1
|
Yang J, Ye K, Zhang R, Fan X, Xiong R, Zhang S, Liu Q, Lin M, Wang B, Tan X, Wen Q, Ou X. The characteristics and molecular targets of antiarrhythmic natural products. Biomed Pharmacother 2023; 168:115762. [PMID: 37897974 DOI: 10.1016/j.biopha.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Arrhythmia is one of the most common cardiovascular diseases. The search for new drugs to suppress various types of cardiac arrhythmias has always been the focus of attention. In the past decade, the screening of antiarrhythmic active substances from plants has received extensive attention. These natural compounds have obvious antiarrhythmic effects, and chemical modifications based on natural compounds have greatly increased their pharmacological properties. The chemical modification of botanical antiarrhythmic drugs is closely related to the development of new and promising drugs. Therefore, the structural characteristics and action targets of natural compounds with antiarrhythmic effects are reviewed in this paper, so that pharmacologists can select antiarrhythmic lead compounds from natural compounds based on the disease target - chemical structural characteristics.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; Department of Pharmacy, Santai County People's Hospital of Sichuan Province, Mianyang 621100, China
| | - Kejun Ye
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; Pharmacy Department, Chongqing Armed Police Corps Hospital, Chongqing 400061, China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xinrong Fan
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rui Xiong
- Department of Pharmacy of the 958 Hospital of Chinese PLA/Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Qiming Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Miao Lin
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bin Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi Province, China.
| |
Collapse
|
2
|
Li YQ, Li YL, Li XT, Lv JY, Gao Y, Li WN, Gong QH, Yang DL. Osthole Alleviates Neointimal Hyperplasia in Balloon-Induced Arterial Wall Injury by Suppressing Vascular Smooth Muscle Cell Proliferation and Downregulating Cyclin D1/CDK4 and Cyclin E1/CDK2 Expression. Front Physiol 2021; 11:514494. [PMID: 33574763 PMCID: PMC7870719 DOI: 10.3389/fphys.2020.514494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is the most widely used therapy for treating ischemic heart disease. However, intimal hyperplasia and restenosis usually occur within months after angioplasty. Modern pharmacological researchers have proven that osthole, the major active coumarin of Cnidium monnieri (L.) Cusson, exerts potent antiproliferative effects in lung cancer cells, the human laryngeal cancer cell line RK33 and TE671 medulloblastoma cells, and its mechanism of action is related to cell cycle arrest. The goal of the present study was to observe the effect of osthole on vascular smooth muscle cell (VSMC) proliferation using platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMCs isolated from rats and vascular balloon injury as models to further elucidate the molecular mechanisms underlying this activity. We detected the relative number of VSMCs by the MTT assay and EdU staining and examined cell cycle progression by flow cytometry. To more deeply probe the mechanisms, the protein expression levels of PCNA, the cyclin D1/CDK4 complex and the cyclin E1/CDK2 complex in balloon-treated rat carotid arteries and the mRNA and protein expression levels of the cyclin D1/CDK4 and cyclin E1/CDK2 complexes in VSMCs were detected by real-time RT-PCR and western blotting. The data showed that osthole significantly inhibited the proliferation of VSMCs induced by PDGF-BB. Furthermore, osthole caused apparent VSMC cycle arrest early in G0/G1 phase and decreased the expression of cyclin D1/CDK4 and cyclin E1/CDK2. Our results demonstrate that osthole can significantly inhibit PDGF-BB-induced VSMC proliferation and that its regulatory effects on cell cycle progression and proliferation may be related to the downregulation of cyclin D1/CDK4 and cyclin E1/CDK2 expression as well as the prevention of cell cycle progression from G0/G1 phase to S phase. The abovementioned mechanism may be responsible for the alleviation of neointimal hyperplasia in balloon-induced arterial wall injury by osthole.
Collapse
Affiliation(s)
- Yi-Qi Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ye-Li Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiao-Tong Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jun-Yuan Lv
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yang Gao
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wen-Na Li
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Qi-Hai Gong
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Dan-Li Yang
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Fan Y, Wei J, Guo L, Zhao S, Xu C, Sun H, Guo T. Osthole Reduces Mouse IOP Associated With Ameliorating Extracellular Matrix Expression of Trabecular Meshwork Cell. Invest Ophthalmol Vis Sci 2021; 61:38. [PMID: 32821914 PMCID: PMC7445364 DOI: 10.1167/iovs.61.10.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Elevation of IOP in POAG is thought to involve excessive accumulation of extracellular matrix in the trabecular meshwork (TM), leading to an increase in outflow resistance of the aqueous humor. Osthole, a coumarin derivative extracted from the fruit of a variety of plants, such as Cnidium monnieri, is reported to prevent profibrotic responses by inhibiting Smad signaling pathway activated by TGF-β in liver, kidney, and cardiac tissues. We tested if osthole can (1) inhibit TGF-β2–induced extracellular matrix expression in cultured human TM (HTM) cells, and (2) lower TGF-β2–induced ocular hypertension in the mouse. Methods Cultured HTM cells were treated with 5 ng/mL TGF-β2 for 48 hours, then with osthole for 24 hours. The expressions of fibronectin, collagen type IV, and laminin were assessed by quantitative PCR, Western blot, and immunocytochemistry. BALB/cJ mice were injected intravitreally with an adenoviral vector encoding a bioactive mutant of TGF-β2 (Ad.hTGF-β2226/228) in one eye to induce ocular hypertension, with the uninjected contralateral or Ad.Empty-injected eye serving as controls. Mice were then treated with a daily intraperitoneal injection of 30 mg/kg osthole. Conscious mouse IOP values were measured using a TonoLab rebound tonometer. Results In cultured HTM cells, stimulation with TGF-β2 increased expressions of fibronectin, collagen IV, and laminin. These in vitro changes were significantly and completely mitigated by osthole (10 µM). Daily intraperitoneal injections of 30 mg/kg osthole, starting either at day 0 (same day as Ad.hTGF-β2226/228 injection) or at day 14, significantly decreased TGF-β2–induced ocular hypertension in the mouse. In contrast, osthole did not affect IOP of control eyes. Conclusions These results demonstrated that osthole is capable of reducing TGF-β2–induced extracellular matrix expression in cultured HTM cells. It also reduced TGF-β2–induced ocular hypertension in the mouse. These findings indicate that this natural product may be useful as a novel treatment for POAG.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.,Department of Ophthalmology, the First Affiliated Hospital of Bengbu Medicine College, Bengbu, Anhui, China
