1
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
2
|
Kawashima H, Aono Y, Watanabe Y, Waddington JL, Saigusa T. In vivo microdialysis reveals that blockade of accumbal orexin OX 2 but not OX 1 receptors enhances dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Neurosci 2022; 55:733-745. [PMID: 34989064 DOI: 10.1111/ejn.15593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/15/2021] [Accepted: 12/31/2021] [Indexed: 11/27/2022]
Abstract
The nucleus accumbens contains orexinergic neural inputs and orexin OX1 -and OX2 -receptors. Behavioural studies suggest that accumbal orexin receptors modulate accumbal dopaminergic activity-dependent locomotion in rats. We studied the effects of intra-accumbal injection of orexin receptor ligands on accumbal extracellular dopamine levels in freely moving rats, using in vivo microdialysis, and analysed the roles of OX1 - and OX2 -receptors in the regulation of basal accumbal dopamine efflux. The orexin receptor ligands were applied intra-accumbally though a microinjection needle attached with a dialysis probe. Neither the non-selective OX1 - and OX2 -receptor agonist orexin-A nor the preferential OX2 -receptor agonist orexin-B (500.0 pg and 5.0 ng) altered accumbal dopamine levels. The non-selective OX1 - and OX2 -receptor antagonist MK-4305 (suvorexant, 500.0 pg, 2.5 and 5.0 ng) enhanced dopamine efflux. A 2-h tetrodotoxin infusion into nucleus accumbens through the probe or co-administration of orexin-A (500.0 pg) strongly inhibited MK-4305 (5.0 ng)-induced accumbal dopamine efflux. The selective OX2 -receptor antagonist EMPA (90.0 and 900.0 pg, 9.0 ng) increased dopamine efflux. Intra-accumbal infusion of tetrodotoxin abolished EMPA (9.0 ng)-induced dopamine efflux. The selective OX1 -receptor antagonist SB-334867 (10.0 and 20.0 ng) failed to alter dopamine efflux. Co-administration of orexin-B (500.0 pg) inhibited both EMPA (9.0 ng)- and MK-4305 (5.0 ng)-induced dopamine efflux. Intraperitoneal injection of MK-4305 (10.0 mg/kg) did not affect accumbal dopamine efflux. The present study provides in vivo neuropharmacological evidence that accumbal OX2 - but not OX1 -receptors exert inhibitory regulation of basal accumbal dopamine efflux and that blockade of accumbal OX2 -receptors enhances dopamine efflux in nucleus accumbens of freely moving rats.
Collapse
Affiliation(s)
- Hiroki Kawashima
- Nihon University Graduate School of Dentistry at Matsudo, Oral Molecular Pharmacology, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, Japan
| | - Yuri Aono
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yuriko Watanabe
- Department of Oral surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, St. Stephen's Green, Dublin 2, Ireland
| | - Tadashi Saigusa
- Nihon University Graduate School of Dentistry at Matsudo, Oral Molecular Pharmacology, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, Japan.,Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
3
|
Perez de la Mora M, Hernandez-Mondragon C, Crespo-Ramirez M, Rejon-Orantes J, Borroto-Escuela DO, Fuxe K. Conventional and Novel Pharmacological Approaches to Treat Dopamine-Related Disorders: Focus on Parkinson's Disease and Schizophrenia. Neuroscience 2019; 439:301-318. [PMID: 31349007 DOI: 10.1016/j.neuroscience.2019.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The dopaminergic system integrated by cell groups distributed in several brain regions exerts a modulatory role in brain. Particularly important for this task are the mesencephalic dopamine neurons, which from the substantia nigra and ventral tegmental area project to the dorsal striatum and the cortical/subcortical limbic systems, respectively. Dopamine released from these neurons operates mainly via the short distance extrasynaptic volume transmission and activates five different dopaminergic receptor subtypes modulating synaptic GABA and glutamate transmission. To accomplish this task dopaminergic neurons keep mutual modulating interactions with neurons of other neurotransmitter systems, including allosteric receptor-receptor interactions in heteroreceptor complexes. As a result of its modulatory role dopaminergic mechanisms are involved in either the etiology or physiopathology of many brain diseases such as Parkinsońs disease and schizophrenia. The aim of this work is to review some novel and conventional approaches that either have been used or are currently employed to treat these diseases. Particular attention is paid to the approaches derived from the knowledge recently acquired in the realm of receptor-receptor interactions taking place through multiple dopamine heteroreceptor complexes in the plasma membrane. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Minerva Crespo-Ramirez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Rejon-Orantes
- Pharmacobiology Experimental laboratory, Faculty of Medicine, Universidad Autónoma de Chiapas
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Mitrano DA, Jackson K, Finley S, Seeley A. α1b-Adrenergic Receptor Localization and Relationship to the D1-Dopamine Receptor in the Rat Nucleus Accumbens. Neuroscience 2018; 371:126-137. [PMID: 29229557 PMCID: PMC5809204 DOI: 10.1016/j.neuroscience.2017.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022]
