduced with CXCR7 lentivirus. Furthermore, inhibition of phosphatidylinositol 3-kinase/protein kinase B prevented SDF-1/CXCR7-mediated Nrf2 activation and blocked angiogenic repair. Moreover, Nrf2 knockdown almost completely abolished the protective effects of SDF-1/CXCR7 on EPC function in vitro and in vivo. CONCLUSIONS Elevated expression of CXCR7 enhances EPC resistance to diabetes mellitus-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia. The benefits of CXCR7 are mediated predominantly by a protein kinase B/glycogen synthase kinase-3β/Fyn pathway via increased activity of Nrf2.
Collapse
Affiliation(s)
- Xiaozhen Dai
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Xiaoqing Yan
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Jun Zeng
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Jing Chen
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Yuehui Wang
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Jun Chen
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Yan Li
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Michelle T Barati
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Kupper A Wintergerst
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Kejian Pan
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Matthew A Nystoriak
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Daniel J Conklin
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Gregg Rokosh
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Paul N Epstein
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Xiaokun Li
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Yi Tan
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.).
| |
Collapse
|
16
|
Diabetes-Induced Oxidative Stress in Endothelial Progenitor Cells May Be Sustained by a Positive Feedback Loop Involving High Mobility Group Box-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1943918. [PMID: 26798412 PMCID: PMC4698939 DOI: 10.1155/2016/1943918] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022]
Abstract
Oxidative stress is considered to be a critical factor in diabetes-induced endothelial progenitor cell (EPC) dysfunction, although the underlying mechanisms are not fully understood. In this study, we investigated the role of high mobility group box-1 (HMGB-1) in diabetes-induced oxidative stress. HMGB-1 was upregulated in both serum and bone marrow-derived monocytes from diabetic mice compared with control mice. In vitro, advanced glycation end productions (AGEs) induced, expression of HMGB-1 in EPCs and in cell culture supernatants in a dose-dependent manner. However, inhibition of oxidative stress with N-acetylcysteine (NAC) partially inhibited the induction of HMGB-1 induced by AGEs. Furthermore, p66shc expression in EPCs induced by AGEs was abrogated by incubation with glycyrrhizin (Gly), while increased superoxide dismutase (SOD) activity in cell culture supernatants was observed in the Gly treated group. Thus, HMGB-1 may play an important role in diabetes-induced oxidative stress in EPCs via a positive feedback loop involving the AGE/reactive oxygen species/HMGB-1 pathway.
Collapse
|
17
|
Wang HT, Shan Z, Li W, Chu M, Yang J, Yi D, Zhan J, Yuan ZY, Raikwar S, Wang S, Zhang C. Guidelines for assessing mouse endothelial function via ultrasound imaging: a report from the International Society Of Cardiovascular Translational Research. J Cardiovasc Transl Res 2015; 8:89-95. [PMID: 25701375 DOI: 10.1007/s12265-015-9614-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/03/2015] [Indexed: 01/20/2023]
Abstract
The study is to establish a novel method to determine the endothelial function in mouse carotid arteries in vivo by using high-resolution ultrasound images. Atherosclerosis in carotid arteries is induced in ApoE(-/-) mice with a Western diet. The ultrasound of the ventral neck generates clear pictures of the common carotid arteries. Acetylcholine at the range from 5 to 20 μg/kg/min (iv) is able to induce a dose-dependent relaxation as shown by the increased diameter of these normal mouse carotid arteries, which is impaired in atherosclerotic arteries. The endothelial function determined by ultrasound images in vivo matches well with that determined in isolated carotid arterial rings in vitro. All animals survived after the endothelial function measurement. In this study, we have established a standard method to determine the mouse endothelial function in vivo. It is a reliable, safe, and survival method that could be used repetitively in mouse arteries.