| | - Jiahong Wei
- Bengbu Medicine College, Bengbu, Anhui, China
| | - Li Guo
- Department of Ophthalmology, Luan Affiliated Hospital of Anhui Medicine University, Luan, Anhui, China
| | - Siyu Zhao
- Bengbu Medicine College, Bengbu, Anhui, China
| | - Chenyu Xu
- Bengbu Medicine College, Bengbu, Anhui, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tao Guo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
4
|
Wang S, Xie Y, Huo YW, Li Y, Abel PW, Jiang H, Zou X, Jiao HZ, Kuang X, Wolff DW, Huang YG, Casale TB, Panettieri RA, Wei T, Cao Z, Tu Y. Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma. Sci Signal 2020; 13:13/659/eaax0273. [PMID: 33234690 DOI: 10.1126/scisignal.aax0273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Overuse of β2-adrenoceptor agonist bronchodilators evokes receptor desensitization, decreased efficacy, and an increased risk of death in asthma patients. Bronchodilators that do not target β2-adrenoceptors represent a critical unmet need for asthma management. Here, we characterize the utility of osthole, a coumarin derived from a traditional Chinese medicine, in preclinical models of asthma. In mouse precision-cut lung slices, osthole relaxed preconstricted airways, irrespective of β2-adrenoceptor desensitization. Osthole administered in murine asthma models attenuated airway hyperresponsiveness, a hallmark of asthma. Osthole inhibited phosphodiesterase 4D (PDE4D) activity to amplify autocrine prostaglandin E2 signaling in airway smooth muscle cells that eventually triggered cAMP/PKA-dependent relaxation of airways. The crystal structure of the PDE4D complexed with osthole revealed that osthole bound to the catalytic site to prevent cAMP binding and hydrolysis. Together, our studies elucidate a specific molecular target and mechanism by which osthole induces airway relaxation. Identification of osthole binding sites on PDE4D will guide further development of bronchodilators that are not subject to tachyphylaxis and would thus avoid β2-adrenoceptor agonist resistance.
Collapse
Affiliation(s)
- Sheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yan-Wu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peter W Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Haihong Jiang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Zhan Jiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Kuang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO 64804, USA
| | - You-Guo Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Thomas B Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL 33612, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
5
|
Su X, Wu B, Zhang W, Ji YH, Wang Q, Tan ZY. Inhibitory Effects of Columbianadin on Nociceptive Behaviors in a Neuropathic Pain Model, and on Voltage-Gated Calcium Currents in Dorsal Root Ganglion Neurons in Mice. Front Pharmacol 2020; 10:1522. [PMID: 31998126 PMCID: PMC6970200 DOI: 10.3389/fphar.2019.01522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Radix angelicae pubescentis (RAP) has been used in Chinese traditional medicine to treat painful diseases such as rheumatism and headache. A previous study has reported that columbianadin (CBN), a major coumarin in RAP inhibits acute and inflammatory pain behaviors. However, the effects of CBN on neuropathic pain behaviors, and the potential underlying mechanism have not been reported. In the present study, the effects of CBN, compared to another major coumarin of RAP osthole (OST), on oxaliplatin-induced neuropathic pain behaviors and on the voltage-gated calcium currents in small dorsal root ganglion (DRG) neurons were studied in mice. It was found that CBN and OST inhibited both mechanical and cold hypersensitivity induced by oxaliplatin. Moreover, CBN and OST might preferentially inhibit T- and L-type calcium currents (Ica). The inhibitory effects of CBN and OST on the oxaliplatin-induced mechanical allodynia were prevented by gabapentin. These results suggest that CBN, as well as OST might inhibit neuropathic pain behaviors through an inhibition of T- and L-type calcium currents in nociceptive DRG neurons.
Collapse
Affiliation(s)
- Xiaolin Su
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Wu
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Institute of Special Environment Medicine, Nantong University, Nantong, China
| | - Wentong Zhang
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yong-Hua Ji
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Zhang B, Saatman KE, Chen L. Therapeutic potential of natural compounds from Chinese medicine in acute and subacute phases of ischemic stroke. Neural Regen Res 2020; 15:416-424. [PMID: 31571650 PMCID: PMC6921351 DOI: 10.4103/1673-5374.265545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke is one of the leading causes of death and disability in adults worldwide, resulting in huge social and financial burdens. Extracts from herbs, especially those used in Chinese medicine, have emerged as new pharmaceuticals for stroke treatment. Here we review the evidence from preclinical studies investigating neuroprotective properties of Chinese medicinal compounds through their application in acute and subacute phases of ischemic stroke, and highlight potential mechanisms underlying their therapeutic effects. It is noteworthy that many herbal compounds have been shown to target multiple mechanisms and in combinations may exert synergistic effects on signaling pathways, thereby attenuating multiple aspects of ischemic pathology. We conclude the paper with a general discussion of the prospects for novel natural compound-based regimens against stroke.
Collapse
Affiliation(s)
- Bei Zhang
- College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, KY, USA
| | - Lei Chen
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, KY, USA
| |
Collapse
|
7
|
Schultze C, Schmidt B. Ring-closing-metathesis-based synthesis of annellated coumarins from 8-allylcoumarins. Beilstein J Org Chem 2018; 14:2991-2998. [PMID: 30591822 PMCID: PMC6296409 DOI: 10.3762/bjoc.14.278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/22/2018] [Indexed: 11/23/2022] Open
Abstract
8-Allylcoumarins are conveniently accessible through a microwave-promoted tandem Claisen rearrangement/Wittig olefination/cyclization sequence. They serve as a versatile platform for the annellation of five- to seven-membered rings using ring-closing olefin metathesis (RCM). Furano-, pyrano-, oxepino- and azepinocoumarins were synthesized from the same set of precursors using Ru-catalyzed double bond isomerizations and RCM in a defined order. One class of products, pyrano[2,3-f]chromene-2,8-diones, were inaccessible through direct RCM of an acrylate, but became available from the analogous allyl ether via an assisted tandem catalytic RCM/allylic oxidation sequence.
