1
|
Liu T, Zhang R, Jiang L, Zhou L, Zhang H, Liang F, Xiong P, Chen H, Wen T, Shen X, Xie C, Tian L. The potential application and molecular mechanisms of natural products in the treatment of allergic rhinitis: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155663. [PMID: 38759345 DOI: 10.1016/j.phymed.2024.155663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUNDS Allergic rhinitis (AR) is a non-infectious chronic inflammation of the nasal mucosa mainly mediated by immunoglobulin E (IgE) in atopic individuals after exposure to allergens. The application of AR guideline-recommended pharmacotherapies can rapidly relieve symptoms of AR but with poor long-term efficacy, and many of these therapies have side effects. Many natural products and their derivatives have shown potential therapeutic effects on AR with fewer side effects. OBJECTIVES This review aims to expand understanding of the roles and mechanisms of natural compounds in the treatment of AR and to highlight the importance of utilizing natural products in the treatment of AR. MATERIAL AND METHOD We conducted a systematic literature search using PubMed, Web of Science, Google Scholar, and Clinical Trials. The search was performed using keywords including natural products, natural compounds, bioproducts, plant extracts, naturally derived products, natural resources, allergic rhinitis, hay fever, pollinosis, nasal allergy. Comprehensive research and compilation of existing literature were conducted. RESULTS This article provided a comprehensive review of the potential therapeutic effects and mechanisms of natural compounds in the treatment of AR. We emphasized that natural products primarily exert their effects by modulating signalling pathways such as NF-κB, MAPKs, STAT3/ROR-γt/Foxp3, and GATA3/T-bet, thereby inhibiting the activation and expansion of allergic inflammation. We also discussed their toxicity and clinical applications in AR therapy. CONCLUSION Taken together, natural products exhibit great potential in the treatment of AR. This review is also expected to facilitate the application of natural products as candidates for treating AR. Furthermore, drug discovery based on natural products has a promising prospect in AR treatment.
Collapse
Affiliation(s)
- Ting Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Rong Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Luyun Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Li Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Hai Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fangqi Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Peizheng Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hongqing Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tian Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Li Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| |
Collapse
|
2
|
Nagata K, Araumi S, Ando D, Ito N, Ando M, Ikeda Y, Takahashi M, Noguchi S, Yasuda Y, Nakano N, Ando T, Hara M, Yashiro T, Hachisu M, Nishiyama C. Kaempferol Suppresses the Activation of Mast Cells by Modulating the Expression of FcεRI and SHIP1. Int J Mol Sci 2023; 24:ijms24065997. [PMID: 36983066 PMCID: PMC10059252 DOI: 10.3390/ijms24065997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In the present study, we evaluated the effects of kaempferol on bone marrow-derived mast cells (BMMCs). Kaempferol treatment significantly and dose-dependently inhibited IgE-induced degranulation, and cytokine production of BMMCs under the condition that cell viability was maintained. Kaempferol downregulated the surface expression levels of FcεRI on BMMCs, but the mRNA levels of FcεRIα, β, and γ-chains were not changed by kaempferol treatment. Furthermore, the kaempferol-mediated downregulation of surface FcεRI on BMMCs was still observed when protein synthesis or protein transporter was inhibited. We also found that kaempferol inhibited both LPS- and IL-33-induced IL-6 production from BMMCs, without affecting the expression levels of their receptors, TLR4 and ST2. Although kaempferol treatment increased the protein amount of NF-E2-related factor 2 (NRF2)-a master transcription factor of antioxidant stress-in BMMCs, the inhibition of NRF2 did not alter the suppressive effect of kaempferol on degranulation. Finally, we found that kaempferol treatment increased the levels of mRNA and protein of a phosphatase SHIP1 in BMMCs. The kaempferol-induced upregulation of SHIP1 was also observed in peritoneal MCs. The knockdown of SHIP1 by siRNA significantly enhanced IgE-induced degranulation of BMMCs. A Western blotting analysis showed that IgE-induced phosphorylation of PLCγ was suppressed in kaempferol-treated BMMCs. These results indicate that kaempferol inhibited the IgE-induced activation of BMMCs by downregulating FcεRI and upregulating SHIP1, and the SHIP1 increase is involved in the suppression of various signaling-mediated stimulations of BMMCs, such as those associated with TLR4 and ST2.