Abstract
The α1-adrenergic receptors (α1ARs) have been implicated in numerous actions of the brain, including attention and wakefulness. Additionally, they have been identified as contributing to disorders of the brain, such as drug addiction, and recent work has shown a role of these receptors in relapse to psychostimulants. While some functionality is known, the actual subcellular localization of the subtypes of the α1ARs remains to be elucidated. Further, their anatomical relationship to receptors for other neurotransmitters, such as dopamine (DA), remains unclear. Therefore, using immunohistochemistry and electron microscopy techniques, this study describes the subcellular localization of the α1b-adrenergic receptor (α1bAR), the subtype most tied to relapse behaviors, as well as its relationship to the D1-dopamine receptor (D1R) in both the shell and core of the rat nucleus accumbens (NAc). Overall, α1bARs were found in unmyelinated axons and axon terminals with some labeling in dendrites. In accordance with other studies of the striatum, the D1R was found mainly in dendrites and spines; therefore, colocalization of the D1R with the α1bAR was rare postsynaptically. However, in the NAc shell, when the receptors were co-expressed in the same neuronal elements there was a trend for both receptors to be found on the plasma membrane, as opposed to the intracellular compartment. This study provides valuable anatomical information about the α1bAR and its relationship to the D1R and the regulation of DA and norepinephrine (NE) neurotransmission in the brain which have been examined previously.
Collapse
Affiliation(s)
- Darlene A Mitrano
- Department of Molecular Biology & Chemistry, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, United States; Program in Neuroscience, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, United States.
| | - Kelsey Jackson
- Department of Molecular Biology & Chemistry, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, United States; Program in Neuroscience, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, United States.
| | - Samantha Finley
- Program in Neuroscience, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, United States.
| | - Allison Seeley
- Program in Neuroscience, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, United States.
| |
Collapse
|
5
|
Stimulation of accumbal GABA A receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol 2017; 815:18-25. [PMID: 28923348 DOI: 10.1016/j.ejphar.2017.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 11/23/2022]
Abstract
The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABAA receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABAA receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABAA receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABAA receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABAA receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABAA receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux.
Collapse
|
6
|
Kiguchi Y, Aono Y, Watanabe Y, Yamamoto-Nemoto S, Shimizu K, Shimizu T, Kosuge Y, Waddington JL, Ishige K, Ito Y, Saigusa T. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol 2016; 789:402-410. [DOI: 10.1016/j.ejphar.2016.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/09/2016] [Accepted: 07/16/2016] [Indexed: 11/16/2022]
|
7
|
Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 2016; 68:282-297. [DOI: 10.1016/j.neubiorev.2016.05.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
|
8
|
Accumbal α-adrenoceptors, but not β-adrenoceptors, regulate behaviour that is mediated by reserpine-sensitive storage vesicles. Behav Pharmacol 2015; 26:81-90. [PMID: 25325287 DOI: 10.1097/fbp.0000000000000098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has previously been demonstrated that mesolimbic α-adrenoceptors, but not β-adrenoceptors, control the release of dopamine that is derived from reserpine-sensitive storage vesicles. The aim of the present study was to investigate whether these storage vesicles also regulate α-adrenoceptor-mediated or β-adrenoceptor-mediated changes in behaviour. Accordingly, rats were pretreated with reserpine before the α-adrenoceptor antagonist phentolamine or the β-adrenoceptor agonist isoproterenol was locally applied to the nucleus accumbens. Both phentolamine and isoproterenol increased the duration of walking, rearing and grooming and decreased the duration of sitting. Reserpine counteracted the behavioural response elicited by phentolamine but not by isoproterenol. The results of the present study demonstrate that mesolimbic α-adrenoceptors, but not β-adrenoceptors, regulate behaviour that is mediated by reserpine-sensitive storage pools. It is hypothesized that the observed α-adrenoceptor-mediated increase in locomotor activity is due to the α-adrenoceptor-mediated increase in the release of accumbal intravesicular dopamine. Our finding that α-adrenoceptors inhibit, whereas β-adrenoceptors stimulate, locomotor activity may help explain why noradrenaline or environmental stressors have previously been found to have opposing effects on the regulation of behaviour.