Collapse
Affiliation(s)
- Christiane Schultze
- Universität Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24–25, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Universität Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24–25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Liu JC, Zhou L, Wang F, Cheng ZQ, Rong C. Osthole decreases collagen I/III contents and their ratio in TGF-β1-overexpressed mouse cardiac fibroblasts through regulating the TGF-β/Smad signaling pathway. Chin J Nat Med 2018; 16:321-329. [PMID: 29860992 DOI: 10.1016/s1875-5364(18)30063-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 01/05/2023]
Abstract
The present study was designed to elucidate whether the mechanism by which osthole decreases collagenI/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts (CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pcDNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·mL-1 of osthole for 24 h, the mRNA and protein expression levels of collagensIand III were reduced. The collagen I/III ratio was also reduced. The mRNA and protein expression levels of TGF-β1, TβRI, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen I and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Jin-Cheng Liu
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lei Zhou
- Laboratory Department, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Feng Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zong-Qi Cheng
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chen Rong
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
9
|
Sun C, Gui Y, Hu R, Chen J, Wang B, Guo Y, Lu W, Nie X, Shen Q, Gao S, Fang W. Preparation and Pharmacokinetics Evaluation of Solid Self-Microemulsifying Drug Delivery System (S-SMEDDS) of Osthole. AAPS PharmSciTech 2018; 19:2301-2310. [PMID: 29845504 DOI: 10.1208/s12249-018-1067-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
The study was performed aiming to enhance the solubility and oral bioavailability of poorly water-soluble drug osthole by formulating solid self-microemulsifying drug delivery system (S-SMEDDS) via spherical crystallization technique. Firstly, the liquid self-microemulsifying drug delivery system (L-SMEDDS) of osthole was formulated with castor oil, Cremophor RH40, and 1,2-propylene glycol after screening various lipids and emulsifiers. The type and amount of polymeric materials, good solvents, bridging agents, and poor solvents in S-SMEDDS formulations were further determined by single-factor study. The optimal formulation contained 1:2 of ethyl cellulose (EC) and Eudragit S100, which served as matrix forming and enteric coating polymers respectively. Anhydrous ethanol and dichloromethane with a ratio of 5:3 are required to perform as good solvent and bridging agent, respectively, with the addition of 0.08% SDS aqueous solution as poor solvent. The optimized osthole S-SMEDDS had a high yield (83.91 ± 3.31%) and encapsulation efficiency (78.39 ± 2.25%). Secondly, osthole L-SMEDDS was solidified to osthole S-SMEDDS with no significant changes in terms of morphology, particle size, and zeta potential. In vitro release study demonstrated a sustained release of the drug from osthole S-SMEDDS. Moreover, in vivo pharmacokinetic study showed that the Tmax and mean residence time (MRT(0-t)) of osthole were significantly prolonged and further confirmed that osthole S-SMEDDS exhibited sustained release effect in rabbits. Comparing with osthole aqueous suspension and L-SMEDDS, osthole S-SMEDDS increased bioavailability by 205 and 152%, respectively. The results suggested that S-SMEDDS was an effective oral solid dosage form, which can improve the solubility and oral bioavailability of poorly water-soluble drug osthole.
Collapse
|
10
|
Khairy H, Saleh H, Badr AM, Marie MAS. Therapeutic efficacy of osthole against dinitrobenzene sulphonic acid induced-colitis in rats. Biomed Pharmacother 2018; 100:42-51. [DOI: 10.1016/j.biopha.2018.01.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
|
11
|
Antimalarial agents against both sexual and asexual parasites stages: structure-activity relationships and biological studies of the Malaria Box compound 1-[5-(4-bromo-2-chlorophenyl)furan-2-yl]-N-[(piperidin-4-yl)methyl]methanamine (MMV019918) and analogues. Eur J Med Chem 2018; 150:698-718. [PMID: 29571157 DOI: 10.1016/j.ejmech.2018.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 01/31/2023]
Abstract
Therapies addressing multiple stages of Plasmodium falciparum life cycle are highly desirable for implementing malaria elimination strategies. MMV019918 (1, 1-[5-(4-bromo-2-chlorophenyl)furan-2-yl]-N-[(piperidin-4-yl)methyl]methanamine) was selected from the MMV Malaria Box for its dual activity against both asexual stages and gametocytes. In-depth structure-activity relationship studies and cytotoxicity evaluation led to the selection of 25 for further biological investigation. The potential transmission blocking activity of 25 versus P. falciparum was confirmed through the standard membrane-feeding assay. Both 1 and 25 significantly prolonged atrioventricular conduction time in Langendorff-isolated rat hearts, and showed inhibitory activity of Ba2+ current through Cav1.2 channels. An in silico target-fishing study suggested the enzyme phosphoethanolamine methyltransferase (PfPMT) as a potential target. However, compound activity against PfPMT did not track with the antiplasmodial activity, suggesting the latter activity relies on a different molecular target. Nevertheless, 25 showed interesting activity against PfPMT, which could be an important starting point for the identification of more potent inhibitors active against both sexual and asexual stages of the parasite.
Collapse
|
12
|
Simultaneous determination of columbianetin-β-d-glucopyranoside and columbianetin in a biological sample by high-performance liquid chromatography with fluorescence detection and identification of other columbianetin-β-d-glucopyranoside metabolites by ultra high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry. J Pharm Biomed Anal 2018; 153:221-231. [PMID: 29506005 DOI: 10.1016/j.jpba.2018.02.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/21/2022]
Abstract
Columbianetin-β-d-glucopyranoside (CBG) and its metabolite columbianetin (CBN) are the bioactive constituents of Angelicae pubescentis radix (APR). They exhibit the anti-platelet aggregation, anti-inflammatory and analgesic properties. The absorption, distribution, metabolism and excretion (ADME) of CBG has not been reported to date. Both high-performance liquid chromatography with fluorescence detection and ultra high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry methods were developed and validated for the study of ADME of CBG. It was found that CBG could be catabolized into its active metabolite CBN in vivo. The absolute bioavailability of columbianetin-β-d-glucopyranoside was 5.63 ± 4.42%. The other co-existing constituents from the APR ethanol extract could enhance the absorption of CBG. CBG and CBN were rapidly and broadly distributed in the stomach, ovary, kidney, liver, spleen, lung, muscles, heart and brain. Higher levels of accumulation of CBG and CBN were detected in the ovary and kidney tissues. Eight metabolites of CBG were tentatively identified in blood, urine, bile and faeces of rats after oral administration of pure CBG. It was also found that CBG and CBN were mainly excreted through the faecal route. It can be concluded that the validated methods were successfully applied for absorption, distribution, metabolism and excretion study of CBG.