Collapse
Affiliation(s)
- Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Sanae Araumi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Daisuke Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuki Ikeda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Miki Takahashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Sakura Noguchi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yayoi Yasuda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
3
|
Li H, Zhang H, Zhao H. Apigenin attenuates inflammatory response in allergic rhinitis mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:253-265. [PMID: 36350155 DOI: 10.1002/tox.23699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is an immunoglobulin E (IgE)-mediated immune inflammatory response that mainly affects the nasal mucosa. Currently, there is evidence that apigenin, as a flavonoid, has anti-allergic potential. MATERIAL/METHODS In vitro, compound 48/80 and lipopolysaccharide (LPS) were used to induce mast cell activation and inflammation in HMC-1 cells. In vivo, ovalbumin (OVA) induced and stimulated AR in BALB/c mice. ELISA was used to detect the contents of β-hexosaminidase, histamine, eosinophil cationic protein (ECP), OVA-specific IgE, IgG1, and IgG2a, inflammatory factors in cells and mouse serum. Cell viability and apoptosis were measured with MTT and flow cytometry. Toll like receptor 4 (TLR4)/myeloid differentiation factor88 (MyD88)/Nuclear transcription factor-κB (NF-κB) pathway-related proteins in cells and mouse nasal mucosa tissues were analyzed with Western blotting. The levels of Th1 (IFN-γ) and Th2 (IL-4, IL-5, and IL-13) cytokines and Th1 (T-bet) and Th2 (GATA-3) specific transcription factors were also assessed. The ratio of Th1 (CD4+ IFN-γ+ ) / Th2 (CD4+ IL-4+ ) cells in mouse peripheral blood mononuclear cells was evaluated by flow cytometry. RESULTS Apigenin significantly inhibited compound 48/80-induced secretion of β-hexosaminidase and histamine. Apigenin blocked LPS-induced decrease in cell viability and increase in cell apoptosis and inflammatory cytokine secretion by suppressing the activity of the TLR4/MyD88/NF-κB pathway. Apigenin treatment reduced the levels of OVA-specific IgE, IgG1 and IgG2a as well as β-hexosaminidase, histamine and ECP levels in mouse serum. Moreover, administration with apigenin decreased Th2 cytokine and transcription factor levels and increased Th1 cytokine and transcription factor levels, and promoted the ratio of Th1/Th2 cells in AR mice. Additionally, apigenin significantly alleviated nasal symptoms and nasal eosinophil infiltration in AR mice. CONCLUSIONS Apigenin alleviates the inflammatory response of allergic rhinitis by inhibiting the activity of the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huajing Li
- Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hua Zhao
- Department of Pharmacy, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Shaanxi Provincial Cancer Hospital, Xi'an, China
| |
Collapse
|
4
|
Qi LJ, Wang RZ, Gao S, Chen XJ, Zhang X, Zhang YP. Molecular Mechanisms Underlying the Effects of Bimin Kang Mixture on Allergic Rhinitis: Network Pharmacology and RNA Sequencing Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7034078. [PMID: 36337846 PMCID: PMC9635970 DOI: 10.1155/2022/7034078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Background Allergic rhinitis (AR) is a highly prevalent chronic inflammatory disease of the respiratory tract. Previous studies have demonstrated that Bimin Kang Mixture (BMK) is effective in alleviating AR symptoms and reducing the secretion of inflammatory factors and mucin; however, the precise mechanisms underlying these effects remain unclear. Methods We built target networks for each medication component using a network pharmacology technique and used RNA-seq transcriptome analysis to screen differentially expressed genes (DEGs) for AR patients and control groups. The overlapping targets in the two groups were assessed using PPI