1
|
Yang F, Zhang XL, Liu HH, Qian LL, Wang RX. Post translational modifications of connexin 43 in ventricular arrhythmias after myocardial infarction. Mol Biol Rep 2024; 51:329. [PMID: 38393658 DOI: 10.1007/s11033-024-09290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Lu Zhang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Martins-Marques T, Catarino S, Gonçalves A, Miranda-Silva D, Gonçalves L, Antunes P, Coutinho G, Leite Moreira A, Falcão Pires I, Girão H. EHD1 Modulates Cx43 Gap Junction Remodeling Associated With Cardiac Diseases. Circ Res 2020; 126:e97-e113. [PMID: 32138615 DOI: 10.1161/circresaha.119.316502] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Efficient communication between heart cells is vital to ensure the anisotropic propagation of electrical impulses, a function mainly accomplished by gap junctions (GJ) composed of Cx43 (connexin 43). Although the molecular mechanisms remain unclear, altered distribution and function of gap junctions have been associated with acute myocardial infarction and heart failure. OBJECTIVE A recent proteomic study from our laboratory identified EHD1 (Eps15 [endocytic adaptor epidermal growth factor receptor substrate 15] homology domain-containing protein 1) as a novel interactor of Cx43 in the heart. METHODS AND RESULTS In the present work, we demonstrate that knockdown of EHD1 impaired the internalization of Cx43, preserving gap junction-intercellular coupling in cardiomyocytes. Interaction of Cx43 with EHD1 was mediated by Eps15 and promoted by phosphorylation and ubiquitination of Cx43. Overexpression of wild-type EHD1 accelerated internalization of Cx43 and exacerbated ischemia-induced lateralization of Cx43 in isolated adult cardiomyocytes. In addition, we show that EHDs associate with Cx43 in human and murine failing hearts. CONCLUSIONS Overall, we identified EHDs as novel regulators of endocytic trafficking of Cx43, participating in the pathological remodeling of gap junctions, paving the way to innovative therapeutic strategies aiming at preserving intercellular communication in the heart.
Collapse
Affiliation(s)
- Tania Martins-Marques
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Steve Catarino
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Alexandre Gonçalves
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Daniela Miranda-Silva
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Lino Gonçalves
- Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Pedro Antunes
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.).,Cardiothoracic Surgery (P.A., G.C.), Coimbra Hospital and University Centre, Portugal
| | - Gonçalo Coutinho
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.).,Cardiothoracic Surgery (P.A., G.C.), Coimbra Hospital and University Centre, Portugal
| | - Adelino Leite Moreira
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Inês Falcão Pires
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Henrique Girão
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| |
Collapse
|
3
|
Sugita J, Fujiu K. Emerging Function of Cardiac Macrophages Ushers in a New Era for the Electrophysiology of the Heart. Circ Rep 2019; 1:558-563. [PMID: 33693101 PMCID: PMC7897688 DOI: 10.1253/circrep.cr-19-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Maintaining a coordinated heart rhythm is essential for maintaining the heart’s pumping function and blood circulation. Every heartbeat is generated by electrical impulse propagation that is passing through gap junctions, which are composed of connexin proteins. In mammalian hearts, Cx43, Cx40, Cx45, and Cx30.2 are expressed and regulated by post-translational modification. Cardiac macrophages account for only a small number of total heart cells, but they reside all around the heart. They are primarily established prenatally, and they arise from embryonic yolk sac progenitors. Recently, increasing attention has been directed toward novel roles for cardiac resident macrophages, especially in the heart’s electrical impulse conduction. Here, we provide an overview of the recent findings on connexins, with a focus on the emerging function of cardiac macrophages, and we discuss the future directions of treatment for heart disease.