Collapse
|
13
|
Fusi F, Sgaragli G, Valoti M. Gold nanoparticles potentiate Ca V channel currents in rat tail artery myocytes. Toxicol In Vitro 2017; 47:89-93. [PMID: 29158021 DOI: 10.1016/j.tiv.2017.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 11/05/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
This study was designed to unveil effects of 5-nm sized, polyvinylpyrrolidone-coated gold nanoparticles (AuNPs) on vascular CaV1.2 and CaV3.1 channels. Ba2+ currents through both channels (IBa1.2 and IBa3.1) were recorded in single myocytes isolated from the rat tail main artery by means of the whole-cell patch-clamp method. AuNPs increased IBa1.2 and IBa3.1 amplitude in a concentration- and Vh-dependent manner. Neither the voltage dependence of inactivation and activation curves nor inactivation and activation kinetics were affected by AuNPs. In conclusion, these findings warrant further investigation to clarify whether different types of NPs possess the same stimulatory activity and may represent a toxic hazard to humans.
Collapse
Affiliation(s)
- Fabio Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| | - Giampietro Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| |
Collapse
|
14
|
Sun W, Cai Y, Zhang XX, Chen H, Lin YD, Li H. Osthole pretreatment alleviates TNBS-induced colitis in mice via both cAMP/PKA-dependent and independent pathways. Acta Pharmacol Sin 2017; 38:1120-1128. [PMID: 28603288 DOI: 10.1038/aps.2017.71] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Osthole, a natural coumarin found in traditional Chinese medicinal plants, has shown multiple biological activities. In the present study, we investigated the preventive effects of osthole on inflammatory bowel disease (IBD). Colitis was induced in mice by infusing TNBS into the colonic lumen. Before TNBS treatment, the mice received osthole (100 mg·kg-1·d-1, ip) for 3 d. Pretreatment with osthole significantly ameliorated the clinical scores, colon length shortening, colonic histopathological changes and the expression of inflammatory mediators in TNBS-induced colitis. Pretreatment with osthole elevated serum cAMP levels; but treatment with the PKA inhibitor H89 (10 mg·kg-1·d-1, ip) did not abolish the beneficial effects of osthole on TNBS-induced colitis. In mouse peritoneal macrophages, pretreatment with osthole (50 μmol/L) significantly attenuated the LPS-induced elevation of cytokines at the mRNA level; inhibition of PKA completely reversed the inhibitory effects of osthole on IL-1β, IL-6, COX2, and MCP-1 but not on TNFα. In Raw264.7 cells, the p38 inhibitor SB203580 markedly suppressed LPS-induced upregulation of the cytokines, whereas the PKA inhibitors H89 or KT5720 did not abolish the inhibitory effects of SB203580. Moreover, in LPS-stimulated mouse peritoneal macrophages, SB203580 strongly inhibited the restored expression of IL-1β, IL-6, COX2, and MCP-1, which was achieved by abolishing the suppressive effects of osthole with the PKA inhibitors. Western blot analysis showed that osthole significantly suppressed the phosphorylation of p38, which was induced by TNBS in mice or by LPS in Raw264.7 cells. Inhibition of PKA partially reversed the suppressive effects of osthole on p38 phosphorylation in LPS-stimulated cells. Collectively, our results suggest that osthole is effective in the prevention of TNBS-induced colitis by reducing the expression of inflammatory mediators and attenuating p38 phosphorylation via both cAMP/PKA-dependent and independent pathways, among which the cAMP/PKA-independent pathway plays a major role.
Collapse
|
15
|
Ca v1.2 channel current block by the PKA inhibitor H-89 in rat tail artery myocytes via a PKA-independent mechanism: Electrophysiological, functional, and molecular docking studies. Biochem Pharmacol 2017; 140:53-63. [PMID: 28583845 DOI: 10.1016/j.bcp.2017.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
To characterize the role of cAMP-dependent protein kinase (PKA) in regulating vascular Ca2+ current through Cav1.2 channels [ICa1.2], we have documented a marked capacity of the isoquinoline H-89, widely used as a PKA inhibitor, to reduce current amplitude. We hypothesized that the ICa1.2 inhibitory activity of H-89 was mediated by mechanisms unrelated to PKA inhibition. To support this, an in-depth analysis of H-89 vascular effects on both ICa1.2 and contractility was undertaken by performing whole-cell patch-clamp recordings and functional experiments in rat tail main artery single myocytes and rings, respectively. H-89 inhibited ICa1.2 with a pIC50 (M) value of about 5.5, even under conditions where PKA activity was either abolished by both the PKA antagonists KT5720 and protein kinase inhibitor fragment 6-22 amide or enhanced by the PKA stimulators 6-Bnz-cAMP and 8-Br-cAMP. Inhibition of ICa1.2 by H-89 appeared almost irreversible upon washout, was charge carrier- and voltage-dependent, and antagonised by the Cav1.2 channel agonist (S)-(-)-Bay K 8644. H-89 did not alter both potency and efficacy of verapamil, did not affect current kinetics or voltage-dependent activation, while shifting to the left the 50% voltage of inactivation in a concentration-dependent manner. H-89 docked at the α1C subunit in a pocket region close to that of (S)-(-)-Bay K 8644 docking, forming a hydrogen bond with the same, key amino acid residue Tyr-1489. Finally, both high K+- and (S)-(-)-Bay K 8644-induced contractions of rings were fully reverted by H-89. In conclusion, these results indicate that H-89 inhibited vascular ICa1.2 and, consequently, the contractile function through a PKA-independent mechanism. Therefore, caution is recommended when interpreting experiments where H-89 is used to inhibit vascular smooth muscle PKA.