networks, GO, and KEGG enrichment analyses. The binding ability of essential components to dock with hub target genes was investigated using molecular docking. Finally, we demonstrate how BMK can treat AR by regulating the NF-κB signaling pathway through animal experiments. Results Effective targets from network pharmacology were combined with DEGs from RNA-seq, with 20 intersections as key target genes. The construction of the PPI network finally identified 5 hub target genes, and all hub target genes were in the NF-κB signaling pathway. Molecular docking suggests that citric acid, deoxyandrographolide, quercetin, luteolin, and kaempferol are structurally stable and can spontaneously attach to IL-1β, CXCL2, CXCL8, CCL20, and PTGS2 receptors. Animal experiments have shown that BMK inhibits NF-κB transcription factor activation, reduces the expression of proinflammatory cytokines and chemokines IL-1β, CXCL2, IL-8, and COX-2, and exerts anti-inflammatory and anti-allergic effects. Conclusion BMK by regulating the NF-κB signaling pathway improves inflammatory cell infiltration, regulates mucosal immune balance, and reduces airway hypersensitivity. These findings provide theoretical support for the clinical efficacy of BMK for AR treatment.
Collapse
Affiliation(s)
- Li-Jie Qi
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Ren-Zhong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Shang Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xiang-Jing Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xin Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Yi-Peng Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| |
Collapse
|
5
|
Sun J, Dong S, Li J, Zhao H. A comprehensive review on the effects of green tea and its components on the immune function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
7
|
Effects of Allium cepa and Its Constituents on Respiratory and Allergic Disorders: A Comprehensive Review of Experimental and Clinical Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5554259. [PMID: 34552650 PMCID: PMC8452398 DOI: 10.1155/2021/5554259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
The health benefits of Allium cepa (A. cepa) have been proclaimed for centuries. Various pharmacological and therapeutic effects on respiratory, allergic, and immunologic disorders are shown by A. cepa and its constituents. Flavonoids such as quercetin and kaempferol, alk(en)yl cysteine sulfoxides including S-methyl cysteine sulfoxide and S-propyl cysteine sulfoxide, cycloalliin, thiosulfinates, and sulfides are the main compounds of the plant. A. cepa displays broad-spectrum pharmacological activities including antioxidant, anti-inflammatory, antihypertensive, and antidiabetic effects. Our objective in this review is to present the effects of A. cepa and its constituents on respiratory, allergic, and immunologic disorders. Different online databases were searched to find articles related to the effect of A. cepa extracts and its constituents on respiratory, allergic, and immunologic disorders until the end of December 2020 using keywords such as onion, A. cepa, constituents of A. cepa, therapeutic effects and pharmacological effects, and respiratory, allergic, and immunologic disorders. Extracts and constituents of A. cepa showed tracheal smooth muscle relaxant effects, indicating possible bronchodilator activities or relieving effects on obstructive respiratory diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of A. cepa was induced by their antioxidant, immunomodulatory, and anti-inflammatory effects. The preventive effects of the plant and its components on lung disorders induced by exposure to noxious agents as well as lung cancer, lung infection, and allergic and immunologic disorders were also indicated in the experimental and clinical studies. Therefore, this review may be considered a scientific basis for development of therapies using this plant, to improve respiratory, allergic, and immunologic disorders.