Collapse
|
9
|
Zhang Y, Qu H, Zhou Y, Wang Y, Zhang D, Yang X, Yang C, Xu M. The involvement of norepinephrine in pain modulation in the nucleus accumbens of morphine-dependent rats. Neurosci Lett 2015; 585:6-11. [DOI: 10.1016/j.neulet.2014.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/29/2022]
|
10
|
Meyer F, Latour J, Cools AR, Verheij MMM. Noradrenaline-induced release of newly-synthesized accumbal dopamine: differential role of alpha- and beta-adrenoceptors. Front Cell Neurosci 2014; 8:243. [PMID: 25309315 PMCID: PMC4162431 DOI: 10.3389/fncel.2014.00243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that intra-accumbens infusion of isoproterenol (ISO), a beta-adrenoceptor-agonist, and phenylephrine (PE), an alpha-adrenoceptor-agonist, increase the release of accumbal dopamine (DA). In the present study we analyzed whether the ISO-induced release of DA is sensitive to pretreatment with the DA synthesis inhibitor alpha-methyl-para-tyrosine (AMPT). Earlier studies have shown that the PE-induced release of DA is derived from DA pools that are resistant to AMPT. In addition to PE, the alpha-adrenoceptor-antagonist phentolamine (PA) was also found to increase accumbal DA release. Therefore, we investigated whether similar to the DA-increasing effect of PE, the DA increase induced by PA is resistant to AMPT. Pretreatment with AMPT prevented the ISO-induced increase of accumbal DA. The accumbal DA increase after PA was not reduced by the DA synthesis inhibitor, independently of the amount of DA released. These results show that mesolimbic beta-, but not alpha-adrenoceptors, control the release of accumbal newly-synthesized DA pools. The DA-increasing effects of PE have previously been ascribed to stimulation of presynaptic receptors located on noradrenergic terminals, whereas the DA-increasing effects of PA and ISO have been ascribed to an action of these drugs at postsynaptic receptors on dopaminergic terminals. The fact that AMPT did not affect the accumbal DA response to PE and PA, whereas it did prevent the accumbal DA increase to ISO, supports our previously reported hypothesis that the noradrenergic neurons of the nucleus accumbens containing presynaptic alpha-adrenoceptors impinge upon the dopaminergic terminals in the nucleus accumbens containing postsynaptic adrenoceptors of the alpha but not of the beta type. The putative therapeutic effects of noradrenergic agents in the treatment of DA-related disorders are shortly discussed.
Collapse
Affiliation(s)
- Francisca Meyer
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Nijmegen, Netherlands
| | - Judith Latour
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | - Alexander R Cools
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | - Michel M M Verheij
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| |
Collapse
|
11
|
Arias AJ, Gelernter J, Gueorguieva R, Ralevski E, Petrakis IL. Pharmacogenetics of naltrexone and disulfiram in alcohol dependent, dually diagnosed veterans. Am J Addict 2014; 23:288-93. [PMID: 24724887 PMCID: PMC4600600 DOI: 10.1111/j.1521-0391.2014.12102.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/19/2013] [Accepted: 06/20/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Disulfiram and naltrexone were evaluated in treatment of individuals with co-occurring alcohol dependence and other Axis I disorders (e.g., Major Depression). We explored pharmacogenetic interactions in genotyped subjects. METHODS Alcohol dependent (AD) subjects received naltrexone alone, placebo alone, disulfiram with placebo or disulfiram with naltrexone. They were genotyped for OPRM1 rs1799971 (Asn40Asp), and DBH rs1611115 (C-1021T). N = 107 male European-American subjects were included. RESULTS There were no significant interactions with OPRM1. DBH interacted with naltrexone on the primary outcome of abstinence from heavy drinking (χ(2) (1) = 5.23, p = .02). "T" allele carriers on naltrexone had more abstinence compared to "CC" subjects on naltrexone (FET, p = .01). "T" allele carriers on naltrexone had the highest overall rates of abstinence from heavy drinking (>90%). Also, DBH genotype interacted with disulfram (F(1,17) = 7.52, p = .01) on drinks per drinking day with less drinking for subjects with the "CC" genotype than for T allele carriers on disulfiram. CONCLUSIONS DBH*rs1611115*T associated with better response to naltrexone, while for those on disulfiram that drank, "CC" subjects drank less than T carriers. For rs1799971*G, we did not replicate findings from previous studies showing a more favorable response to NTX, possibly due to the small available sample. SCIENTIFIC SIGNIFICANCE Genotyping rs1611115 may be useful in understanding inter-individual differences in AD treatment response. FUTURE DIRECTIONS Further study of rs1611115 pharmacogenetics is warranted.
Collapse
Affiliation(s)
- Albert J. Arias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Ralitza Gueorguieva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- Department of Biostatistics, School of Public Health, New Haven , CT
| | - Elizabeth Ralevski
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Ismene L. Petrakis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
12
|
Elman I, Borsook D, Volkow ND. Pain and suicidality: insights from reward and addiction neuroscience. Prog Neurobiol 2013; 109:1-27. [PMID: 23827972 PMCID: PMC4827340 DOI: 10.1016/j.pneurobio.2013.06.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 01/09/2023]
Abstract
Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk.