Collapse
Key Words
- (S)-(-)-Bay K 8644 ((S)-(-)-methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)pyridine-5-carboxylate) (PubChem CID: 6603728)
- 8-Bromoadenosine 3′,5′-cyclic monophosphate (PubChem CID: 32014)
- Ca(V)1.2 channel
- H-89
- H-89 (N-[2-[[3-(4-bromophenyl)-2-propen-1-yl]amino]ethyl]-5-isoquinolinesulfonamide) (PubChem CID: 449241)
- KT5720 ((9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-][1,6]benzodiazocine-10-carboxylic acid, hexyl ester) (PubChem CID: 3844)
- Molecular docking
- N(6)-Benzoyladenosine-3′,5′-cyclic monophosphate (PubChem CID: 17757210)
- PKA
- PKA inhibitor fragment 6-22 (PubChem CID: 16155227)
- Patch-clamp
- Rat tail artery
- Verapamil (PubChem CID: 62969)
- nifedipine (PubChem CID: 4485)
Collapse
|
16
|
Liu JC, Wang F, Xie ML, Cheng ZQ, Qin Q, Chen L, Chen R. Osthole inhibits the expressions of collagen I and III through Smad signaling pathway after treatment with TGF-β1 in mouse cardiac fibroblasts. Int J Cardiol 2017; 228:388-393. [DOI: 10.1016/j.ijcard.2016.11.202] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 02/06/2023]
|
17
|
Adorisio S, Fierabracci A, Rossetto A, Muscari I, Nardicchi V, Liberati AM, Riccardi C, Van Sung T, Thuy TT, Delfino DV. Integration of Traditional and Western Medicine in Vietnamese Populations: A Review of Health Perceptions and Therapies. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In Vietnam, two types of traditional medicine (TM) are practiced: thuoc nam, medicine of the South, and thuoc bac, medicine of the North, both of which are largely based on herbal drugs used by different Vietnamese ethnic groups. This review presents recently published information from various databases regarding TM, especially herbal drugs, and its integration with Western medical practices outside and inside Vietnam. We first discuss the integration of traditional and modern health concepts by Vietnamese immigrants living outside Vietnam. Next, we describe native and emigrated health education and practices of pharmacy students, health professionals, and citizens living in Vietnam. Finally, we report the recent biological validation of medicinal plants and non-herbal therapies emerging from Vietnamese TM and their current and potential medical uses as identified by Western approaches. The main example described here involves utilization of the tree Artocarpus tonkinensis by the ethnic minority of Black Hmong in northern Vietnam, who use a decoction of its leaves to treat arthritis and backache without apparent adverse effects. Our comprehensive review emphasizes that, although Vietnam has a very rich collection of TM practices (particularly the use of herbal drugs), these therapies should be biologically and clinically validated with modern Western methods for optimal integration of Western and traditional medicine in global populations.
Collapse
Affiliation(s)
- Sabrina Adorisio
- Department of Pharmaceutical Sciences, Section of Public Health, University of Perugia, Via Fabretti 48, 06123, Perugia, Italy
| | - Alessandra Fierabracci
- Immunology and Pharmacotherapy Research Area Bambino Gesù Children's Hospital, Viale S. Paolo 15, 00146, Rome, Italy
| | - Ariele Rossetto
- Foligno Nursing School, Department of Medicine, University of Perugia, Via Oberdan 123, 06034, Foligno (PG), Italy
| | - Isabella Muscari
- Section of Onco-hematology, University of Perugia, Santa Maria Hospital, 05100, Terni, Italy
| | - Vincenza Nardicchi
- Clinical Urology and Andrology – Tissue Engineering Laboratory, Department of Surgical and Biomedical Sciences, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Anna Marina Liberati
- Section of Onco-hematology, University of Perugia, Santa Maria Hospital, 05100, Terni, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Trinh Thy Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Domenico V. Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| |
Collapse
|
18
|
Saponara S, Durante M, Spiga O, Mugnai P, Sgaragli G, Huong TT, Khanh PN, Son NT, Cuong NM, Fusi F. Functional, electrophysiological and molecular docking analysis of the modulation of Cav 1.2 channels in rat vascular myocytes by murrayafoline A. Br J Pharmacol 2015; 173:292-304. [PMID: 26493241 DOI: 10.1111/bph.13369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The carbazole alkaloid murrayafoline A (MuA) enhances contractility and the Ca(2+) currents carried by the Cav 1.2 channels [ICa1.2 ] of rat cardiomyocytes. As only few drugs stimulate ICa1.2 , this study was designed to analyse the effects of MuA on vascular Cav 1.2 channels. EXPERIMENTAL APPROACH Vascular activity was assessed on rat aorta rings mounted in organ baths. Cav 1.2 Ba(2+) current [IBa1.2 ] was recorded in single rat aorta and tail artery myocytes by the patch-clamp technique. Docking at a 3D model of the rat, α1c central pore subunit of the Cav 1.2 channel was simulated in silico. KEY RESULTS In rat aorta rings MuA, at concentrations ≤14.2 μM, increased 30 mM K(+) -induced tone and shifted the concentration-response curve to K(+) to the left. Conversely, at concentrations >14.2 μM, it relaxed high K(+) depolarized rings and antagonized Bay K 8644-induced contraction. In single myocytes, MuA stimulated IBa1.2 in a concentration-dependent, bell-shaped manner; stimulation was stable, incompletely reversible upon drug washout and accompanied by a leftward shift of the voltage-dependent activation curve. MuA docked at the α1C subunit central pore differently from nifedipine and Bay K 8644, although apparently interacting with the same amino acids of the pocket. Neither Bay K 8644-induced stimulation nor nifedipine-induced block of IBa1.2 was modified by MuA. CONCLUSIONS AND IMPLICATIONS Murrayafoline A is a naturally occurring vasoactive agent able to modulate Cav 1.2 channels and dock at the α1C subunit central pore in a manner that differed from that of dihydropyridines.