Collapse
|
8
|
Immunomodulatory properties of Musa paradisiaca L. inflorescence in Combined Allergic Rhinitis and Asthma Syndrome (CARAS) model towards NFκB pathway inhibition. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
9
|
Jantrapirom S, Hirunsatitpron P, Potikanond S, Nimlamool W, Hanprasertpong N. Pharmacological Benefits of Triphala: A Perspective for Allergic Rhinitis. Front Pharmacol 2021; 12:628198. [PMID: 33995026 PMCID: PMC8120106 DOI: 10.3389/fphar.2021.628198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic rhinitis (AR) is considered a major nasal condition impacting a large number of people around the world, and it is now becoming a global health problem. Because the underlying mechanisms of AR are complex, the development of single-drug treatment might not be enough to treat a wide spectrum of the disease. Although the standard guidelines classify and provide suitable diagnosis and treatment, the vast majority of people with AR are still without any means of controlling it. Moreover, the benefits of AR drugs are sometimes accompanied by undesirable side effects. Thus, it is becoming a significant challenge to find effective therapies with limited undesirable side effects for a majority of patients suffering from uncontrolled AR. Aller-7/NR-A2, a polyherbal formulation, has revealed promising results in patients by reducing nasal symptoms and eosinophil counts without serious adverse effects. Interestingly, three out of seven of the herbals in the Aller-7/NR-A2 formulation are also found in an Ayurvedic polyherbal formulation known as “Triphala,” which is a potential candidate for the treatment of AR. However, there are no current studies that have examined the effects of Triphala on the disease. This review aims to describe the complexity of AR pathophysiology, currently available treatments, and the effects of Triphala on AR in order to help develop it as a promising alternative treatment in the future.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai, University, Chiang Mai, Thailand
| | - Pannaphak Hirunsatitpron
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nutthiya Hanprasertpong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Wang Y, Chen S, Yang PL, Chen JJ, Kong WJ, Wang YJ. AIM2 inflammasome activation may mediate high mobility group box 1 release in murine allergic rhinitis. Braz J Otorhinolaryngol 2021; 88:925-931. [PMID: 33707120 PMCID: PMC9615526 DOI: 10.1016/j.bjorl.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction High mobility group box 1 protein participates in the pathogenesis of allergic rhinitis. Activation of the inflammasome can mediate the release of high mobility group box 1. The role of the absent in melanoma 2 inflammasome in allergic rhinitis remains unclear. Objective This study aimed to investigate the function of absent in melanoma 2 inflammasome in murine allergic rhinitis and the interaction between high mobility group box 1 and the absent in melanoma 2 inflammasome. Methods A murine allergic rhinitis model was established using twenty Balb/c mice. Expression of the components of the absent in melanoma 2 inflammasome: absent in melanoma 2, apoptosis-associated speck-like protein containing a CARD (Asc), caspase-1 p20, and additional nod-like receptor family pyrin domain containing 3 (Nlrp3) were detected by western blotting during allergic rhinitis. Alterations of absent in melanoma 2, caspase-1, and high mobility group box 1 after ovalbumin challenge were demonstrated by immunohistochemistry. TdT-mediated dUTP Nick end labeling, TUNEL assay, and cleavage of caspase-3 and PARP-1 were used for the observation of pyroptosis. Results Eosinophilia and goblet cell infiltration were observed in the nasal mucosa of mice in the allergic rhinitis group. Absent in melanoma 2, Asc, and caspase-1 p20 increased after ovalbumin exposure while Nlrp3 did not. High mobility group box 1 was released in the nasal mucosa of allergic rhinitis mice. TUNEL-positive cells increased in the epithelium and laminae propria, whereas cleavage of caspase-3 and PARP-1 was not observed. Conclusions The absent in melanoma 2 inflammasome was activated and pyroptosis may occur in the nasal mucosa after ovalbumin treatment. These may contribute to the translocation of high mobility group box 1 and the development of allergic rhinitis.