Collapse
Affiliation(s)
- Hua-ting Wang
- Department of Pharmacology and Cardiovascular Research Center, Rush Medical College, Rush University Medical Center, 1735 West Harrison St, Cohn Building, Suite 406, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
King A, Balaji S, Keswani SG, Crombleholme TM. The Role of Stem Cells in Wound Angiogenesis. Adv Wound Care (New Rochelle) 2014; 3:614-625. [PMID: 25300298 DOI: 10.1089/wound.2013.0497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/19/2014] [Indexed: 12/18/2022] Open
Abstract
Significance: Revascularization plays a critical role in wound healing and is regulated by a complex milieu of growth factors and cytokines. Deficiencies in revascularization contribute to the development of chronic nonhealing wounds. Recent Advances: Stem-cell-based therapy provides a novel strategy to enhance angiogenesis and improve wound healing. With bioethical concerns associated with embryonic stem cells, focus has shifted to different populations of vascular precursors, isolated from adult somatic tissue. Three main populations have been identified: endothelial progenitor cells, mesenchymal stem cells, and induced-pluripotent stem cells. These populations demonstrate great promise to positively influence neovascularization and wound repair. Critical Issues: Further studies to more definitively define each population are necessary to efficiently translate stem-cell-based therapeutic angiogenesis to the bedside. Better understanding of the physiologic pathways of how stem cells contribute to angiogenesis in normal tissue repair will help identify targets for successful therapeutic angiogenesis. Future Directions: Active studies in both animal models and clinical trials are being conducted to develop effective delivery routes, including dosing, route, and timing. Stem-cell-based therapy holds significant potential as a strategy for therapeutic angiogenesis in the care of patients with chronic nonhealing wounds.
Collapse
Affiliation(s)
- Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Timothy M. Crombleholme
- Center for Children's Surgery, Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital Colorado, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
19
|
Constantinescu A, Andrei E, Iordache F, Constantinescu E, Maniu H. Recellularization potential assessment of Wharton's Jelly-derived endothelial progenitor cells using a human fetal vascular tissue model. In Vitro Cell Dev Biol Anim 2014; 50:937-44. [PMID: 25124869 DOI: 10.1007/s11626-014-9797-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/07/2014] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells isolated from Wharton's Jelly have demonstrated an excellent differentiation potential into the endothelial lineage. We hypothesize that endothelial progenitor cells differentiated from Wharton's Jelly-derived mesenchymal stem cells have the potential to repopulate a decellularized vascular bed employed as a biological scaffold. For this purpose, we aimed at investigating the behavior of the endothelial progenitor cells in the decellularized matrix and their potential to repopulate decellularized human vascular tissue. Our main objectives were to differentiate Wharton's Jelly-derived mesenchymal stem cells into endothelial progenitor cells and to obtain a human vascular tissue slice experimental model using the umbilical cord arteries. We employed a decellularization method using enzymatic treatment of the umbilical cord arteries and a recellularization method with the endothelial progenitor cells differentiated from Wharton's Jelly mesenchymal cells in a co-culture system, in order to investigate our hypothesis. The cellular integration within the biological scaffold was determined by using flow cytometry analysis and confirmed by visualization of histological staining as well as fluorescence microscopy. The morphological observations of the recellularized scaffolds revealed the presence of endothelial progenitor cells within the decellularized tissue slices, displaying no degradation of the scaffold's extracellular matrix. The flow cytometry analysis revealed the presence of Wharton's Jelly-derived endothelial progenitor cells population in the decellularized fetal blood vessel scaffold after recellularization. In conclusion, our results have shown that an in vitro human vascular tissue slice experimental model using decellularized human fetal arteries is able to sustain an adequate scaffold for cellular implants.
Collapse
Affiliation(s)
- Andrei Constantinescu
- Institute of Cellular Biology and Pathology "Nicole Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | | | | | | | | |
Collapse
|
20
|
Balaji S, King A, Crombleholme TM, Keswani SG. The Role of Endothelial Progenitor Cells in Postnatal Vasculogenesis: Implications for Therapeutic Neovascularization and Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:283-295. [PMID: 24527350 DOI: 10.1089/wound.2012.0398] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Indexed: 01/16/2023] Open
Abstract
SIGNIFICANCE Postnatal vasculogenesis mediated via endothelial progenitor cells (EPCs) contributes to re-endothelialization and augments neovascularization after ischemia and tissue injury, providing a novel therapeutic application. However, controversy exists with respect to the origin, identification, and contributions of the EPCs to neovascularization, necessitating further study. RECENT ADVANCES Bone marrow (BM) or circulating cells expressing cd133/vascular endothelial growth factor receptor 2 include those with endothelial progenitor capacity. Increasing evidence suggests that there are additional BM-derived (myeloid; mesenchymal cells) and non-BM-derived (peripheral and cord-blood; tissue-resident) cell populations which also give rise to endothelial cells (ECs) and contribute to re-endothelialization and growth factor release after ischemia and tissue injury. Currently, EPCs are being used as diagnostic markers for the assessment of cardiovascular and tumor risk/progression. Techniques aimed at enhancing ex vivo expansion and the therapeutic potential of these cells are being optimized. CRITICAL ISSUES Mobilization and EPC-mediated neovascularization are critically regulated. Stimulatory (growth factors, statins, and exercise) or inhibitory factors (obesity, diabetes, and other cardiovascular diseases) modulate EPC numbers and function. Recruitment and incorporation of EPCs require a coordinated sequence of signaling events, including adhesion, migration (by integrins), and chemoattraction. Finally, EPCs differentiate into ECs and/or secrete angiogenic growth factors. These cells are highly plastic, and depending on the microenvironment and presence of other cells, EPCs transdifferentiate and/or undergo cell fusion and become cells of a different lineage. Therefore, in vitro culture conditions should be optimized to mimic the in vivo milieu to fully characterize the biological function and contribution of EPCs to postnatal vasculogenesis. FUTURE DIRECTIONS Advances in characterization of the EPC biology and enhancement of EPC functions are required. In addition, innovative tissue-engineered carrier matrices that permit embedding of EPCs and provide optimal conditions for EPC survival and endothelial outgrowth will further contribute to EPC-mediated therapeutic applications in wound healing and ischemia repair.
