1
|
Cabral B, Gonçalves TAF, Abreu LS, Andrade AWL, de Azevedo FDLAA, de Castro FD, Tavares JF, Guerra GCB, de Rezende AA, de Medeiros IA, Zucolotto SM. Cardiovascular Effects Induced by Fruit Peels from Passiflora edulis in Hypertensive Rats and Fingerprint Analysis by HPLC-ESI-MSn spectrometry. PLANTA MEDICA 2022; 88:356-366. [PMID: 34344056 DOI: 10.1055/a-1385-8863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hypertension is a chronic disease and a global health problem. Due to its high prevalence, it constitutes the most important risk factor for cardiovascular disease. Fruit peels from Passiflora edulis fo. flavicarpa are rich in bioactive natural compounds that may have action in hypertension. This study aimed to perform a fingerprinting analysis of Passiflora edulis fruit peel extract and evaluate its actions on the cardiovascular system in an in vivo model. The extract was obtained from the dried and powdered fruit peels of Passiflora edulis. Glycoside flavonoids were identified in the extract by HPLC-ESI-MSn. The extract showed a significant hypotensive effect after 28 days of treatment and improved vascular function in the mesenteric artery. This effect was verified by decreased vascular hypercontractility and increased vasorelaxant in response to sodium nitroprusside and acetylcholine. There was also a decrease in endothelial dysfunction, which can be attributed to nitric oxide's increased bioavailability. Thus, we hypothesize that all these effects contributed to a reduction in peripheral vascular resistance, leading to a significant hypotensive effect. These results are novel for fruit peels from P. edulis. Also, there was a decrease in plasma and cardiac malondialdehyde levels and an increase in glutathione, suggesting a reduction in oxidative stress, as well as an increase of anti-inflammatory cytokines such as IL-10 in the plasma. This study demonstrated that the extract can be a new source of raw material to be applied as food or medicine adjuvant for treating hypertension.
Collapse
Affiliation(s)
- Bárbara Cabral
- Research Group on Bioactive Natural Products (PNBio), Laboratory of Pharmacognosy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Lucas Silva Abreu
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Anderson Wilbur Lopes Andrade
- Department of Biophysics and Pharmacology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Francker Duarte de Castro
- Research Group on Bioactive Natural Products (PNBio), Laboratory of Pharmacognosy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Josean Fechine Tavares
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Silvana Maria Zucolotto
- Research Group on Bioactive Natural Products (PNBio), Laboratory of Pharmacognosy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
2
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep 2021; 24:605. [PMID: 34184084 PMCID: PMC8240184 DOI: 10.3892/mmr.2021.12242] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Taurine is a fundamental mediator of homeostasis that exerts multiple roles to confer protection against oxidant stress. The development of hypertension, muscle/neuro‑associated disorders, hepatic cirrhosis, cardiac dysfunction and ischemia/reperfusion are examples of some injuries that are linked with oxidative stress. The present review gives a comprehensive description of all the underlying mechanisms of taurine, with the aim to explain its anti‑oxidant actions. Taurine is regarded as a cytoprotective molecule due to its ability to sustain normal electron transport chain, maintain glutathione stores, upregulate anti‑oxidant responses, increase membrane stability, eliminate inflammation and prevent calcium accumulation. In parallel, the synergistic effect of taurine with other potential therapeutic modalities in multiple disorders are highlighted. Apart from the results derived from research findings, the current review bridges the gap between bench and bedside, providing mechanistic insights into the biological activity of taurine that supports its potential therapeutic efficacy in clinic. In the future, further clinical studies are required to support the ameliorative effect of taurine against oxidative stress.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Demetrios A. Spandidos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
3
|