Collapse
Affiliation(s)
- Yan Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Shan Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Ping-Li Yang
- Shihezi University School of Medicine, The First Affiliated Hospital, Department of Otorhinolaryngology, Shihezi, China
| | - Jian-Jun Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Wei-Jia Kong
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| | - Yan-Jun Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| |
Collapse
|
11
|
Cao J, Li C, Ma P, Ding Y, Gao J, Jia Q, Zhu J, Zhang T. Effect of kaempferol on IgE-mediated anaphylaxis in C57BL/6 mice and LAD2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153346. [PMID: 33002828 DOI: 10.1016/j.phymed.2020.153346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Immunoglobulin E (IgE)-mediated mast cell (MC) activation is crucial in multiple allergic diseases. Parkinson disease protein 7 (DJ-1) and Lyn kinase were reported as the receptor-proximal events in IgE receptor (FcεRI) signals in human MC. Kaempferol, a natural flavonol mainly derived from the rhizome of traditional Chinese herb Kaempferia galanga L. (Zingiberaceae), has been known to inhibit allergic reactions, but it was limited to the receptor-distal signals on rat basophilic leukemia cells. A thorough investigation of the inhibitory effects of kaempferol on human MC has not been done. PURPOSE To investigate the inhibitory effects of kaempferol on IgE-mediated anaphylaxis in vivo and in human MCs, as well as the mechanism underlying its effects, especially the receptor-proximal signals. METHODS IgE-mediated passive cutaneous anaphylaxis and systemic anaphylaxis model were applied to elucidate the antiallergic activity of kaempferol in vivo. The degranulation assay, calcium imaging, the release of cytokines and chemokines on the laboratory of allergic disease 2 (LAD2) cells were used to evaluate the antiallergic effect of kaempferol in vitro. Western blot analysis was performed to investigate the DJ-1/Lyn signaling pathway and downstream molecules. Kinase activity assay, immunofluorescence, and molecular docking were conducted to confirm the influence of kaempferol on DJ-1/Lyn molecules. RESULTS Kaempferol dose-dependently attenuated ovalbumin/IgE-induced mice paw swelling, primary MC activation from paw skin, as well as rehabilitated the hypothermia, and reduced the serum concentrations of histamine, tumor necrosis factor-alpha, interleukin-8, and monocyte chemo-attractant protein-1. Additionally, kaempferol suppressed IgE-mediated LAD2 cell degranulation and calcium fluctuation. Remarkably, kaempferol was found to bind with DJ-1 protein, and initially prevented DJ-1 from translocating to the plasma membrane, thereby inhibited full activation of Lyn, and eventually restrained those receptor-distal signaling molecules, involved Syk, Btk, PLCγ, IP3R, PKC, MAPKs, Akt and NF-κB. CONCLUSION Kaempferol could be used as a DJ-1 modulator for preventing MC-mediated allergic disorders through attenuating Lyn activation.
Collapse
Affiliation(s)
- Jiao Cao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chaomei Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Pengyu Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Zhu
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Tao Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
12
|
Li QS, Wang YQ, Liang YR, Lu JL. The anti-allergic potential of tea: a review of its components, mechanisms and risks. Food Funct 2020; 12:57-69. [PMID: 33241826 DOI: 10.1039/d0fo02091e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.
Collapse
Affiliation(s)
- Qing-Sheng Li
- Tea Research Institute, Zhejiang University, China. and Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, China
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, China.