Collapse
Affiliation(s)
- S Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - M Durante
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - O Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - P Mugnai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - G Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - T T Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - P N Khanh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - N T Son
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - N M Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - F Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
19
|
Fusi F, Manetti F, Durante M, Sgaragli G, Saponara S. The vasodilator papaverine stimulates L-type Ca(2+) current in rat tail artery myocytes via a PKA-dependent mechanism. Vascul Pharmacol 2015; 76:53-61. [PMID: 26586313 DOI: 10.1016/j.vph.2015.11.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/23/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
Papaverine is an opium alkaloid, primarily used as an antispasmodic drug and as a cerebral and coronary vasodilator. Its phosphodiesterase inhibitory activity promotes increase of cAMP levels mainly in the cytosol. As cAMP is known to modulate L-type Ca(2+) channel activity, here we tested the proposition that papaverine could affect vascular channel function. An in-depth analysis of the effect of papaverine on Ba(2+) or Ca(2+) current through L-type Ca(2+) channel [IBa(L) or ICa(L)], performed in rat tail artery myocytes using either the whole-cell or the perforated patch-clamp method, was accompanied by a functional study on rat aorta rings. Papaverine increased current amplitude under both the perforated or whole-cell configuration. Stimulation of the current by papaverine was concentration-, Vh-, frequency-, and charge carrier-dependent, and fully reverted by drug washout. The PKA inhibitor H89, but not the PKG inhibitor Rp-8-Br-cGMPS, antagonised papaverine- as well as IBMX- (another phosphodiesterase inhibitor) induced IBa(L) stimulation. In cells pre-treated with IBMX, application of papaverine failed to increase current amplitude. Papaverine sped up the inactivation kinetics of IBa(L), though only at concentrations ≥ 30 μM, and shifted the voltage dependence of the inactivation curve to more negative potentials. In rings, the vasorelaxing activity of papaverine was enhanced by previous treatment with nifedipine. In conclusion, papaverine stimulates vascular L-type Ca(2+) channel via a PKA-dependent mechanism, thus antagonising its main vasodilating activity.
Collapse
Affiliation(s)
- Fabio Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| | - Miriam Durante
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| | - Giampietro Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| |
Collapse
|
20
|
Li YM, Jia M, Li HQ, Zhang ND, Wen X, Rahman K, Zhang QY, Qin LP. Cnidium monnieri: A Review of Traditional Uses, Phytochemical and Ethnopharmacological Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:835-77. [PMID: 26243582 DOI: 10.1142/s0192415x15500500] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cnidium monnieri (L.) Cuss., an annual plant of the Umbelliferae species is one of the most widely used traditional herbal medicines and its fruits have been used to treat a variety of diseases in China, Vietnam, and Japan. The aim of this review is to provide an up-to-date and comprehensive analysis of the botany, traditional uses, phytochemistry, pharmacology, toxicity and contraindication of Cnidium monnieri (L.) Cuss. and to provide future directions of research on this plant. To date, 350 compounds have been isolated and identified from Cnidium monnieri (L.) Cuss., including the main active constituent, coumarins. In vitro and in vivo studies suggest that osthole and other coumarin compounds possess wide range of pharmacological properties for the treatment of female genitals, male impotence, frigidity, skin-related diseases, and exhibit strong antipruritic, anti-allergic, antidermatophytic, antibacterial, antifungal, anti-osteoporotic effects. Although coumarins have been identified as the main active constituents responsible for the observed pharmacological effects, the molecular mechanisms of their actions are still unknown. Therefore, further studies are still required to reveal the structure-activity relationship of these active constituents. In addition, toxicological and clinical studies are also required to provide further data for pharmaceutical use.
Collapse
Affiliation(s)
- Yi-Min Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Min Jia
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hua-Qiang Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,Department of Botany, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nai-Dan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xian Wen
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,Department of Chemistry of Medicinal Plants, College of Life Science, Inner Mongolia University, Inner Mongolia 010020, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
21
|
Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:919616. [PMID: 26246843 PMCID: PMC4515521 DOI: 10.1155/2015/919616] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/28/2015] [Indexed: 12/17/2022]
Abstract
This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine.
Collapse
|
22
|
Spinelli D, Budriesi R, Cosimelli B, Severi E, Micucci M, Baroni M, Fusi F, Ioan P, Cross S, Frosini M, Saponara S, Matucci R, Rosano C, Viale M, Chiarini A, Carosati E. Playing with opening and closing of heterocycles: using the cusmano-ruccia reaction to develop a novel class of oxadiazolothiazinones, active as calcium channel modulators and P-glycoprotein inhibitors. Molecules 2014; 19:16543-72. [PMID: 25317581 PMCID: PMC6271282 DOI: 10.3390/molecules191016543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/15/2014] [Accepted: 09/04/2014] [Indexed: 11/23/2022] Open
Abstract
As a result of the ring-into-ring conversion of nitrosoimidazole derivatives, we obtained a molecular scaffold that, when properly decorated, is able to decrease inotropy by blocking L-type calcium channels. Previously, we used this scaffold to develop a quantitative structure-activity relationship (QSAR) model, and we used the most potent oxadiazolothiazinone as a template for ligand-based virtual screening. Here, we enlarge the diversity of chemical decorations, present the synthesis and in vitro data for 11 new derivatives, and develop a new 3D-QSAR model with recent in silico techniques. We observed a key role played by the oxadiazolone moiety: given the presence of positively charged calcium ions in the transmembrane channel protein, we hypothesize the formation of a ternary complex between the oxadiazolothiazinone, the Ca2+ ion and the protein. We have supported this hypothesis by means of pharmacophore generation and through the docking of the pharmacophore into a homology model of the protein. We also studied with docking experiments the interaction with a homology model of P-glycoprotein, which is inhibited by this series of molecules, and provided further evidence toward the relevance of this scaffold in biological interactions.
Collapse
Affiliation(s)
- Domenico Spinelli
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, Bologna 40126, Italy.
| | - Roberta Budriesi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, Bologna 40126, Italy.
| | - Barbara Cosimelli
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, Napoli 80131, Italy.
| | - Elda Severi
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, Napoli 80131, Italy.
| | - Matteo Micucci
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, Bologna 40126, Italy.
| | - Massimo Baroni
- Molecular Discovery Ltd., 215 Marsh Road, Pinner, Middlesex HA5 5NE, UK.
| | - Fabio Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via A. Moro 2, Siena 53100, Italy.
| | - Pierfranco Ioan
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, Bologna 40126, Italy.
| | - Simon Cross
- Molecular Discovery Ltd., 215 Marsh Road, Pinner, Middlesex HA5 5NE, UK.
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via A. Moro 2, Siena 53100, Italy.