Di Gregorio E, Miolo G, Saorin A, Muraro E, Cangemi M, Revelant A, Minatel E, Trovò M, Steffan A, Corona G. Radical Hemithoracic Radiotherapy Induces Systemic Metabolomics Changes That Are Associated with the Clinical Outcome of Malignant Pleural Mesothelioma Patients. Cancers (Basel) 2021; 13:cancers13030508. [PMID: 33572739 PMCID: PMC7866164 DOI: 10.3390/cancers13030508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Radical hemithoracic radiotherapy represents a promising new advance in the field of radiation oncology and encouraging results have been achieved in the treatment of malignant pleural mesothelioma patients. This study showed that this radiotherapy modality produces significant changes in serum metabolomics profile mainly affecting arginine and polyamine biosynthesis pathways. Interestingly, individual metabolomics alterations were found associated with the clinical overall survival outcome of the radiotherapy treatment. These results highlight metabolomics profile analysis as a powerful prognostic tool useful to better understand the mechanisms underlying the interpatients variability and to identify patients who may receive the best benefit from this specific radiotherapy treatment. Abstract Radical hemithoracic radiotherapy (RHRT) represents an advanced therapeutic option able to improve overall survival of malignant pleural mesothelioma patients. This study aims to investigate the systemic effects of this radiotherapy modality on the serum metabolome and their potential implications in determining the individual clinical outcome. Nineteen patients undergoing RHRT at the dose of 50 Gy in 25 fractions were enrolled. Serum targeted metabolomics profiles were investigated at baseline and the end of radiotherapy by liquid chromatography and tandem mass spectrometry. Univariate and multivariate OPLS-DA analyses were applied to study the serum metabolomics changes induced by RHRT while PLS regression analysis to evaluate the association between such changes and overall survival. RHRT was found to affect almost all investigated metabolites classes, in particular, the amino acids citrulline and taurine, the C14, C18:1 and C18:2 acyl-carnitines as well as the unsaturated long chain phosphatidylcholines PC ae 42:5, PC ae 44:5 and PC ae 44:6 were significantly decreased. The enrichment analysis showed arginine metabolism and the polyamine biosynthesis as the most perturbed pathways. Moreover, specific metabolic changes encompassing the amino acids and acyl-carnitines resulted in association with the clinical outcome accounting for about 60% of the interpatients overall survival variability. This study highlighted that RHRT can induce profound systemic metabolic effects some of which may have a significant prognostic value. The integration of metabolomics in the clinical assessment of the malignant pleural mesothelioma could be useful to better identify the patients who can achieve the best benefit from the RHRT treatment.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Alberto Revelant
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.R.); (E.M.)
| | - Emilio Minatel
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.R.); (E.M.)
| | - Marco Trovò
- Radiation Oncology Department, Azienda Sanitaria Integrata, 33100 Udine, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
- Correspondence: ; Tel.: +39-0434-659-666
| |
Collapse
|
4
|
Gupta S, Sharma U, Jagannathan NR, Gupta YK. 1 H NMR metabolomic profiling elucidated attenuation of neurometabolic alterations by lercanidipine in MCAo model in rats. J Pharm Pharmacol 2020; 72:816-825. [PMID: 32163186 DOI: 10.1111/jphp.13249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/09/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Stroke is a leading cause of death and disability worldwide with limited therapeutic interventions. The current study explored proton nuclear magnetic resonance spectroscopy (1 H NMR)-based metabolomic approach to elucidate the effect of lercanidipine on neurometabolic alterations in transient model of ischaemic stroke in rats. METHODS In the present investigation, male Wistar rats were subjected to middle cerebral artery occlusion (MCAo) for 2 h followed by reperfusion using intraluminal filament method. Rats were randomly divided into three groups as vehicle-treated sham control, vehicle-treated MCAo control and lercanidipine-treated MCAo. Vehicle or lercanidipine (0.5 mg/kg, i.p.) was administered 120 min post-reperfusion. The rat brain cortex tissues were isolated 24 h post-MCAo and were investigated by 1 H NMR spectroscopy through perchloric extraction method. KEY FINDINGS A total of 23 metabolites were altered significantly after cerebral ischaemic-reperfusion injury in MCAo control as compared to sham control rats. Lercanidipine significantly reduced the levels of valine, alanine, lactate, acetate and tyrosine, while N-acetylaspartate, glutamate, glutamine, aspartate, creatine/phosphocreatine, choline, glycerophosphorylcholine, taurine, myo-inositol and adenosine di-phosphate were elevated as compared to MCAo control. CONCLUSIONS Present study illustrates effect of lercanidipine on neurometabolic alterations which might be mediated through its antioxidant, anti-inflammatory, vasodilatory and anti-apoptotic property in MCAo model of stroke.