| | | | | |
Collapse
|
13
|
Cao J, Wang Y, Hu S, Ding Y, Jia Q, Zhu J, An H. Kaempferol ameliorates secretagogue-induced pseudo-allergic reactions via inhibiting intracellular calcium fluctuation. J Pharm Pharmacol 2020; 72:1221-1231. [PMID: 32557699 DOI: 10.1111/jphp.13312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To investigate the inhibitory effects of Kaempferol, a natural flavonol active compound, on pseudo-allergic reactions (in vivo and in vitro), particularly on the mechanism underlying its effect in human mast cells. METHODS Compound 48/80 (C48/80)-induced immunoglobulin E (IgE)-independent passive cutaneous anaphylaxis (PCA) model and systemic anaphylaxis were applied to investigate the anti-allergic activity of Kaempferol. The degranulation assay, calcium imaging and the secretion of cytokines and chemokines were used to evaluate the inhibitory effect on mast cell activation. Western blot analysis was performed to investigate intracellular calcium fluctuation-related signalling pathways. KEY FINDINGS Kaempferol dose-dependently attenuated C48/80-induced mice hind paw swelling, dye extravasation and skin mast cell degranulation, and rehabilitated the hypothermia, as well as reduced the serum concentrations of histamine, tryptase, tumour necrosis factor-alpha (TNF-α), interleukin-8 (IL-8) and monocyte chemo-attractant protein-1 (MCP-1). Furthermore, Kaempferol suppressed C48/80-triggered human MC degranulation and calcium fluctuations by inhibiting phospholipase Cγ (PLCγ) phosphorylation and subsequent cytokines synthesis pathways. CONCLUSIONS The inhibition of the process of PLCγ phosphorylation to Ca2+ mobilization represents a major strategy in Kaempferol-suppressed pseudo-allergic reactions. Thus, Kaempferol could be considered as a therapeutic drug candidate for non-IgE-mediated allergic reactions or inflammations.
Collapse
Affiliation(s)
- Jiao Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yuejin Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shiling Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhu
- Shaanxi Provincial People's Hospital, Xi'an, China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Kim DH, Kim CS, Subedi L, Kim SY, Lee KR. Alkaloids of NIRAM, natural dye from Polygonum tinctorium, and their anti-inflammatory activities. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Exploring Pharmacological Mechanisms of Xiang Ju Tablets in the Treatment of Allergic Rhinitis via a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6272073. [PMID: 31611923 PMCID: PMC6757243 DOI: 10.1155/2019/6272073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
In this study, allergic rhinitis (AR) disease targets and Xiang Ju tablet-associated targets were determined through the use of databases for the identification of putative therapeutic targets and then combined. After the production of a putative therapeutic target interaction network for Xiang Ju tablets against AR, topological analysis was used to determine the core targets of Xiang Ju tablets in AR treatment. For all putative therapeutic targets, analyses of biological function and pathway enrichment were performed to optimize the biological processes and key signaling pathways of Xiang Ju tablets in AR treatment. The top 5 therapeutic targets of Xiang Ju tablets in AR treatment were identified and included CXCL8, IL1B, IL6, IL10, and TNF. The biological processes, molecular functions, and cell composition related to the use of Xiang Ju tablets in AR treatment were predominantly associated with cytokine production, regulation of protein secretion, and regulation of peptide secretion; cytokine activity, cytokine receptor binding, and receptor ligand activity; and platelet alpha granule lumen, collagen-containing extracellular matrix, and platelet alpha granule. In addition, the top 64 key signaling pathways were identified.
Collapse
|
16
|
Lin B, Cai B, Wang H. Honeysuckle extract relieves ovalbumin-induced allergic rhinitis by inhibiting AR-induced inflammation and autoimmunity. Biosci Rep 2019; 39:BSR20190673. [PMID: 31308153 PMCID: PMC6663992 DOI: 10.1042/bsr20190673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
Honeysuckle has antiviral, antioxidative and anti-inflammatory properties. Allergic rhinitis (AR) is induced by immunoglobulin E (IgE)-mediated inflammatory reaction. Our study investigates whether honeysuckle extract (HE) has therapeutic effect on AR. An AR model of mice was established by ovalbumin (OVA). Hematoxylin-Eosin staining was used to assess nasal mucosa damage. Enzyme-linked immunosorbent assay (ELISA) was performed to determine serum histamine, IgE and interleukin (IL)-2, IL-4, IL-17 and interferon-γ (IFN-γ) from nasal lavage fluid. Western blot was carried out to analyze the protein level from nasal mucosa tissue. We found that HE not only decreased nasal rubbing and sneezing in AR mice, but also reduced AR-induced damage to nasal mucosa. Moreover, HE lowered the levels of serum IgE and histamine and inhibited IL-4 and IL-17 levels from AR mice but raised IL-2 and IFN-γ levels in AR-induced nasal lavage fluid. Our results also showed that HE elevated the protein levels of forkhead box P3 (Foxp3) and T-box transcription factor (T-bet) in AR-induced nasal mucosa tissue, whereas it inhibited signal transducer and activator of transcription (STAT) 3 and GATA binding protein 3 (GATA-3) protein levels. By regulating AR-induced inflammatory reaction and autoimmune response, HE also relieved OVA-induced AR. Thus, HE could be used as a potential drug to treat AR.