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via A. Moro 2, Siena 53100, Italy.
| | - Rosanna Matucci
- Dipartimento di Neuroscienze, Area del Farmaco e Salute del Bambino (NEUROFARBA) Viale Pieraccini 6, Firenze 50139, Italy.
| | - Camillo Rosano
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, U.O.S. Biopolimeri e Proteomica, L.go R. Benzi, 10, Genova 16132, Italy.
| | - Maurizio Viale
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, U.O.C. Bioterapie, L.go R. Benzi, 10, Genova 16132, Italy.
| | - Alberto Chiarini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, Bologna 40126, Italy.
| | - Emanuele Carosati
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 10, Perugia 06123, Italy.
| |
Collapse
|
23
|
Sadgrove NJ, Gonçalves-Martins M, Jones GL. Chemogeography and antimicrobial activity of essential oils from Geijera parviflora and Geijera salicifolia (Rutaceae): two traditional Australian medicinal plants. PHYTOCHEMISTRY 2014; 104:60-71. [PMID: 24878365 DOI: 10.1016/j.phytochem.2014.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 05/04/2023]
Abstract
Essential oils were hydrodistilled from 27 specimens of Geijera parviflora Lindl., (Rutaceae) and nine specimens of Geijera salicifolia Schott, collected over a wide geographic range in New South Wales, Queensland and South Australia. Essential oils were produced by traditional hydrodistillation and characterised using GC-MS. From one specimen a serendipitous discovery was made of bioactive coumarins dissolved in the hydrosol, which were the coumarins isopsoralen, xanthyletine and osthole. These coumarins were not present in the essential oil from that specimen. Using essential oil composition from all specimens, principal component analysis (PCA) demonstrated nine clusters for G. parviflora and three for G. salicifolia. Some clusters are representative of previously described chemotypes and some are reflective of possible chemotypes requiring more comprehensive sampling for confirmation. Thus, another three or four possible chemotypes of G. parviflora and one of G. salicifolia have been tentatively identified. Using micro-titre plate broth dilution assays, antibacterial and antifungal activity of all chemotypes was investigated. In this regard, the 'green oil' chemotype, restricted to G. parviflora, with major components linalool, geijerene/pregeijerene, 1,8-cineol and bicyclogermacrene, demonstrated the highest antimicrobial and free radical scavenging activity. Thus, in the light of traditional use reports of local analgaesia and bioactivity demonstrated in the current study, oils from select chemotypes of G. parviflora may be useful in suitably compounded lotions and creams designed for topical antimicrobial applications and local pain relief. In addition, because major components are known for insecticidal activities, such lotions may also be useful as topically applied insect repellents.
Collapse
Affiliation(s)
- Nicholas J Sadgrove
- Pharmaceuticals and Nutraceuticals Group, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Maximilien Gonçalves-Martins
- Pharmaceuticals and Nutraceuticals Group, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Graham L Jones
- Pharmaceuticals and Nutraceuticals Group, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
24
|
Mugnai P, Durante M, Sgaragli G, Saponara S, Paliuri G, Bova S, Fusi F. L-type Ca(2+) channel current characteristics are preserved in rat tail artery myocytes after one-day storage. Acta Physiol (Oxf) 2014; 211:334-45. [PMID: 24666564 DOI: 10.1111/apha.12282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/04/2013] [Accepted: 03/21/2014] [Indexed: 12/14/2022]
Abstract
AIM To develop a cheap and simple method of storing for 24-h vascular tissue and single myocytes while preserving therein the biophysical and pharmacological characteristics of L-type Ca(2+) channels and contractile activity. METHODS Rings or vascular smooth muscle cells obtained from the rat tail main artery were used either freshly (R0h and VSMC0h) or stored for 24 h (R24h and VSMC24h) at 4 °C, to record whole-cell L-type Ca(2+) currents (IC a(L) ) or measure contractile responses. RESULTS R0h/VSMC0h and R24h/VSMC24h comparably contracted when stimulated with phenylephrine, high KCl or ATP. In both VSMC0h and VSMC24h, IC a(L) was identified and characterized as a stable inward current for at least 35 min; IC a(L) was comparably inhibited by the Ca(2+) antagonists nifedipine, verapamil and diltiazem and increased by the Ca(2+) channel agonist (S)-(-)-Bay K 8644; current density and current-voltage relationships were similar; at more hyperpolarized holding potentials, IC a(L) intensity increased comparably; nifedipine shifted the steady-state inactivation curve towards more negative potentials, while verapamil blocked IC a(L) in a frequency-dependent manner and slowed down the rate of recovery from inactivation in a comparable way. CONCLUSION Findings show that smooth muscle contractile activity and the biophysical and pharmacological features of L-type Ca(2+) channels are similar in VSMC24h and VSMC0h. The fact that reproducible results were obtained in vascular myocytes up to 24 h after dissociation may facilitate vascular smooth muscle cell investigation by increasing throughput and reducing the number of animals required.
Collapse
Affiliation(s)
- P. Mugnai
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| | - M. Durante
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| | - G. Sgaragli
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| | - S. Saponara
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| | - G. Paliuri
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Padova Italy
| | - S. Bova
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Padova Italy
| | - F. Fusi
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| |
Collapse
|
25
|
Xin XL, Dong PP, Wang G, Xi RG, Liu D, Wu ZM, Sun XC, Lan R, Wang XB. Biotransformation of osthole by Alternaria longipes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2013; 15:717-722. [PMID: 23679093 DOI: 10.1080/10286020.2013.795951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The biotransformation of osthole (1) by Alternaria longipes was carried out, and five transformed products were obtained in the present research work. Based on their extensive spectral data, the structures of these metabolites were characterized as 4'-hydroxyl-osthole (2), 4'-hydroxyl-2',3'-dihydroosthole (3), 2',3'-dihydroxylosthole (4), osthole-4'-oic acid methyl ester (5), and osthole-4'-oic acid glucuron-1-yl ester (6), respectively. Among them, products 5 and 6 were new compounds.