Collapse
Affiliation(s)
- Junichi Sugita
- Department of Cardiovascular Medicine, the University of Tokyo Tokyo Japan
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo Tokyo Japan.,Department of Advanced Cardiology, the University of Tokyo Tokyo Japan
| |
Collapse
|
4
|
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130:3619-3630. [PMID: 29025971 DOI: 10.1242/jcs.200667] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandrine Morel
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Brenda R Kwak
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal .,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment. Int J Mol Sci 2017; 18:ijms18102121. [PMID: 29019935 PMCID: PMC5666803 DOI: 10.3390/ijms18102121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
The use of Doxorubicin (DOXO), a potent antineoplastic agent, is limited by the development of cardiotoxicity. DOXO-induced cardiotoxicity is multifactorial, although alterations in calcium homeostasis, seem to be involved. Since even the Connexin43 (Cx43) plays a pivotal role in these two phenomena, in this study we have analyzed the effects of DOXO on Cx43 expression and localization. Damage caused by anthracyclines on cardiomyocytes is immediate after each injection, in the present study we used a short-term model of DOXO-induced cardiomyopathy. C57BL/6j female mice were randomly divided in groups and injected with DOXO (2 or 10 mg/kg i.p.) for 1–3 or 7 days once every other day. Cardiac function was assessed by Echocardiography. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCAII) and phospholamban (PLB) expression were assessed by Western blot analysis, intracellular [Ca2+] were detected spectrofluorometrically by means of Fura-2 pentakis (acetoxymethyl) ester (FURA-2AM), and Cx43 and pCx43 expression and localization was analyzed by Western blot and confirmed by immunofluorescence analysis. DOXO induces impairment in Ca2+ homeostasis, already evident after a single administration, and affects Cx43 expression and localization. Our data suggest that DOXO-induced alterations in Ca2+ homeostasis causes in the cells the induction of compensatory mechanisms until a certain threshold, above which cardiac injury is triggered.
Collapse
|
6
|
Abstract
Doxorubicin is the highly effective anthracycline, but its clinical use is limited by cardiotoxicity and consequent dysfunction. It has been proposed that the etiology of this is related to mitochondrial dysfunction. Connexin 43 (Cx43), the principal protein building block of cardiac gap junctions and hemichannels, plays an important role in cardioprotection. Recent reports confirmed the presence of Cx43 in the mitochondria as well. In this study, the role of mitochondrial Cx43 was evaluated 3 or 6 h after Doxorubicin administration to the rat heart cell line H9c2. Pharmacological inhibition of Hsp90 demonstrated that the mitochondrial Cx43 conferred cardioprotection by reducing cytosolic and mitochondrial reactive oxygen species production, mitochondrial calcium overload and mitochondrial membrane depolarization and cytochrome c release. In conclusion, our study demonstrates that Cx43 plays an important role in the protection of cardiac cells from Doxorubicin-induced toxicity.
Collapse
|
7
|
Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 2015; 768:71-6. [PMID: 26499977 DOI: 10.1016/j.ejphar.2015.10.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022]
Abstract
Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized.
Collapse
Affiliation(s)
| | | | - Pinto Aldo
- Department of Pharmacy, University of Salerno, Italy
| | - Popolo Ada
- Department of Pharmacy, University of Salerno, Italy.
| |
Collapse
|
8
|
Abstract
The main function of the heart is to pump blood to the different parts of the organism, a task that is efficiently accomplished through proper electric and metabolic coupling between cardiac cells, ensured by gap junctions (GJ). Cardiomyocytes are the major cell population in the heart, and as cells with low mitotic activity, are highly dependent upon mechanisms of protein degradation. In the heart, both the ubiquitin-proteasome system (UPS) and autophagy participate in the fine-tune regulation of cardiac remodelling and function, either in physiological or pathological conditions. Indeed, besides controlling cardiac signalling pathways, UPS and autophagy have been implicated in the turnover of several myocardial proteins. Degradation of Cx43, the major ventricular GJ protein, has been associated to up-regulation of autophagy at the onset of heart ischemia and ischemia/reperfusion (I/R), which can have profound implications upon cardiac function. In this review, we present recent studies devoted to the involvement of autophagy and UPS in heart homoeostasis, with a particular focus on GJ.
Collapse
|
9
|
Jones SA, Lancaster MK. Progressive age-associated activation of JNK associates with conduction disruption in the aged atrium. Mech Ageing Dev 2015; 146-148:72-80. [PMID: 25956603 PMCID: PMC4461009 DOI: 10.1016/j.mad.2015.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 12/19/2022]
Abstract
Guinea pig atria from multiple ages ranging from neonate to old age were compared. Action potential conduction velocity showed a significant reduction in advanced age. Connexin43 protein reduced dramatically in the right atria with increasing age. An age-dependent rise in activated-JNK correlated with a rise in phosphorylated Cx43. JNK signalling is a mediator of gap junctional remodelling with increased age.