Collapse
Affiliation(s)
- Bin Lin
- ENT Department, Guangzhou Hospital of Integrated Traditional and West Medicine, No. 87 Yingbin Road, Huadu District, Guangzhou 510800, Guangdong Province, China
| | - Bijuan Cai
- ENT Department, Guangzhou Hospital of Integrated Traditional and West Medicine, No. 87 Yingbin Road, Huadu District, Guangzhou 510800, Guangdong Province, China
| | - Huige Wang
- ENT Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
17
|
Fu S, Ni S, Wang D, Hong T. Coptisine Suppresses Mast Cell Degranulation and Ovalbumin-Induced Allergic Rhinitis. Molecules 2018; 23:E3039. [PMID: 30469322 PMCID: PMC6278392 DOI: 10.3390/molecules23113039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Coptisine is one of the main components of isoquinoline alkaloids in the coptidis rhizome. The effect of coptisine on allergic rhinitis has not been investigated. In this study, we report the effects and mechanisms of coptisine using monoclonal anti-2,4,6-dinitrophenyl-immunoglobulin (Ig) E/human serum albumin (DNP-IgE/HSA)-stimulated rat basophilic leukemia cells (RBL-2H3 cells) in vitro and an ovalbumin (OVA)-induced allergic rhinitis (AR) in mice. The results showed that coptisine markedly decreased the levels of β-hexosaminidase, histamine, interleukin (IL)-4, and tumor necrosis factor (TNF)-α. Coptisine also prevented morphological changes, such as restoring an elongated shape, inhibiting granule release on toluidine blue staining, and reorganizing inhibited filamentous actins (F-actin). Additionally, coptisine blocked the phosphorylation of phosphoinositide3-kinase (PI3K)/Akt (as known as protein kinase B(PKB)) in RBL-2H3 cell. Furthermore, the results showed that coptisine suppressed OVA-induced allergic rhinitis symptoms, such as nasal rubbing and OVA-specific IgE, and histamine, IL-4 and TNF-α levels in the serum of AR mice. These data suggested that coptisine should have inhibitory effects on the inflammatory responses of mast cells, and may be beneficial for the development of coptisine as a potential anti-allergic drug.
Collapse
Affiliation(s)
- Shuilian Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Saihong Ni
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Danni Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Tie Hong
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
18
|
Fu M, Fu S, Ni S, Wang D, Hong T. Inhibitory effects of bisdemethoxycurcumin on mast cell-mediated allergic diseases. Int Immunopharmacol 2018; 65:182-189. [PMID: 30316076 DOI: 10.1016/j.intimp.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 11/26/2022]
Abstract
Most allergic reactions are induced by mast cell activation. Mast cells play vital roles in the pathogenesis of allergic diseases. Bisdemethoxycurcumin (BDMC), a natural curcuminoid, has potential anti-allergic effects. Hence, we explored the effect of BDMC on mast cell-mediated allergic diseases. The study proved that BDMC suppresses β-hexosaminidase release, granule release, and membrane ruffling in monoclonal anti-2,4,6-dinitrophenyl-immunoglobulin (Ig) E/human serum albumin (DNP-IgE/HSA)-stimulated rat basophilic leukaemia cells (RBL-2H3 cells), and BDMC suppressed ovalbumin (OVA)-induced allergic rhinitis (AR) symptoms and OVA-specific IgE levels in AR mice. Furthermore, BDMC increased the survival of compound 48/80 anaphylaxis shock mice and elevated the decreased rectal temperature in OVA-induced active systemic anaphylaxis mice. These findings indicate that BDMC regulates the degranulation of mast cells, demonstrating its potential in the treatment of mast cell-induced allergic reactions.