Collapse
Affiliation(s)
- Igor Elman
- Providence VA Medical Center and Cambridge Health Alliance, Harvard Medical School, 26 Central Street, Somerville, MA 02143, USA.
| | | | | |
Collapse
|
13
|
Kim AK, Souza-Formigoni MLO. Alpha1-adrenergic drugs affect the development and expression of ethanol-induced behavioral sensitization. Behav Brain Res 2013; 256:646-54. [PMID: 24036170 DOI: 10.1016/j.bbr.2013.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND According to the incentive sensitization theory, addiction is caused primarily by drug-induced sensitization in the brain mesocorticolimbic systems. After repeated ethanol administration, some animals develop psychomotor sensitization, a phenomenon which occurs simultaneously with the incentive sensitization. Recent evidence suggests the involvement of norepinephrine (NE) in drug addiction, with a critical role in the ethanol reinforcing properties. In this study we evaluated the influence of an agonist (phenylephrine) and an antagonist (prazosin) of alpha1-adrenergic receptors on the development and expression of behavioral sensitization to ethanol. Male Swiss mice, previously treated with ethanol or saline, were challenged with the combined administration of ethanol (or saline) with alpha1-adrenergic drugs. Prazosin (0.1; 0.5 and 1.0 mg/kg) and phenylephrine (1.0 and 2.0 mg/kg) administration blocked the expression of behavioral sensitization to ethanol. In another set of experiments, mice treated with 0.5mg/kg of prazosin+ethanol did not present the development of behavioral sensitization. However, when challenged with ethanol alone, they showed the same sensitized levels of locomotor activity of those presented by mice previously treated with ethanol and saline. Phenylephrine (1.0 mg/kg) treatment did not affect the development of behavioral sensitization. Based on this data, we concluded that the alteration of alpha1-adrenergic receptors functioning, by the administration agonists or antagonists, affected the locomotor sensitization to the stimulant effect of ethanol, suggesting that the normal functioning of the noradrenergic system is essential to its development and expression.
Collapse
Affiliation(s)
- Andrezza Kyunmi Kim
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Napoleao de Barros, 925, São Paulo 04024-002, Brazil
| | | |
Collapse
|
14
|
Aono Y, Saigusa T, Taguchi H, Uchida T, Takada K, Koshikawa N, Cools AR. Synergistic, but not separate, stimulation of accumbal β1- and β2-adrenoceptors alters the accumbal dopamine efflux in freely moving rats. Eur J Pharmacol 2013; 715:363-9. [DOI: 10.1016/j.ejphar.2013.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
|
15
|
Working mechanism underlying the reduction of the behavioral and accumbal dopamine response to cocaine by α-1-adrenoceptor antagonists. Neuropsychopharmacology 2013; 38:540-1. [PMID: 23322161 PMCID: PMC3547201 DOI: 10.1038/npp.2012.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
The α1 Antagonist Doxazosin Alters the Behavioral Effects of Cocaine in Rats. Brain Sci 2012; 2:619-33. [PMID: 24961263 PMCID: PMC4061810 DOI: 10.3390/brainsci2040619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/26/2012] [Accepted: 11/08/2012] [Indexed: 01/11/2023] Open
Abstract
Medications that target norepinephrine (NE) neurotransmission alter the behavioral effects of cocaine and may be beneficial for stimulant-use disorders. We showed previously that the short-acting, α1-adrenergic antagonist, prazosin, blocked drug-induced reinstatement of cocaine-seeking in rats and doxazosin (DOX), a longer-acting α1 antagonist blocked cocaine’s subjective effects in cocaine-dependent volunteers. To further characterize DOX as a possible pharmacotherapy for cocaine dependence, we assessed its impact on the development and expression of cocaine-induced locomotor sensitization in rats. Rats (n = 6–8) were administered saline, cocaine (COC, 10 mg/kg) or DOX (0.3 or 1.0 mg/kg) alone or in combination for 5 consecutive days (development). Following 10-days of drug withdrawal, all rats were administered COC and locomotor activity was again assessed (expression). COC increased locomotor activity across days indicative of sensitization. The high dose (1.0 mg/kg), but not the low dose (0.3 mg/kg) of DOX significantly decreased the development and expression of COC sensitization. DOX alone did not differ from saline. These results are consistent with studies showing that α1 receptors are essential for the development and expression of cocaine’s behavioral effects. Results also suggest that blockade of both the development and expression of locomotor sensitization may be important characteristics of possible pharmacotherapies for cocaine dependence in humans.
Collapse
|