Collapse
Affiliation(s)
- Xiu-Lan Xin
- College of Bioengineering, Beijing Polytechnic, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fusi F, Durante M, Sgaragli G, Cuong NM, Dung PTP, Nam NH. 2-Aryl- and 2-amido-benzothiazoles as multifunctional vasodilators on rat artery preparations. Eur J Pharmacol 2013; 714:178-87. [PMID: 23751511 DOI: 10.1016/j.ejphar.2013.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
The neuroprotective agent riluzole [2-amino-6-(trifluoromethoxy)benzothiazole] has been shown to antagonize neuronal high-voltage activated Ca(2+) currents. In the search for novel scaffolds leading to potential antihypertensive agents, a series of 2-aryl- and 2-amido-benzothiazoles (HUP) were assessed for their vasorelaxing property on rat aorta rings and for their L-type Ba(2+) currents [I(Ba(L))] blocking activity on single myocytes isolated from the rat tail artery. HUP5 and HUP30, the most potent of the series, inhibited phenylephrine-induced contraction with IC₅₀ values in the range 3-6 µM. The presence of endothelium did not modify their spasmolytic activity. Both HUP5 and HUP30 increased tissue levels of cGMP and shifted to the left the concentration-response curve to sodium nitroprusside. In rings precontracted by phenylephrine, tetraethylammonium or 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) shifted to the right the concentration-relaxation curves of HUP5 and HUP30. The antispasmodic effect of HUP5 and HUP30 was more marked on rings stimulated with 25/30 mM than with 60 mM K(+). HUP5 and HUP30 antagonized both extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores in response to phenylephrine: this effect was not modified by the presence of ODQ. I(Ba(L)) was partly inhibited by HUP5 and blocked by HUP30 in a concentration-dependent as well as ODQ-independent manner. In conclusion, HUP5 and HUP30 are vasorelaxing agents that stimulate soluble guanylyl cyclase, activate K(+) channels, and block extracellular Ca(2+) influx. The present benzothiazole derivatives form a novel class of multifunctional vasodilators which may give rise to effective antihypertensive agents.
Collapse
Affiliation(s)
- Fabio Fusi
- Dipartimento di Scienze della Vita, Università di Siena, via A. Moro 2, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Maione F, Cicala C, Musciacco G, De Feo V, Amat AG, Ialenti A, Mascolo N. Phenols, Alkaloids and Terpenes from Medicinal Plants with Antihypertensive and Vasorelaxant Activities. A Review of Natural Products as Leads to Potential Therapeutic Agents. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Numerous studies support the cardiovascular effects of medicinal plants. This review examines plants whose antihypertensive and vasorelaxant effects have been scientifically validated. Our study selected only chemically characterized plants whose mode of action had already been investigated. The aim of the paper is to provide a quick way to identify medicinal plants and their constituents with antihypertensive and vasorelaxant activities.
Collapse
Affiliation(s)
- Francesco Maione
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carla Cicala
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giulia Musciacco
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo De Feo
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084, Fisciano (Salerno), Italy
| | - Anibal G. Amat
- Facultad de Ciencias Exactas, Quimicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, 3300 Posadas, Misiones, Argentina
| | - Armando Ialenti
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicola Mascolo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
28
|
Li J, Chan W. Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry. J Pharm Biomed Anal 2012; 74:156-61. [PMID: 23245246 DOI: 10.1016/j.jpba.2012.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022]
Abstract
Osthole is an active ingredient and one of the major coumarin compounds that were identified in the genus Cnidium moonnieri (L.) Cussion, the fruit of which was used as traditional Chinese medicine to treat male impotence, ringworm infection and blood stasis conventionally. Recent studies revealed that osthole has diverse pharmacological effects, such as improving male sexual dysfunction, anti-diabetes, and anti-hypertentions. The inhibition of thrombosis and platelet aggregation and protection of central nerve were also observed. On the other hand, the metabolism of osthole has not yet been investigated thoroughly. Herein the biotransformation of osthole in rat was investigated after oral administration of osthole by using efficient and sensitive ultra-performance liquid chromatography-tandem quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS). Eighteen osthole metabolites and the parent drug were detected and identified in rat urine. Fourteen metabolites of osthole were identified and characterized for the first time. Structures of metabolites of osthole were elucidated by comparing fragment pattern under MS/MS scan and change of molecular weight with those of osthole. The main phase I metabolic pathways were summed as 7-demethylation, 8-dehydrogenation, hydroxylation on coumarin and 3,4-epoxide. Sulfate conjugates were detected as phase II metabolites of osthole.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
29
|
Saponara S, Fusi F, Sgaragli G, Cavalli M, Hopkins B, Bova S. Effects of commonly used protein kinase inhibitors on vascular contraction and L-type Ca(2+) current. Biochem Pharmacol 2012; 84:1055-61. [PMID: 22884855 DOI: 10.1016/j.bcp.2012.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Regulation of smooth muscle contraction is driven by a number of protein kinases: the evidence for this often originates from studies that investigate the effects of extracellularly added specific protein kinase inhibitors. Six compounds, thought to be selective inhibitors of various kinases, were analysed for their effects on vascular L-type Ca(2+) channels because this potential subsidiary activity could strongly influence our understanding of the pathways involved in smooth muscle contraction. Whole-cell L-type Ba(2+) currents [I(Ba(L))] were recorded in single myocytes, and contractile responses were measured from endothelium-denuded rings taken from the rat tail artery. Although ML-7, ML-9, and wortmannin (MLCK inhibitors), HA-1077 and Y-27632 (Rho-associated kinase inhibitors), and GF-109203X (PKC inhibitor) relaxed rings pre-contracted with high KCl in a concentration-dependent manner, their effect on I(Ba(L)) intensity was surprisingly variable. Wortmannin showed negligible effects while HA-1077 and Y-27632 were ineffective. I(Ba(L)) was partly inhibited by GF-109203X and blocked by ML-7 and ML-9 in a concentration-dependent manner, with the blockade by ML-7 being voltage-dependent. Whilst ML-7, ML-9, and GF-109203X sped up the inactivation kinetics of I(Ba(L)), GF-109203X did not modify ML-7- or ML-9-induced effects, with both intensity and kinetics of the current remaining unchanged. In contrast, application of Bay K 8644 on myocytes pre-treated with ML-7 or ML-9 raised I(Ba(L)) beyond control values. In conclusion, ML-7 and ML-9 inhibit L-type Ca(2+) channels via a mechanism independent of MLCK, PKC or Rho kinase activities, and as such caution should be used in employing these agents to elucidate the role of kinases in smooth muscle contraction.
Collapse
Affiliation(s)
- Simona Saponara
- Dipartimento di Neuroscienze, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|