Collapse
Affiliation(s)
- Meng Fu
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China
| | - Shuilian Fu
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China
| | - Saihong Ni
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China
| | - Danni Wang
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China
| | - Tie Hong
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China.
| |
Collapse
|
19
|
Singh D, Tanwar H, Das S, Ganju L, Singh SB. A novel in vivo adjuvant activity of kaempferol: enhanced Tbx-21, GATA-3 expression and peritoneal CD11c +MHCII + dendritic cell infiltration. Immunopharmacol Immunotoxicol 2018; 40:242-249. [PMID: 29486619 DOI: 10.1080/08923973.2018.1434794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Kaempferol, a natural flavonol present in various traditional medicinal plants, is known to possess potent anti-inflammatory properties. This study was designed to study the adjuvant effect of kaempferol administration along with ovalbumin antigen (K + O) in balb/c mice. METHODS Mice were immunized with kaempferol (100 and 50 mg/kg body weight) without or with ovalbumin (20 µg/mouse). After priming, booster was administered on day 21. Antigen specific IgG titers and its subtypes, on day 28, were estimated by indirect ELISA. Effect of kaempferol administration on CD11c+MHCII+ peritoneal dendritic cells was studied by flow cytometry. Expression levels of proteins Tbx21, GATA-3, BLIMP-1, Caspase-1 and Oct-2 were studied by western blotting. LPS activated IL-1β production by peritoneal cells of immunized mice was estimated by sandwich ELISA. RESULTS Ovalbumin specific IgG, IgG1 and IgG2a antibody titers in sera samples of K + O immunized mice increased significantly (p < .01) as compared to controls. The enhanced Th1 and Th2 immune response in K + O immunized mice was also supported by the increased expression of Tbx21 and GATA-3 transcription factors in splenocytes. This corroborated with increased BLIMP-1 and Oct-2 protein expression. Kaempferol increased the infiltration of peritoneal CD11c+MHCII+ dendritic cells but failed to enhance LPS activated IL-1β by peritoneal macrophages and suppressed caspase-1 protein expression as compared to that in ovalbumin immunized mice. CONCLUSION Present study strongly demonstrates the novel adjuvant activity of kaempferol in vivo and its potential as an immunostimulatory agent.
Collapse
Affiliation(s)
- Divya Singh
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| | - Himanshi Tanwar
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| | - Sudeshna Das
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| | - Lilly Ganju
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| | - Shashi Bala Singh
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| |
Collapse
|
20
|
Nam SY, Jeong HJ, Kim HM. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation. Chem Biol Interact 2017; 274:107-115. [DOI: 10.1016/j.cbi.2017.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
|
21
|
Shin D, Park SH, Choi YJ, Kim YH, Antika LD, Habibah NU, Kang MK, Kang YH. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma. Int J Mol Sci 2015; 16:29980-95. [PMID: 26694364 PMCID: PMC4691161 DOI: 10.3390/ijms161226218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/26/2015] [Accepted: 12/08/2015] [Indexed: 01/30/2023] Open
Abstract
Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.
Collapse
Affiliation(s)
- Daekeun Shin
- Department of Food and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Sin-Hye Park
- Department of Food and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Yean-Jung Choi
- Department of Food and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Yun-Ho Kim
- Department of Food and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Lucia Dwi Antika
- Department of Food and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Nurina Umy Habibah
- Department of Food and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|
22
|
Nam SY, Kim HM, Jeong HJ. Attenuation of IL-32-induced caspase-1 and nuclear factor-κB activations by acteoside. Int Immunopharmacol 2015; 29:574-582. [DOI: 10.1016/j.intimp.2015.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|