Collapse
Affiliation(s)
- Sangeetha Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
5
|
Wen C, Li F, Zhang L, Duan Y, Guo Q, Wang W, He S, Li J, Yin Y. Taurine is Involved in Energy Metabolism in Muscles, Adipose Tissue, and the Liver. Mol Nutr Food Res 2018; 63:e1800536. [DOI: 10.1002/mnfr.201800536] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/13/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Chaoyue Wen
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- Hunan Co‐Innovation Center of Animal Production SafetyCICAPSHunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients Changsha 410128 China
| | - Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Shanping He
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- Hunan Co‐Innovation Center of Animal Production SafetyCICAPSHunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients Changsha 410128 China
| |
Collapse
|
6
|
Ribeiro RA, Bonfleur ML, Batista TM, Borck PC, Carneiro EM. Regulation of glucose and lipid metabolism by the pancreatic and extra-pancreatic actions of taurine. Amino Acids 2018; 50:1511-1524. [PMID: 30206707 DOI: 10.1007/s00726-018-2650-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
The beneficial actions of L-taurine (Tau) against glucose intolerance, obesity, type 2 diabetes (T2D), and non-alcoholic fat liver disease (NAFLD) have been linked to its antioxidant and anti-inflammatory effects, which ameliorate tissue insulin sensitivity. Importantly, there are several lines of evidence that indicate a direct action of Tau on the endocrine pancreas to regulate the secretion and paracrine actions of insulin, glucagon, and somatostatin. Furthermore, Tau can also ameliorate glucose metabolism through the enhancement of insulin signaling. However, some of the benefits of Tau upon intermediary metabolism may manifest via considerable antagonism of the action of insulin. Therefore, this review discusses the mechanisms of action by which Tau may regulate endocrine pancreatic morphofunction, and glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Rosane A Ribeiro
- NUPEM, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Avenida São José do Barreto, 764, Macaé, RJ, CEP: 27965-045, Brazil.
| | - Maria L Bonfleur
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil
| | - Thiago M Batista
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Patricia C Borck
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Everardo M Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
7
|
Gupta S, Upadhayay D, Sharma U, Jagannathan NR, Gupta YK. Citalopram attenuated neurobehavioral, biochemical, and metabolic alterations in transient middle cerebral artery occlusion model of stroke in male Wistar rats. J Neurosci Res 2018; 96:1277-1293. [PMID: 29656429 DOI: 10.1002/jnr.24226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/15/2017] [Accepted: 01/30/2018] [Indexed: 11/08/2022]
Abstract
Oxidative stress and inflammation are implicated as cardinal mechanisms of neuronal death following stroke. In the present study citalopram (Cit) was investigated in a 2 h middle cerebral artery occlusion (MCAo) model of stroke in male Wistar rats. Pretreatment, posttreatment (Post Cit) and pre plus posttreatment (Pre + Post Cit) with Cit were evaluated for its neuroprotective effect. In pretreatment protocol, effect of Cit at three doses (2, 4, and 8 mg/kg) administered i.p., 1 h prior to MCAo was evaluated using neurological deficit score (NDS), motor deficit paradigms, and cerebral infarction 24 h post-MCAo. In posttreatment and pre plus posttreatment protocol, the effective dose of Cit (4 mg/kg) was administered i.p., 0.5 h post-reperfusion (Post Cit) only, and 1 h prior to MCAo and again at 0.5 h post-reperfusion (Pre + Post Cit), respectively. These two groups were assessed for NDS and cerebral infarction. Though NDS was significantly reduced in both Post Cit and Pre + Post Cit groups, significant reduction in cerebral infarction was evident only in Pre + Post Cit group. Infarct volume assessed by magnetic resonance imaging was significantly attenuated in Pre + Post Cit group (10.6 ± 1.1%) compared to MCAo control group (18.5 ± 3.0%). Further, Pre + Post Cit treatment significantly altered 17 metabolites along with attenuation of malondialdehyde, reduced glutathione, matrix metalloproteinases, and apoptotic markers as compared to MCAo control. These results support the neuroprotective effect of Cit, mediated through amelioration of oxidative stress, inflammation, apoptosis, and altered metabolic profile.