Connexin43 (Cx43) is critical for maintaining electrical conduction across atrial muscle. During progressive ageing atrial conduction slows associating with increasing susceptibility to arrhythmias. Changes in Cx43 protein expression, or its phosphorylation status, can instigate changes in the conduction of the cardiac action potential. This study investigated whether increased levels of activated c-jun N-terminal kinase (JNK) is responsible for the decline of Cx43 during ageing. Right atria from guinea pigs aged between 1 day and 38 months of age were examined. The area of the intercalated disc increased with age concurrent with a 75% decline in C43 protein expression. An age-dependent increase in activated-JNK correlated with a rise in phosphorylated Cx43, but also slowing of action potential conduction velocity across the atria from 0.38 ± 0.01 m/s at 1 month of age to 0.30 ± 0.01 m/s at 38 months. The JNK activator anisomycin increased activated JNK in myocytes and reduced Cx43 protein expression simulating ageing. The JNK inhibitor SP600125, was found to eradicate almost all trace of Cx43 protein. We conclude that in vivo activation of JNK increases with age leading to the loss of Cx43 protein resulting in impaired conduction and contributing to the increasing risk of atrial arrhythmias with advancing age.
Collapse
Affiliation(s)
- Sandra A Jones
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Kingston-upon-Hull, HU6 7RX, UK.
| | | |
Collapse
|
10
|
Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie 2015; 112:196-201. [DOI: 10.1016/j.biochi.2015.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
|
11
|
Del Ry S, Moscato S, Bianchi F, Morales MA, Dolfi A, Burchielli S, Cabiati M, Mattii L. Altered expression of connexin 43 and related molecular partners in a pig model of left ventricular dysfunction with and without dipyrydamole therapy. Pharmacol Res 2015; 95-96:92-101. [PMID: 25836920 DOI: 10.1016/j.phrs.2015.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/14/2023]
Abstract
Gap junctions (GJ) mediate electrical coupling between cardiac myocytes, allowing the spreading of the electrical wave responsible for synchronized contraction. GJ function can be regulated by modulation of connexon densities on membranes, connexin (Cx) phosphorylation, trafficking and degradation. Recent studies have shown that adenosine (A) involves Cx43 turnover in A1 receptor-dependent manner, and dipyridamole increases GJ coupling and amount of Cx43 in endothelial cells. As the abnormalities in GJ organization and regulation have been described in diseased myocardium, the aim of the present study was to assess the regional expression of molecules involved in GJ regulation in a model of left ventricular dysfunction (LVD). For this purpose the distribution and quantitative expression of Cx43, its phosphorylated form pS368-Cx43, PKC phosphorylated substrates, RhoA and A receptors, were investigated in experimental models of right ventricular-pacing induced LVD, undergoing concomitant dipyridamole therapy or placebo, and compared with those obtained in the myocardium from sham-operated minipigs. Results demonstrate that an altered pattern of factors involved in Cx43-made GJ regulation is present in myocardium of a dysfunctioning left ventricle. Furthermore, dipyridamole treatment, which shows a mild protective role on left ventricular function, seems to act through modulating the expression and activation of these factors as confirmed by in vitro experiments on cardiomyoblastic cell line H9c2 cells.
Collapse
Affiliation(s)
- Silvia Del Ry
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Stefania Moscato
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | - Francesco Bianchi
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | - Maria Aurora Morales
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Amelio Dolfi
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | | | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Letizia Mattii
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Hammer KP, Ljubojevic S, Ripplinger CM, Pieske BM, Bers DM. Cardiac myocyte alternans in intact heart: Influence of cell-cell coupling and β-adrenergic stimulation. J Mol Cell Cardiol 2015; 84:1-9. [PMID: 25828762 DOI: 10.1016/j.yjmcc.2015.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiac alternans are proarrhythmic and mechanistically link cardiac mechanical dysfunction and sudden cardiac death. Beat-to-beat alternans occur when beats with large Ca(2+) transients and long action potential duration (APD) alternate with the converse. APD alternans are typically driven by Ca(2+) alternans and sarcoplasmic reticulum (SR) Ca(2+) release alternans. But the effect of intercellular communication via gap junctions (GJ) on alternans in the intact heart remains unknown. OBJECTIVE We assessed the effects of cell-to-cell coupling on local alternans in intact Langendorff-perfused mouse hearts, measuring single myocyte [Ca(2+)] alternans synchronization among neighboring cells, and effects of β-adrenergic receptor (β-AR) activation and reduced GJ coupling. METHODS AND RESULTS Mouse hearts (C57BL/6) were retrogradely perfused and loaded with Fluo8-AM to record cardiac myocyte [Ca(2+)] in situ with confocal microscopy. Single cell resolution allowed analysis of alternans within the intact organ during alternans induction. Carbenoxolone (25 μM), a GJ inhibitor, significantly increased the occurrence and amplitude of alternans in single cells within the intact heart. Alternans were concordant between neighboring cells throughout the field of view, except transiently during onset. β-AR stimulation only reduced Ca(2+) alternans in tissue that had reduced GJ coupling, matching effects seen in isolated myocytes. CONCLUSIONS Ca(2+) alternans among neighboring myocytes is predominantly concordant, likely because of electrical coupling between cells. Consistent with this, partial GJ uncoupling increased propensity and amplitude of Ca(2+) alternans, and made them more sensitive to reversal by β-AR activation, as in isolated myocytes. Electrical coupling between myocytes may thus limit the alternans initiation, but also allow alternans to be more stable once established.