Collapse
Affiliation(s)
- Swathi Balaji
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alice King
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Timothy M. Crombleholme
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati College of Medicine, Cincinnati, Ohio
- Center for Children's Surgery, Children's Hospital Colorado and the University of Colorado School of Medicine, Aurora, Colorado
| | - Sundeep G. Keswani
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
21
|
Shen WC, Liang CJ, Wu VC, Wang SH, Young GH, Lai IR, Chien CL, Wang SM, Wu KD, Chen YL. Endothelial progenitor cells derived from Wharton's jelly of the umbilical cord reduces ischemia-induced hind limb injury in diabetic mice by inducing HIF-1α/IL-8 expression. Stem Cells Dev 2013; 22:1408-18. [PMID: 23252631 DOI: 10.1089/scd.2012.0445] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Peripheral arterial diseases, the major complication of diabetes, can result in lower limb amputation. Since endothelial progenitor cells (EPCs) are involved in neovascularization, the aim of this study was to examine whether EPCs isolated from Wharton's jelly (WJ-EPCs) of the umbilical cord, a rich source of mesenchymal stem cells, could reduce ischemia-induced hind limb injury in diabetic mice. We evaluated the effects of WJ-EPC transplantation on hind limb injury caused by femoral artery ligation in mice with streptozotocin (STZ)-induced diabetes. We found that the ischemic hind limb in mice with STZ-induced diabetes showed decreased blood flow and capillary density and increased cell apoptosis and that these effects were significantly inhibited by an injection of WJ-EPCs. In addition, hypoxia-inducible factor-1α (HIF-1α) and interleukin-8 (IL-8) were highly expressed in transplanted WJ-EPCs in the ischemic skeletal tissues and were present at high levels in hypoxia-treated cultured WJ-EPCs. Moreover, incubation of the NOR skeletal muscle cell line under hypoxic conditions in conditioned medium from EPCs cultured for 16 h under hypoxic conditions resulted in decreased expression of pro-apoptotic proteins and increased expression of anti-apoptotic proteins. The inhibition of HIF-1α or IL-8 expression by EPCs using HIF-1α siRNA or IL-8 siRNA, respectively, prevented this change in expression of apoptotic-related proteins. Wharton's jelly in the umbilical cord is a valuable source of EPCs, and transplantation of these EPCs represents an innovative therapeutic strategy for treating diabetic ischemic tissues. The HIF-1α/IL-8 signaling pathway plays a critical role in the protective effects of EPCs in the ischemic hind limb of diabetic mice.
Collapse
Affiliation(s)
- Wen-Ching Shen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
CHENG YONGXIA, GUO SUFEN, LIU GUIBO, FENG YUKUAN, YAN BIN, YU JIANBO, FENG KEJIAN, LI ZHIQIANG. Transplantation of bone marrow-derived endothelial progenitor cells attenuates myocardial interstitial fibrosis and cardiac dysfunction in streptozotocin-induced diabetic rats. Int J Mol Med 2012; 30:870-6. [DOI: 10.3892/ijmm.2012.1083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 12/17/2022] Open
|
23
|
Ankeny RF, Ankeny CJ, Nerem RM, Jo H. Maturing EPCs into endothelial cells: may the force be with the EPCs: focus on "Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells". Am J Physiol Cell Physiol 2012; 303:C589-91. [PMID: 22763124 DOI: 10.1152/ajpcell.00224.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|