Collapse
Affiliation(s)
- Sangeetha Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Deepti Upadhayay
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi-110029, India
| | | | - Yogendra Kumar Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
8
|
Cavdar Z, Ural C, Celik A, Arslan S, Terzioglu G, Ozbal S, Yildiz S, Ergur UB, Guneli E, Camsari T, Akdogan G. Protective effects of taurine against renal ischemia/reperfusion injury in rats by inhibition of gelatinases, MMP-2 and MMP-9, and p38 mitogen-activated protein kinase signaling. Biotech Histochem 2017; 92:524-535. [PMID: 28895768 DOI: 10.1080/10520295.2017.1367033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dysregulated expression of matrix metalloproteinases (MMPs) is closely associated with the pathogenesis of renal ischemia/reperfusion injury (I/R). The production of excessive reactive oxygen species (ROS) causes tissue damage. Increased ROS production causes activation of p38 mitogen-activated protein kinase (MAPK) signaling, which participates in gene regulation of MMPs, especially MMP-2 and MMP-9 (gelatinases). Taurine (2-aminoethanesulfonic acid) in mammalian cells functions in bile acid conjugation, maintenance of calcium homeostasis, osmoregulation, membrane stabilization, and antioxidation, antiinflammatory, and antiapoptotic action. We investigated the effects of taurine and the possible role of p38 MAPK signaling on regulation of MMP-2 and MMP-9 in a renal I/R injury model in rats. Rats were divided into three groups: sham, I/R, and I/R + taurine treated. After a right nephrectomy, I/R was induced by clamping the left renal pedicle for 1 h followed by 6 h reperfusion. Taurine was administered 45 min prior to induction of ischemia. Renal function was assessed by serum creatinine and blood urea nitrogen (BUN) levels. Tubule injury and structural changes were evaluated by light microscopy. Malondialdehyde (MDA) levels were analyzed by high performance liquid chromatography (HPLC). Superoxide dismutase (SOD) activity levels were measured using a colorimetric kit. mRNA expression of MMP-2 and MMP-9 was determined by real-time polymerase chain reaction. MMP-2 and MMP-9 activities were measured using a fluorimetric kit. Phosphorylated p38 (p-p38) and total p38 MAPK protein expressions were evaluated by western blot. Taurine pretreatment significantly attenuated renal dysfunction and histologic damage, such as renal tubule dilation and loss of brush borders. The pretreatment also decreased the MDA level and attenuated the reduction of SOD activity in the kidney during I/R. Taurine pretreatment also decreased significantly both MMP-2 and MMP-9 mRNA expression and MMP-9 activity induced by I/R. In addition, the activity of p38 MAPK signaling was down-regulated significantly by taurine administration. Inhibition of MMP-2 and MMP-9 expression and MMP-9 activity caused by taurine may be associated with suppression of p38 MAPK activation during I/R induced renal injury in rats. Therefore, taurine administration may prove to be a strategy for attenuating renal I/R injury.
Collapse
Affiliation(s)
- Z Cavdar
- a Department of Molecular Medicine , Health Sciences Institute, Dokuz Eylul University , Izmir
| | - C Ural
- a Department of Molecular Medicine , Health Sciences Institute, Dokuz Eylul University , Izmir
| | - A Celik
- b Department of Laboratory Animal Science , Health Sciences Institute, Dokuz Eylul University , Izmir
| | - S Arslan
- c Department of Biology, Faculty of Science , Pamukkale University , Denizli
| | - G Terzioglu
- c Department of Biology, Faculty of Science , Pamukkale University , Denizli
| | - S Ozbal
- d Department of Histology and Embryology , Faculty of Medicine, Dokuz Eylul University , Izmir
| | - S Yildiz
- e Department of Nephrology, Faculty of Medicine , Dokuz Eylul University , Izmir
| | - U B Ergur
- d Department of Histology and Embryology , Faculty of Medicine, Dokuz Eylul University , Izmir
| | - E Guneli
- b Department of Laboratory Animal Science , Health Sciences Institute, Dokuz Eylul University , Izmir
| | - T Camsari
- e Department of Nephrology, Faculty of Medicine , Dokuz Eylul University , Izmir
| | - G Akdogan
- f School of Medicine , Izmir University of Economics , Izmir , Turkey
| |
Collapse
|
9
|
Role of ROS Production and Turnover in the Antioxidant Activity of Taurine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:581-96. [PMID: 25833529 DOI: 10.1007/978-3-319-15126-7_47] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Mazumder MK, Bhattacharya P, Borah A. Inhibition of matrix metalloproteinase-2 and 9 by Piroxicam confer neuroprotection in cerebral ischemia: An in silico evaluation of the hypothesis. Med Hypotheses 2014; 83:697-701. [DOI: 10.1016/j.mehy.2014.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/27/2014] [Accepted: 09/24/2014] [Indexed: 01/19/2023]
|
11
|
Study of the correlations among some parameters of the oxidative status, gelatinases, and their inhibitors in a group of subjects with metabolic syndrome. Mediators Inflamm 2014; 2014:510619. [PMID: 25114377 PMCID: PMC4121250 DOI: 10.1155/2014/510619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022] Open
Abstract
Our aim was to examine some parameters of oxidative status, gelatinases, and their inhibitors and to evaluate their interrelationships in subjects with metabolic syndrome (MS). We enrolled 65 MS subjects, subdivided according to the presence or not of diabetes mellitus. We examined lipid peroxidation (expressed as thiobarbituric acid reacting substances, TBARS), protein oxidation (expressed as carbonyl groups), nitric oxide metabolites (NOx), total antioxidant status (TAS), MMP-2, MMP-9, TIMP-1, and TIMP-2. We found that MS subjects, diabetics and nondiabetics, showed an increase in TBARS, PC, and NOx. A significant decrease in TAS was observed only in nondiabetic MS subjects in comparison with diabetic MS subjects. We observed increased concentrations of MMP-2, MMP-9, TIMP-1, and TIMP-2, higher in diabetic subjects. Our data showed a positive correlation between TAS and MMP-2, TAS and MMP-9, and TAS and MMP-9/TIMP-1 and a negative correlation between TBARS and MMP-2 in diabetic MS subjects in the entire group. In MS subjects a prooxidant status and increased levels of gelatinases and their inhibitors are evident although the correlations between oxidative stress and MMPs or TIMPs are controversial and need further investigation.