Collapse
Affiliation(s)
- Karin P Hammer
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| | - Senka Ljubojevic
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8010 Graz, Austria.
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| | - Burkert M Pieske
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8010 Graz, Austria; Department of Cardiology, Charité - Medical University Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany.
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| |
Collapse
|
13
|
Shan H, Wei J, Zhang M, Lin L, Yan R, Zhang R, Zhu YH. Suppression of PKCε-mediated mitochondrial connexin 43 phosphorylation at serine 368 is involved in myocardial mitochondrial dysfunction in a rat model of dilated cardiomyopathy. Mol Med Rep 2015; 11:4720-6. [PMID: 25625661 DOI: 10.3892/mmr.2015.3260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 01/02/2015] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial connexin 43 (Cx43) is important in cardioprotection by ischemic preconditioning; however, whether mitochondrial Cx43 is involved in mitochondrial dysfunction in the pathogenesis of dilated cardiomyopathy (DCM) remains to be elucidated. The present study was performed to investigate the changes in expression and the phosphorylation state of mitochondrial Cx43 in a rat model of DCM, and to determine whether the altered phosphorylation state of mitochondrial Cx43 was involved in mitochondrial dysfunction. A rat model of DCM was generated by daily oral administration of furazolidone (FZD) for 30 weeks. Reverse transcription polymerase chain reaction and western blot analysis revealed a decrease in the overall expression of Cx43, accompanied by reduced levels of serine 368‑phosphorylated‑Cx43 immunoreactivity in the myocardium and myocardial mitochondria. In addition, the mitochondrial membrane potential and the activities of cytochrome c oxidase, succinate dehydrogenase and protein kinase C (PKC) ε were all significantly reduced compared with those of the control group. Phorbol‑12‑myristate‑13‑acetate (PMA), a specific PKC activator, partially reversed the FZD‑induced mitochondrial Cx43 dephosphorylation at serine 368 and mitochondrial dysfunction in the cardiomyocytes. However, pretreatment with 18β‑glycerrhetinic acid, a connexin channel inhibitor, eliminated the mitochondrial protective effect of PMA in the cardiomyocytes sparsely plated without cell to cell contact. These results suggested that dephosphorylation of mitochondrial Cx43 at serine 368, due to the suppression of PKCε activity, may be a novel mechanism for mitochondrial dysfunction in the pathogenesis of DCM.
Collapse
Affiliation(s)
- Hu Shan
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Lin Lin
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Rui Yan
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Rong Zhang
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yan-He Zhu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
14
|
Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M, Patterson C. The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol 2013; 71:43-53. [PMID: 24262338 DOI: 10.1016/j.yjmcc.2013.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/13/2023]
Abstract
Rigorous surveillance of protein quality control is essential for the maintenance of normal cardiac function, while the dysregulation of protein turnover is present in a diverse array of common cardiac diseases. Central to the protein quality control found in all cells is the ubiquitin proteasome system (UPS). The UPS plays a critical role in protein trafficking, cellular signaling, and most prominently, protein degradation. As ubiquitin ligases (E3s) control the specificity of the UPS, their description in the cardiomyocyte has highlighted how ubiquitin ligases are critical to the turnover and function of the sarcomere complex, responsible for the heart's required continuous contraction. In this review, we provide an overview of the UPS, highlighting a comprehensive overview of the cardiac ubiquitin ligases identified to date. We then focus on recent studies of new cardiac ubiquitin ligases outlining their novel roles in protein turnover, cellular signaling, and the regulation of mitochondrial dynamics and receptor turnover in the pathophysiology of cardiac hypertrophy, cardiac atrophy, myocardial infarction, and heart failure. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Ariana Bevilacqua
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, NB, Canada
| | - Petra Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, NB, Canada
| | - Manasi Tannu
- College of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cam Patterson
- Departments of Cell and Developmental Biology, Medicine (Cardiology), and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|