Collapse
|
12
|
Zhen J, Qu Z, Fang H, Fu L, Wu Y, Wang H, Zang H, Wang W. Effects of grape seed proanthocyanidin extract on pentylenetetrazole-induced kindling and associated cognitive impairment in rats. Int J Mol Med 2014; 34:391-8. [PMID: 24912930 PMCID: PMC4094588 DOI: 10.3892/ijmm.2014.1796] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/13/2014] [Indexed: 01/01/2023] Open
Abstract
Numerous studies have demonstrated the antioxidant effects of grape seed proanthocyanidin extract (GSPE). The generation of free radicals and the ensuing apoptosis may contribute to the pathogenesis of epilepsy; therefore, in the present study, we examined the effects of GSPE on cognitive impairment and neuronal damage induced by chronic seizures in rats. Seizures were induced by a daily intraperitoneal (i.p.) injection of pentylenetetrazole (PTZ; 35 mg/kg/day, 36 days). Two other groups were treated with GSPE (100 or 200 mg/kg/day, orally) for 24 days and then for 36 days prior to each PTZ injection. After the final PTZ injection, hippocampus-dependent spatial learning was assessed using the Morris water maze (MWM). The rats were then sacrificed for the measurement of hippocampal malondialdehyde (MDA, a measure of lipid peroxidation) and glutathione (GSH, a measure of endogenous antioxidant capacity) levels, and for the expression of pro-apoptotic factors [cytochrome c (Cyt c), caspase‑9 and caspase‑3]. The mitochondrial generation of reactive oxygen species (ROS), degree of mitochondrial swelling, neuronal damage and mitochondrial ultrastructure were also examined. Performance in the MWM was markedly impaired by PTZ-induced seizures, as evidenced by longer escape latencies during training and fewer platform crossings during the probe trial. This cognitive decline was accompanied by oxidative stress (MDA accumulation, ROS generation, reduced GSH activity), an increased expression of pro-apoptotic proteins, as well as damage to CA1 pyramidal neurons and the mitochondria. Pre-treatment with GSPE dose‑dependently reversed PTZ-induced impaired performance in the MWM, oxidative stress, mitochondrial ROS generation, the expression of pro-apoptotic proteins and neuronal and mitochondrial damage. Thus, GSPE may reverse the hippocampal dysfunction induced by chronic seizures, by reducing oxidative stress and preserving mitochondrial function.
Collapse
Affiliation(s)
- Junli Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhenzhen Qu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Haibo Fang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lan Fu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yupeng Wu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hongchao Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hongmin Zang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
13
|
Kim YA, Kim MY, Jung YS. Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ. Biomol Ther (Seoul) 2013; 21:358-63. [PMID: 24244823 PMCID: PMC3825199 DOI: 10.4062/biomolther.2013.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023] Open
Abstract
In the present study, we investigated the effect of intracellular glutathione (GSH) depletion in heart-derived H9c2 cells and its mechanism. L-buthionine-S,R-sulfoximine (BSO) induced the depletion of cellular GSH, and BSO-induced reactive oxygen species (ROS) production was inhibited by glutathione monoethyl ester (GME). Additionally, GME inhibited BSO-induced caspase-3 activation, annexin V-positive cells, and annexin V-negative/propidium iodide (PI)-positive cells. Treatment with rottlerin completely blocked BSO-induced cell death and ROS generation. BSO-induced GSH depletion caused a translocation of PKC-δ from the cytosol to the membrane fraction, which was inhibited by treatment with GME. From these results, it is suggested that BSO-induced depletion of cellular GSH causes an activation of PKC-δ and, subsequently, generation of ROS, thereby inducing H9c2 cell death.
Collapse
Affiliation(s)
- Young-Ae Kim
- Department of Pathophysiology, College of Pharmacy ; Brain Korea 21 for Molecular Science and Technology
| | | | | |
Collapse
|